Campus

K D Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC TIER II (MATHS) MOCK TEST - 26 (ANSWER KEY)

1. (C)	11. (B)	21. (B)	31. (A)	41. (A)	51. (B)	61. (C)	71. (B)	81. (D)	91. (A)
2 (B)	12. (A)	22. (B)	32. (C)	42. (B)	52. (A)	62. (B)	72. (B)	82. (B)	92. (C)
3. (B)	13. (B)	23. (D)	33. (B)	43. (D)	53. (D)	63. (C)	73. (D)	83. (A)	93. (D)
4. (D)	14. (A)	24. (B)	34. (B)	44. (A)	54. (B)	64. (A)	74. (C)	84. (A)	94. (C)
5. (A)	15. (B)	25. (D)	35. (A)	45. (C)	55. (D)	65. (B)	75. (C)	85. (A)	95. (A)
6. (A)	16. (C)	26. (A)	36. (C)	46. (A)	56. (A)	66. (A)	76. (D)	86. (C)	96. (D)
7. (C)	17. (A)	27. (A)	37. (B)	47. (C)	57. (B)	67. (D)	77. (B)	87. (D)	97. (B)
8. (A)	18. (A)	28. (A)	38. (A)	48. (A)	58. (C)	68. (B)	78. (B)	88. (C)	98. (A)
9. (A)	19. (D)	29. (C)	39. (D)	49. (A)	59. (A)	69. (B)	79. (B)	89. (B)	99. (C)
10. (C)	20. (A)	30. (B)	40. (C)	50. (B)	60. (A)	70. (C)	80. (A)	90. (C)	100.(B)

SSC TIER II (MATHS) MOCK TEST - 26 (SOLUTION)

1. (C) Let the number $=100 x+10 y+z$
A.T.Q
$100 x+10 y+z=x+y+z$
$\Rightarrow 99 x-9 y=0$
$\Rightarrow 9(11 x-y)$
Hence it divided by 3 or 9 .
2. (B) Given that
$m_{1}=2-\sqrt{3} \quad m_{2}=2+\sqrt{3}$
If the angle between lines is θ
then, $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{2-\sqrt{3}-2-\sqrt{3}}{1+1}\right|$
$\Rightarrow \tan \theta=\frac{2 \sqrt{3}}{2}=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
3. (B) A.T.Q
$=\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}$
Multiplying and dividing by $2\left(\sin \frac{\pi}{7}\right)$
$=\frac{2 \sin \frac{\pi}{7} \cos \frac{2 \pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{4 \pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{6 \pi}{7}}{2\left(\sin \frac{\pi}{7}\right)}$
$=\frac{\sin \frac{3 \pi}{7}-\sin \frac{\pi}{7}+\sin \frac{5 \pi}{7}-\sin \frac{3 \pi}{7}+\sin \pi-\sin \frac{5 \pi}{7}}{2\left(\sin \frac{\pi}{7}\right)}$
$=\frac{\left(-\sin \frac{\pi}{7}+\sin \pi\right)}{2\left(\sin \frac{\pi}{7}\right)} \Rightarrow \frac{\left(-\sin \frac{\pi}{7}+0\right)}{2\left(\sin \frac{\pi}{7}\right)}$
$=\frac{-1}{2}$
4. (D) $1+\sin x+\sin ^{2} x$ $\infty=4+2 \sqrt{3}$
$\Rightarrow \frac{1}{(1-\sin x)}=4+2 \sqrt{3}$
$\Rightarrow 1-\sin x=\frac{1}{4+2 \sqrt{3}}$
$\Rightarrow 1-\sin x=\frac{4-2 \sqrt{3}}{4}$
$\Rightarrow 1-\sin x=1-\frac{\sqrt{3}}{2}$
$\Rightarrow \sin x=\frac{\sqrt{3}}{2}=\sin \frac{\pi}{3}=\sin \frac{2 \pi}{3}$
$\therefore x=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
5. (A) Relative speed B with respect to $\mathrm{A}=6-1$
$=5$ rounds $/$ hour
Time taken to complete one round $=$ 12 minutes
They will meet after 12 minutes at 7: 42 am .
6. (A) Let the average expenditure of one student $=₹ x$
According to question,
$\Rightarrow(45 \times x)+54=54(x-1)$
$\Rightarrow 45 x+54=54 x-54$
$\Rightarrow 108=9 x \Rightarrow x=12$
Initial expenditure $=45 \times 12=₹ 540$
7. (C) A.T.Q

$$
\begin{aligned}
& \frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168} \\
& =\frac{1}{4 \times 6}+\frac{1}{6 \times 8}+\frac{1}{8 \times 10}+\frac{1}{10 \times 12}+\frac{1}{12 \times 14} \\
& =\frac{1}{2}\left[\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right] \\
& =\frac{1}{2}\left[\frac{1}{4}-\frac{1}{14}\right]=\frac{1}{2} \times \frac{5}{28}=\frac{5}{56}
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

