K D Campus Pvt. Ltd 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009	
SSC TIER II (MATHS) MOCK TEST - 26 (ANSWER KEY)	
1.(C)11. (B)21. (B)31. (A)41. (A)2(B)12. (A)22. (B)32. (C)42. (B)3.(B)13. (B)23. (D)33. (B)43. (D)4.(D)14. (A)24. (B)34. (B)44. (A)5.(A)15. (B)25. (D)35. (A)45. (C)6.(A)16. (C)26. (A)36. (C)46. (A)7.(C)17. (A)27. (A)37. (B)47. (C)8.(A)18. (A)28. (A)38. (A)48. (A)9.(A)19. (D)29. (C)39. (D)49. (A)10.(C)20. (A)30. (B)40. (C)50. (B)	51. (B) 61. (C) 71. (B) 81. (D) 91. (A) 52. (A) 62. (B) 72. (B) 82. (B) 92. (C) 53. (D) 63. (C) 73. (D) 83. (A) 93. (D) 54. (B) 64. (A) 74. (C) 84. (A) 94. (C) 55. (D) 65. (B) 75. (C) 85. (A) 95. (A) 56. (A) 66. (A) 76. (D) 86. (C) 96. (D) 57. (B) 67. (D) 77. (B) 87. (D) 97. (B) 58. (C) 68. (B) 78. (B) 88. (C) 98. (A) 59. (A) 69. (B) 79. (B) 89. (B) 99. (C) 60. (A) 70. (C) 80. (A) 90. (C) 100.(B)
SSC TIER II (MATHS) MOCK TEST - 26 (SOLUTION)	
1. (C) Let the number = $100x + 10y + z$ A.T.Q 100x + 10y + z = x + y + z $\Rightarrow 99x - 9y = 0$ x = 0(11x - x)	4. (D) $1 + \sin x + \sin^2 x \dots \infty = 4 + 2\sqrt{3}$ $\Rightarrow \frac{1}{(1 - \sin x)} = 4 + 2\sqrt{3}$ $\Rightarrow 1 - \sin x = \frac{1}{4 + 2\sqrt{3}}$
$\Rightarrow 9(11x - y)$ Hence it divided by 3 or 9. 2. (B) Given that $m_1 = 2 - \sqrt{3}$ $m_2 = 2 + \sqrt{3}$	$\Rightarrow 1 - \sin x = \frac{4}{4 + 2\sqrt{3}}$ $\Rightarrow 1 - \sin x = \frac{4 - 2\sqrt{3}}{4}$ $\Rightarrow 1 - \sin x = 1 - \frac{\sqrt{3}}{2}$
If the angle between lines is θ then, $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right = \left \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + 1} \right $	$\Rightarrow 1 - \sin x = 1 - \frac{\pi}{2}$ $\Rightarrow \sin x = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} = \sin \frac{2\pi}{3}$ $\therefore x = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$
$\Rightarrow \tan \theta = \frac{2\sqrt{3}}{2} = \sqrt{3}$ $\Rightarrow \theta = 60^{\circ}$ 3. (B) A.T.Q	 5. (A) Relative speed B with respect to A = 6 - 1 = 5 rounds/hour Time taken to complete one round = 12 minutes
$= \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$ Multiplying and dividing by 2 $(\sin\frac{\pi}{7})$ $= \frac{2\sin\frac{\pi}{7}\cos\frac{2\pi}{7} + 2\sin\frac{\pi}{7}\cos\frac{4\pi}{7} + 2\sin\frac{\pi}{7}\cos\frac{6\pi}{7}}{2\left(\sin\frac{\pi}{7}\right)}$	They will meet after 12 minutes at 7: 42 am. 6. (A) Let the average expenditure of one student = $\overline{x}x$ According to question, $\Rightarrow (45 \times x) + 54 = 54 (x - 1)$ $\Rightarrow 45x + 54 = 54x - 54$ $\Rightarrow 108 = 9x \Rightarrow x = 12$
$= \frac{\sin\frac{3\pi}{7} - \sin\frac{\pi}{7} + \sin\frac{5\pi}{7} - \sin\frac{3\pi}{7} + \sin\pi - \sin\frac{5\pi}{7}}{2\left(\sin\frac{\pi}{7}\right)}$	Initial expenditure = $45 \times 12 = ₹540$ 7. (C) A.T.Q $\frac{1}{24} + \frac{1}{48} + \frac{1}{80} + \frac{1}{120} + \frac{1}{168}$
$= \frac{\left(-\sin\frac{\pi}{7} + \sin\pi\right)}{2\left(\sin\frac{\pi}{7}\right)} \Rightarrow \frac{\left(-\sin\frac{\pi}{7} + 0\right)}{2\left(\sin\frac{\pi}{7}\right)}$	$= \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \frac{1}{8 \times 10} + \frac{1}{10 \times 12} + \frac{1}{12 \times 14}$ $= \frac{1}{2} \left[\frac{1}{4} - \frac{1}{6} + \frac{1}{6} - \frac{1}{8} + \frac{1}{8} - \frac{1}{10} + \frac{1}{10} - \frac{1}{12} + \frac{1}{12} - \frac{1}{14} \right]$
$=\frac{-1}{2}$ Ph: 0955510888	$= \frac{1}{2} \left[\frac{1}{4} - \frac{1}{14} \right] = \frac{1}{2} \times \frac{5}{28} = \frac{5}{56}$ 8, 09555208888 1

EXAMPLE STRUCT
B. (A) A.T.Q

$$\cos^2 \theta - \sin \theta = \frac{1}{4}$$

 $\Rightarrow 1 - \sin^2 \theta - \sin \theta = \frac{1}{4}$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin \theta - \frac{3}{4} = 0$
 $\Rightarrow \sin^2 \theta + \sin^2 \theta - \sin^2 \theta = \frac{1}{2} = \frac{1}{2} \text{ or } \frac{-3}{2}$
Hence, $\sin \theta = \frac{1}{2}$
 $= 4CF of 435, 439 \text{ and } 551 = 29$
 $\Rightarrow \text{ Each container contain 29 thres of milk.}$
 $\therefore Maximum number of containers
 $\operatorname{required} - \frac{425}{429} + \frac{493}{29} + \frac{51}{29} - \frac{1479}{29} - 51$
10. (C) Water : Milk
 $3 = 5 = 1 \times 5 = 5 = 10$
 $\therefore Water add in final mixture = $\frac{2}{10} = \frac{1}{5}$
11. (B) A.T.Q
 $(4|A| + 1 + P| = 30\% \text{ of work}$
 $and, 8(A + D) = 64\% \text{ of work}$
 $and, 8(A + D) = 64\% \text{ of work}$
 $and, 8(A + D) = 64\% \text{ of work}$
 $and, 8(A + D) = 64\% \text{ of work}$
 $and s(A + D) = 64\% \text{ of work}$
 $and s(A + D) = 64\% \text{ of work}$
 $and s(A + D) = 64\% \text{ of work}$
 $and from (\beta)$.
12. (A) Volume of prism = Area of Base × Height
Area of Base = $\sqrt{2|1 \times 6 + \sqrt{1|1|}|}$
 $= 6\sqrt{154} \text{ cm}^2$
Volume of Prism = $6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = $6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = $6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = $6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{154} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $= 24\sqrt{16} \text{ cm}^2$
 $Volume of Prism = 6\sqrt{(154 \times 9)}$
 $Volume of Prism = 6\sqrt$$$$$$