8. (A) A.T.Q
$\cos ^{2} \theta-\sin \theta=\frac{1}{4}$
$\Rightarrow 1-\sin ^{2} \theta-\sin \theta=\frac{1}{4}$
$\Rightarrow \sin ^{2} \theta+\sin \theta-\frac{3}{4}=0$
$\Rightarrow \sin \theta=\frac{-1 \pm \sqrt{1+3}}{2}=\frac{-1 \pm 2}{2}=\frac{1}{2}$ or $\frac{-3}{2}$
Hence, $\sin \theta=\frac{1}{2}$
9. (A) A.T.Q
$\Rightarrow \mathrm{HCF}$ of 435,439 and $551=29$
\Rightarrow Each container contain 29 litres of milk.
\therefore Maximum number of containers required $=\frac{435}{29}+\frac{493}{29}+\frac{551}{29}=\frac{1479}{29}=51$
10. (C) Water : Milk
$\begin{gathered}3 \\ 1 \times 5=5\end{gathered} \quad: \quad \begin{aligned} & 5 \\ & 1 \times 5=5=8 \\ & =10\end{aligned}$
\therefore Water add in final mixture $=\frac{2}{10}=\frac{1}{5}$
11. (B) A.T.Q
$4(A+D+P)=36 \%$ of work
and, $8(A+D)=64 \%$ of work
$\therefore \quad A+D=8 \%$ of work in a day
$\Rightarrow 5 \mathrm{~A}=3 \mathrm{D}$
$\therefore \mathrm{A}=3 \%$ of work
$\mathrm{D}=5 \%$ of work
In four days $(A+D) \times 4=8 \times 4=32 \%$ of work
Remaining work in first four days
$=36-32=4 \%$
\therefore Pooja would done 1.33% work in day.
Thus, Dolly would complete the work in 20 days.
12. (A) Volume of prism $=$ Area of Base \times Height

Area of base $=\sqrt{s(s-a)(s-b)(s-c)}$
$\mathrm{s}=\frac{15+17+10}{2}=21 \mathrm{~cm}$
Area of Base $=\sqrt{21 \times 6 \times 4 \times 11}$
$=6 \sqrt{154} \mathrm{~cm}^{2}$
Volume of Prism $=6 \sqrt{154} \times 9$
$=54 \sqrt{154} \mathrm{~cm}^{3}$
13. (B) Rice buys in Ist year $=\frac{4200}{7}=600 \mathrm{~kg}$

Rice buys 2 nd year $=\frac{4800}{8}=600 \mathrm{~kg}$
Rice buys 3rd year $=\frac{6800}{8.5}=800 \mathrm{~kg}$
Total rice buy in 3 years $=2000 \mathrm{~kg}$
Total money spend in 3 years $=₹ 15800$
Average rate of rice $=\frac{15800}{2000}=₹ 7.9 / \mathrm{kg}$
14. (A) Let the speed of car $=x \mathrm{~km} / \mathrm{hr}$
A.T.Q
$\frac{100}{x}=\frac{100 \times 4}{7 x}+\frac{20}{60}$
$\Rightarrow \frac{100}{x}-\frac{400}{7 x}=\frac{1}{3}$
$\Rightarrow \frac{700-400}{7 x}=\frac{1}{3}$
$\Rightarrow x=\frac{900}{7} \mathrm{~km} / \mathrm{hr}$
\Rightarrow Speed of the car $=\frac{900}{7} \mathrm{~km} / \mathrm{hr}$
15. (B) $x=\frac{2 \sqrt{6} \sqrt{4}}{\sqrt{6}+\sqrt{4}}$
$\Rightarrow \frac{x}{\sqrt{6}}=\frac{2 \sqrt{4}}{\sqrt{6}+\sqrt{4}}$
Applying C and D rule,
$\frac{x+\sqrt{6}}{x-\sqrt{6}}=\frac{2 \sqrt{4}+\sqrt{6}+\sqrt{4}}{2 \sqrt{4}-\sqrt{6}-\sqrt{4}}=\frac{3 \sqrt{4}+\sqrt{6}}{\sqrt{4}-\sqrt{6}}$
And from (i),
$\frac{x+\sqrt{4}}{x-\sqrt{4}}=\frac{2 \sqrt{6}+\sqrt{6}+\sqrt{4}}{2 \sqrt{6}-\sqrt{6}-\sqrt{4}}=\frac{3 \sqrt{6}+\sqrt{4}}{\sqrt{6}-\sqrt{4}}$.
Adding equation (ii) and (iii)
$\frac{x+\sqrt{6}}{x-\sqrt{6}}+\frac{x+\sqrt{4}}{x-\sqrt{4}}=\frac{3 \sqrt{4}+\sqrt{6}}{\sqrt{4}-\sqrt{6}}+\frac{3 \sqrt{6}+\sqrt{4}}{\sqrt{6}-\sqrt{4}}$
$=\frac{3 \sqrt{4}+\sqrt{6}-3 \sqrt{6}-\sqrt{4}}{\sqrt{4}-\sqrt{6}}=\frac{2 \sqrt{4}-2 \sqrt{6}}{\sqrt{4}-\sqrt{6}}$
$=\frac{2(\sqrt{4}-\sqrt{6})}{(\sqrt{4}-\sqrt{6})}=2$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

16. (C) $\sqrt[3]{4}, \quad \sqrt{2}, \quad \sqrt[6]{3}, \quad \sqrt[4]{5}$
(4) $)^{1 / 3}$,
(2) $)^{1 / 2}$,
$(3)^{1 / 6}$,
$(5)^{1 / 4}$,
(4) ${ }^{4 / 12}$,
(2) ${ }^{6 / 12}$,
$(3)^{2 / 12}, \quad(5)^{3 / 12}$,
(256) ${ }^{1 / 12}$,
$(64)^{1 / 12}$,
(9) ${ }^{1 / 12}, \quad(125)^{1 / 12}$,

Descending order is $\sqrt[3]{4}, \sqrt[4]{5}, \sqrt{2}, \sqrt[6]{3}$
17. (A) L.C.M $=\frac{\text { L.C.M of } 6,3,15}{\text { H.C.F of } 5,5,11}=\frac{30}{1}$
H.C.F $\frac{\text { H.C.F of } 6,3,15}{\text { L.C.M of } 5,5,11}=\frac{3}{55}$
18. (A) Total population $=x$

Male $=\frac{5}{8} x$
Educated Male $=\frac{5}{8} x \times \frac{1}{7}=\frac{5}{56} x$
Educated Female $=\frac{3}{8} x \times \frac{3}{14}=\frac{9}{112} x$
Number of uneducated people
$=x-\frac{5}{56} x-\frac{9}{112} x$
$=\frac{112 x-10 x-9 x}{112}=\frac{93 x}{112}$
\therefore Percentage of uneducated people
$=\frac{93 x}{112 \times x} \times 100=\frac{2325}{28} \approx 83 \%$
19. (D) According to question,
$=\sqrt{\sqrt{121}+\sqrt{\sqrt{441}+\sqrt{9+\sqrt{\sqrt{81}+\sqrt{1600}}}}}$
$=\sqrt{11+\sqrt{21+\sqrt{9+\sqrt{9+40}}}}$
$=\sqrt{11+\sqrt{21+\sqrt{9+7}}}$
$=\sqrt{11+\sqrt{21+\sqrt{16}}}$
$=\sqrt{11+\sqrt{21+4}}$
$=\sqrt{11+\sqrt{25}}$
$=\sqrt{11+5}=4$
20. (A) Side of the square inscribed in triangle
$=\frac{P \times B}{P+B}=\frac{48}{14}=\frac{24}{7} \mathrm{~cm}$
Area of largest square
$=\left(\frac{24}{7}\right)^{2}=\frac{576}{49} \mathrm{~cm}^{2}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

25. (D) According to question,
$\left(x+\frac{1}{x}\right)^{3}=(3)^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3(3)=27$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=18$
Now, $\left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}+\frac{1}{x^{3}}\right)=18 \times 18$
$\Rightarrow x^{6}+1+1+\frac{1}{x^{6}}=324$
$\Rightarrow x^{6}+\frac{1}{x^{6}}=322$
26. (A) A.T.Q

So, $\frac{30}{x+y}+\frac{18}{x-y}=6$
Let $\mathrm{D}=\frac{1}{x+y}$ and $\mathrm{U}=\frac{1}{x-y}$
$30 D+18 U=6$
$5 \mathrm{D}+3 \mathrm{U}=1 \ldots .$. (i)
and, $\frac{40}{x+y}+\frac{20}{x-y}=\frac{22}{3}$
$\Rightarrow 40 \mathrm{D}+20 \mathrm{U}=\frac{22}{3}$
$\Rightarrow 20 \mathrm{D}+10 \mathrm{U}=\frac{11}{3}$
Solving equation (i) by (ii), we have
$\mathrm{U}=\frac{1}{6}, \mathrm{D}=\frac{1}{10}$
$x+y=10$
$x-y=6$
$2 x=16$
$\Rightarrow x=8$
Speed of boat $=8 \mathrm{~km} / \mathrm{hr}$
27. (A) $7200=2^{5} \times 3^{2} \times 5^{2}$
\therefore Number of divisors $=(5+1)(2+1)(2+1)$
$=6 \times 3 \times 3=54$
28. (A) The number must be greater than 65300 and less than 65399
$\frac{65300}{80}=816.25$
$\therefore 817 \times 80=65360$
$\therefore x+y=6+0=6$
29. (C) Numbers of apples should be a perfect square because at last n apples are packed in n boxes and no apples left.
\therefore Number of boxes $=1444$
30. (B) $\frac{\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{H}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{H}_{2}}{\mathrm{~W}_{2}}$
$\begin{array}{ll}\Rightarrow & \frac{1 \times 1 \times(6+4)}{1}=\frac{1 \times 1 \times(6+6+x)}{1 \frac{1}{2}} \\ \Rightarrow 10=\frac{(12+x) 2}{3}\end{array}$
$\Rightarrow 10=\frac{(12+x) 2}{3}$
$\Rightarrow 30=24+2 x$
$\Rightarrow x=3$
31. (A)

$\therefore \angle 1=\angle 2$ (opposite angle of equal sides)
$\Rightarrow \angle \mathrm{ACD}=180^{\circ}-80=100^{\circ}$
$\Rightarrow \angle 1+\angle 2=180^{\circ}-100^{\circ}=80^{\circ}$
$\Rightarrow \angle 1=\angle 2=\frac{80^{\circ}}{2}=40^{\circ}$
$\therefore \angle \mathrm{ABC}=180^{\circ}-110^{\circ}-40^{\circ}=30^{\circ}$
32. (C) A.T.Q
C.P. - 1005% less 95
M.P. -120
S.P $=\frac{120 \times 90}{100}=108$

Selling Price when he sell it at 40% profit
$=\frac{95 \times 140}{100}=133$
Now, $133-108=25$ unit $=₹ 36$
\therefore cost price $=\frac{36}{25} \times 100=₹ 144$
33. (B) A.T.Q

Weight Price
$9 \times 1100-1000$
$11 \times 900-1080$
$\begin{aligned} & 9900-9000 \\ & 9900-11880\end{aligned}>$ Profit $\%=\frac{2880}{9000} \times 100$
= 32\%
34. (B) Given that
$\frac{\left(x+\sqrt{x^{2}-1}\right)}{\left(x-\sqrt{x^{2}-1}\right)}+\frac{\left(x-\sqrt{x^{2}-1}\right)}{\left(x+\sqrt{x^{2}-1}\right)}=34$
$\Rightarrow \frac{\left(x+\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}{\left(x-\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}+\frac{\left(x-\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)}{\left(x+\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)}=34$
$\Rightarrow \frac{x^{2}+x^{2}-1+2 x \sqrt{x^{2}-1}+x^{2}+x^{2}-1-2 x \sqrt{x^{2}-1}}{x^{2}-x^{2}+1}=34$
$\Rightarrow 2 x^{2}+2 x^{2}-36=0 \Rightarrow 4 x^{2}=36$
$\Rightarrow x=3$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
35. (A) Put $\mathrm{a}=2$ and $\mathrm{b}=0$
$4(2)+4(2)(0)+4(0)=8$
and, $2(2)+2(0)+2(0)=4$
$\therefore a b=2 \times 0=0$
36. (C) According to question,
$116-x=x-88$
$\Rightarrow 2 \mathrm{x}=\frac{204}{2}$
$\Rightarrow x=102$
Selling price an 25% profit
$=\frac{102 \times 125}{100}=₹ 127.5$
37. (B)
$\begin{aligned} & \mathrm{A}+\mathrm{B}-20 \\ & \mathrm{~B}+\mathrm{C}-15 \xrightarrow{3} \\ & \mathrm{C}+\mathrm{A}-12 \underset{5}{2} \\ & 2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=12\end{aligned} 60$
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=12$
$A+B+C=6$
efficiency of $A=A+B+C-B-C=6-4=2$
After increasing his efficiency $50 \%=3$
\therefore Required time taken $\frac{60 \times 2}{3}=40$ days
38. (A) $\begin{gathered}16000 \\ \sqrt[3]{8000} \\ 20\end{gathered} \longrightarrow \begin{gathered}18522 \\ \sqrt[3]{9261} \\ 21\end{gathered}$

Required rate $=\frac{1}{20} \times 100=5 \%$
39. (D) $\cos 75^{\circ}=\cos \left(30^{\circ}+45^{\circ}\right)$

We know that,
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\Rightarrow \cos \left(30^{\circ}+45^{\circ}\right)$
$=\cos 30^{\circ} \cos 45^{\circ}-\sin 30 \sin 45^{\circ}$
$=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
40. (C) Total run scored in 50 innings $=50 \times 60$
$=3000$ run
Run scored in 48 innings $=55 \times 48$

$$
=2640 \mathrm{run}
$$

Run scored in 2 innings $=3000-2640$

$$
=360 \mathrm{run}
$$

Let lowest inning is x run
$\therefore x+x+158=360$
$\Rightarrow 2 x=360-158=202$
$\Rightarrow x=101$ run
41. (A)

Price Number

$5_{\times 20}$	$3_{\times 20}$	100	60
$7_{\times 12}$	$5_{\times 12}$	84	60

$6_{\times 15} 4_{\times 15} \mid 90 \quad 60 \quad$ SP of $120=180$
$\therefore \operatorname{loss} \%=\frac{4}{184} \times 100=2 \frac{4}{23} \%$
42. (B) A.T.Q
$\Rightarrow \frac{7}{2}-\frac{10}{3}=\frac{21-20}{6}=\frac{1}{6} \%$
Required amount $=18000 \times \frac{1}{600}=₹ 30$
43. (D) Let C invest $=₹ \mathrm{x}$
$\therefore \mathrm{B}=x+12000$
$\mathrm{A}=x+12000+7000=x+19000$
Now, $\quad 3 x+31000=85000$
$\Rightarrow 3 x=54000$
$\Rightarrow x=18000$
Investment of A=18000+19000=₹37000
$B=₹ 18000+12000=₹ 30000$
$\mathrm{C}=₹ 18000$
Ratio of their profit
37:30:18
Hence, profit of $\mathrm{C}=\frac{34000 \times 18}{85}=₹ 7200$
44. (A) A.T.Q
$\Rightarrow \frac{5}{100}=\frac{1}{20}$
$\begin{array}{rr}21 \times 20 & 21 \times 21 \\ 400 & 441\end{array}>$ instalment same
420441
$400 \quad 441$
$820 \quad 882$
820 units $=16400$
441 units $=\frac{16400}{820} \times 441=₹ 8820$
\therefore Amount of each instalment $=₹ 8820$
45. (C) Let $\mathrm{AP}=x \mathrm{~m}$
$\tan \left(90^{\circ}-\theta\right)=\frac{20 \sqrt{3}}{x}$
$\cot \theta=\frac{20 \sqrt{3}}{x} \ldots \ldots$ (i)
Similarly,
$\tan (\theta)=\frac{20 \sqrt{3}}{(x+40)}$
Multiplying equation (i) and (2),
$\cot \theta \cdot \tan \theta=\frac{20 \sqrt{3}}{x} \cdot \frac{20 \sqrt{3}}{(x+40)}$
$\Rightarrow 1=\frac{400 \times 3}{x^{2}+40 x} \Rightarrow x^{2}+40 x-1200=0$
$\Rightarrow x^{2}+60 x-20 x-1200=0$
$\Rightarrow x(x+60)-20(x+60)=0$
$\Rightarrow x=20 \mathrm{~m}$
Distance from point P to Building is 20 meter

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
46. (A) Let the distance between his house and his school $=x \mathrm{~km}$
A.T.Q,
$\frac{x}{3}-\frac{x}{4}=\frac{10}{60}$
$\Rightarrow \frac{x}{12}=\frac{10}{60}$
Distance of his school from house $=2 \mathrm{~km}$
47. (C)

$\frac{\text { Volume of cone ABC }}{\text { Volume of BCDE }}=\frac{1}{1}$
$\frac{\text { Volume of ADE }}{\text { Volume of } \mathrm{ABC}}=\frac{2}{1}$
$\left(\frac{\text { Height of cone }\left(\mathrm{h}_{1}\right)}{\text { Height of cone }\left(\mathrm{h}_{2}\right)}\right)^{3}=\frac{2}{1}$
$\therefore \frac{h_{1}}{h_{2}}=\frac{\sqrt[3]{2}}{1}$
$\therefore \frac{h_{1}}{h_{2}}-1=\frac{\sqrt[3]{2}}{1}-1$
$\therefore h_{1}-h_{2}: h_{2}=\sqrt[3]{2}-1: 1$
$\therefore h_{2}: h_{1}-h_{2}=1: \sqrt[3]{2}-1$
48. (A) A.T.Q

Milk : Water
(3): $2=5)_{\times 7 \times 3}$
(4: $3=7)_{\times 5 \times 4}$
(5 : $2=7)_{\times 5 \times 5}$
63: 42
80 : 60
$125: 50$
268: 152
67 : 38
49. (A) Let the number are p, q, r, s

New numbers $=(p+2),(q+4),(r+8) \ldots$. Average of new numbers
$=\frac{(p+2)+(q+4)+(r+8)}{n} \ldots$
$=\left(\frac{p+q+r+s}{n} \ldots \ldots\right)+\left[\frac{2+4+8+16}{n} \ldots \ldots\right]$
$=a+\frac{\text { sum of progression in G. } P}{n}$
$=a+\frac{\left(2\left(2^{n}-1\right)\right)}{2-1} / n=a+\frac{\left(2\left(2^{n}-1\right)\right)}{n}$
50. (B) A.T.Q
$\cos ^{2} \theta+\cos ^{4} \theta=1$
$\Rightarrow \cos ^{4} \theta=1-\cos ^{2} \theta$
$\Rightarrow \cos ^{4} \theta=\sin ^{2} \theta$
Now, $\tan ^{2}\left(\tan ^{2}+1\right)$
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{1}{\cos ^{2} \theta}=\frac{\sin \theta}{\sin \theta} \times \frac{1}{\sin \theta}=1$
51. (B) CP of total weight $=3 \times 30+48 \times 5=₹ 330$

SP of total weight $=3 \times 45+5 \times 60$

$$
=135+300=₹ 435
$$

\therefore Profit $\%=\frac{105}{330} \times 100=31.82 \%$
52. (A) Volume of Ist sphere $=\frac{4}{3} \pi(1)^{3} \mathrm{~cm}^{3}$

Volume of 2 nd sphere $=\frac{4}{3} \pi(6)^{3} \mathrm{~cm}^{3}$
$=216 . \frac{4}{3} \pi \mathrm{~cm}^{3}$
Let the inner radius of new sphere $=a \mathrm{~cm}$
$\therefore \frac{4}{3} \pi(9)^{3}-\frac{4}{3}(\mathrm{a})^{3}=\frac{4}{3} \pi+\frac{4}{3} \pi 216$
$\Rightarrow \frac{4}{3} \pi\left(729-a^{3}\right)=217 \cdot \frac{4}{3} \pi$
$\Rightarrow \mathrm{a}^{3}=512$
$\Rightarrow \mathrm{a}=8 \mathrm{~cm}$
\therefore Thickness $=9-8=1 \mathrm{~cm}$
53. (D) Total age of 30 students $=30 \times \frac{43}{3}$

$$
=430 \text { years }
$$

Total age of 35 students $=35 \times \frac{55}{4}$

$$
=\frac{1925}{4} \text { years }
$$

Total age of new 5 students $=\frac{1925}{4}-430$
$=\frac{1925-1720}{4}=\frac{205}{4}$ years
Total of 4 students $=\frac{205}{4}-\frac{119}{12}$

$$
=\frac{124}{3} \text { years }
$$

\therefore Average of 4 students $=\frac{124}{3 \times 4}$
$=\frac{31}{3}=10$ years 4 months.

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
54. (B)

Length of $A D=\sqrt{B D \times C D}$
\Rightarrow Length of $\mathrm{AD}=2 \sqrt{3} \mathrm{~cm}$
55. (D) Volume of the cubical tank $=a^{3}=(1.2)^{3}$
$=1.728 \mathrm{~cm}^{3}$
A.T.Q

Total number of buckets to fill the tank
$=\frac{64}{2} \times 3=96$ buckets
\therefore Volume of one bucket $=\frac{1.728 \times 100}{96}$ $=1.8$ litre
56. (A) Perimeter of equilateral triangle
= circumference of circle
$3 \mathrm{a}=2 \pi \mathrm{r}$
a : side of triangle
r : radius of circle
$\Rightarrow \mathrm{r}=\frac{3 a}{2 \pi}$
Now, $\frac{\sqrt{3}}{4} \mathrm{a}^{2}: \pi\left(\frac{3 a}{2 \pi}\right)^{2}$
$\Rightarrow \frac{\sqrt{3}}{4} \mathrm{a}^{2}: \frac{\pi .9 a^{2}}{4 \pi^{2}} \Rightarrow 22: 21 \sqrt{3}$
57. (B) $\mathrm{a}=2+\sqrt{5} \Rightarrow \frac{1}{\mathrm{a}}=\sqrt{5}-2$
$\Rightarrow a+\frac{1}{a}=2+\sqrt{5}+\sqrt{5}-2=2 \sqrt{5}$
$\Rightarrow\left(a+\frac{1}{a}\right)^{2}=4 \times 5=20$
$\therefore a^{2}+\frac{1}{a^{2}}=20-2=18$
58. (C) Let the number of students of A, B and C is x, y and z respectively.
\therefore Total number of marks obtained by class $A=83 x$
By class B $=76 y$ and $C=85 z$
Average of class A and class B is 79.
$\therefore \frac{83 x+76 y}{(x+y)}=79$
$\Rightarrow 83 x+76 y=79 x+79 y$
$\Rightarrow 4 x=3 y \ldots \ldots$ (i)
Average score of B and C is 81
$\therefore \frac{76 y+85 z}{y+z}=81$
$\Rightarrow 5 y=4 z \ldots \ldots$. (ii)
$\Rightarrow 5 x=3 z \ldots \ldots$. (iii)
$\therefore x: y: z=3: 4: 5$
Average score of class A, B and C
$\Rightarrow \frac{(83 \times 3+76 \times 4+85 \times 5)}{(3+4+5)}$
$\Rightarrow \frac{249+304+425}{12}=81.5 \mathrm{marks}$
59. (A) A.T.Q
$\frac{9 x-32 \times \frac{9}{16}}{7 x-32 \times \frac{7}{16}+10}=\frac{3}{4}$
$\Rightarrow \frac{9 x-18}{7 x-4}=\frac{3}{4}$
$\Rightarrow 36 x-72=21 x-12$
$\Rightarrow 15 x=60$
$\Rightarrow x=4$
Quantity of P in initial mixture
$=9 \times 4=36$ litre
60. (A) A.T.Q

Area of the isosceles triangle $=\frac{1}{2} \times \mathrm{a}^{2} \times \sin \theta$
$=\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ}$
$=50 \times \frac{\sqrt{3}}{2}=25 \sqrt{3} \mathrm{~cm}^{2}$
61. (C) Sum is Ist six numbers $=45 \times 6=270$
\Rightarrow Sum of last six numbers $=52 \times 6=312$
\Rightarrow First number $=$ sum of Ist six numbers

- (sum last six numbers - last number)
\therefore First number $=270-(312-55)=13$

62. (B)

In right angle triangle DOB
$\mathrm{OB}^{2}-\mathrm{OD}^{2}=\mathrm{DB}^{2}$
$\Rightarrow(\sqrt{5}+2)^{2}-(\sqrt{5}-2)^{2}=\mathrm{DB}^{2}$
$\Rightarrow 5+4+4 \sqrt{5}-5-4+4 \sqrt{5}=$ DB 2
$\Rightarrow 8 \sqrt{5}=\mathrm{DB}^{2}$
$\Rightarrow \mathrm{DB}=\sqrt{8 \sqrt{5}} \mathrm{~cm}=2(2 \sqrt{5})^{1 / 2}$
$\therefore \mathrm{AB}=4(2 \sqrt{5})^{\frac{1}{2}} \mathrm{~cm}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

63. (C) A.T.Q
$\Rightarrow \mathrm{CP}=100$
$\Rightarrow \mathrm{SP}=120$
$\Rightarrow \mathrm{MP}=\frac{120 \times 100}{75}=160$
\therefore Required gain $=\frac{60 \times 100}{100}=60 \%$
64. (A) A.T.Q

In quadrilateral ABCD ,
$\angle \mathrm{ADC}=\angle \mathrm{CBP}$ (exterior angle of cyclic quadrilateral is equal to interior opp. angle)
In $\triangle B C P$,
$180^{\circ}-(\angle \mathrm{CBP}+\angle \mathrm{BPC})=\angle \mathrm{PCB}$
$\Rightarrow \angle \mathrm{PCB}=180^{\circ}-85^{\circ}-40^{\circ}=55^{\circ}$
$\Rightarrow \angle \mathrm{PCB}=\angle \mathrm{DCQ}$ (vertically opposite)
$\Rightarrow \angle \mathrm{CDQ}=180^{\circ}-85^{\circ}=95^{\circ}$
$\Rightarrow \angle \mathrm{CQD}=180^{\circ}-\angle \mathrm{CDQ}-\angle \mathrm{DCQ}$
$=180^{\circ}-95^{\circ}-55^{\circ}$
$\angle \mathrm{CQD}=30^{\circ}$
65. (B)

According to question,
In right angle triangle ABC ,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=100+576$
$\Rightarrow A C^{2}=676$
$\Rightarrow A C=26 \mathrm{~m}$
\therefore perimeter of $\Delta \mathrm{ADC}=25+25+26=76 \mathrm{~m}$
$\Rightarrow \mathrm{S}=\frac{76}{2}=38 \mathrm{~m}$

Area of $\triangle \mathrm{ADC}=\sqrt{S(S-25)(S-25)(S-26)}$
$=\sqrt{38(13)(13)(12)}=26 \sqrt{114} \mathrm{~m}^{2}$
Area of $\Delta \mathrm{ABC}=\frac{1}{2} \times 10 \times 24=120 \mathrm{~m}^{2}$
Area of Plot $=120+26 \sqrt{114} \mathrm{~m}^{2}$
$=2(60+13 \sqrt{114}) \mathrm{m}^{2}$
66. (A) According to question,
$=x^{5}-17 x^{4}+17 x^{3}-17 x^{2}+17 x-1$
$=x^{5}-x^{4}-16 x^{4}+16 x^{3}+x^{3}-x^{2}-16 x^{2}+16 x+x-1$
$=x^{4}(x-16)-x^{3}(x-16)+x^{2}(x-16)-$
$x(x-16)+x-1$
$=0+16-1=15$
67. (D) A.T.Q

$\angle \mathrm{AOD}=2 \angle \mathrm{ABD}$ (angle subtended by an arc at the center is double of angle subtended at any point of circle)
$\Rightarrow \angle \mathrm{BOC}=2 \angle \mathrm{CDB}$
$\therefore \angle \mathrm{ABD}=50^{\circ}$
and, $\angle \mathrm{CDB}=35^{\circ}$
In $\triangle \mathrm{BPD}$,
$\angle \mathrm{BPD}=180^{\circ}-\angle \mathrm{PBD}-\angle \mathrm{PDB}$
$\Rightarrow \angle \mathrm{BPD}=180^{\circ}-85^{\circ}=95^{\circ}$
and, $\angle \mathrm{BPD}=\angle \mathrm{APC}$
(Vertically opposite angles)
$\therefore \angle \mathrm{APC}=95^{\circ}$
68. (B) A.T.Q
gain of $12 \%=\frac{12}{100}=\frac{3}{25}$
loss of $4 \%=\frac{4}{100}=\frac{1}{25}$
CP SP
$\begin{array}{llll}\text { Ist } & 25 x_{6} & 28 x_{6} & \times 6 \\ \text { 2nd } & 25 x_{7} & 24 \times_{7} & \times 7\end{array}$
150168
$175 \quad 168$
325336
\therefore Profit $\%=\frac{11}{325} \times 100=\frac{44}{13}=3 \frac{5}{13} \%$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

69. (B) A.T.Q

Water filled in tank in $1 \mathrm{~min} .=\frac{x}{24}+\frac{x}{40}-30$
$\Rightarrow 60\left(\frac{x}{24}+\frac{x}{40}-30\right)=x$
$\Rightarrow \frac{x}{24}+\frac{x}{40}-\frac{x}{60}=30$
$\Rightarrow \frac{5 x+3 x-2 x}{120}=30$
$\Rightarrow x=\frac{120 \times 30}{6}=600$ gallons
70. (C) A.T. Q

Let the cost price of watch $=₹ x$
$\therefore \frac{x-21}{x} \times 100=x$
$\Rightarrow x^{2}-100 x+2100=0$
$\Rightarrow x-70 x-30 x+2100=0$
$\Rightarrow x=70$ and $x=30$
\therefore Cost price of watch $=₹ 70$ or $₹ 30$
71. (B) A.T.Q
$\sqrt{16 \times 4}=\sqrt{64}=8$
Hence, A and B complete the work in 8 days.
72. (B) A.T.Q

Let the speed of boy in still water is $x \mathrm{~km} /$ hr in time t hour
$(x+3) \mathrm{t}=2(x-3) t$
$\Rightarrow x+3=2 x-6$
$\Rightarrow x=9 \mathrm{~km} / \mathrm{hr}$
73. (D) A.T.Q
sum of square of n numbers
$=\frac{n(n+1)(2 n+1)}{6}$
$n=19$
$\Rightarrow 10^{2}+11^{2}+\ldots \ldots .+19^{2}=1^{2}+2^{2}+3^{2} \ldots$
$19^{2}-\left(1^{2}+2^{2}+3^{2} \ldots .9^{2}\right)=2470-285$
$=2185 \mathrm{~cm}^{2}$
Hence, sum of the Area of given 10 squares is $2185 \mathrm{~cm}^{2}$
74. (C) A.T.Q

Tank filled by pipe $\mathrm{A}=6 \times 3=18$ hours
Tank filled by pipe $B=\frac{6 \times 3}{2}=9$ hours
$\mathrm{A}+\mathrm{B}$ fill the tank $=\underset{9}{18} 18=6$ hours
$\mathrm{A}+\mathrm{B}-6$
$\mathrm{~A}+\mathrm{B}+\mathrm{C}-9$$\gtrless_{2}^{3} 18$
\therefore Time taken to empty the tank
$=\frac{18}{(3-2)}=18$ hours.
75. (C) A.T.Q
M.R.P $=750$
$\therefore \mathrm{CP}=\frac{750 \times 100 \times 100}{150 \times 125}=₹ 400$
Now taking option (c)
$\begin{aligned} & \text { S.P. }=500 \\ & \text { C.P. }=400\end{aligned}>$ Profit $=100$
SP by $20 \%=\frac{500 \times 120}{100}=600$
$C P=400$
Profit $=200$
Hence option (c) is correct.
76. (D)
77. (B) A.T.Q
$\frac{\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{H}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{H}_{2}}{\mathrm{~W}_{2}}$
$\frac{1 \times 50 \times 15}{1}=\frac{2 \times \mathrm{D}_{2} \times 6}{2}=125$ days
78. (B) A.T.Q
$x+\frac{x+4 \times 5}{100}=600$
$\Rightarrow 6 x=600 \times 5$
$\Rightarrow x=500$
\Rightarrow Required discount $=600-500=₹ 100$
79. (B) $(\mathrm{P}+\mathrm{R}=37) \times 2$
$2 \mathrm{P}=55$
$2 \mathrm{P}+2 \mathrm{R}=74$
$2 \mathrm{P}=55$
Subtract equation (ii) from equations (i),
we get
$2 \mathrm{R}=19$
19 min . will be taken to ride both ways.
80. (A) Let the total weight of body is $x \mathrm{~kg}$.

Ratio between weight of protein in bones and other dry elements in skin is
$\Rightarrow\left(x \times \frac{1}{6}\right) \times \frac{16}{100}:\left(x \times \frac{1}{10}\right) \times \frac{14}{100}$
$\Rightarrow 40: 21$
81. (D) A.T.Q
$\Rightarrow \frac{1}{10} \times 100=10 \%$
$\Rightarrow \frac{1}{6} \times 100=\frac{50}{3} \%$
Now, $\frac{50}{3}+10=\frac{80}{3} \%$
\therefore Required angle $=360 \times \frac{80}{3} \times \frac{1}{100}$
$=96^{\circ}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

82. (B) A.T.Q

Quantity of water in human body
$=\frac{80 \times 70}{100}=56 \mathrm{~kg}$
83. (A) Part made of neither skin nor hormones and enzymes $=\left[1-\left(\frac{1}{10}+\frac{2}{5}\right)\right]=\frac{1}{2}$
84. (A) Let the weight of body $=x \mathrm{~kg}$

The weight of other dry elements in bones $=\left[\left(x \times \frac{1}{6}\right) \times \frac{14}{100}\right]$
\Rightarrow Required $\%=\frac{100}{x}\left(\frac{x}{6} \times \frac{14}{100}\right)=2 \frac{1}{3} \%$
85. (A) Circumference of circle $=2 \pi r$
$=2 \times \frac{22}{7} \times 35=220 \mathrm{~cm}$
Distance cover in $1 \mathrm{sec}=220 \times 9$

$$
=1980 \mathrm{~cm}
$$

Speed of the car $=1980 \mathrm{~cm} / \mathrm{s}$
86. (C) A.T.Q

Time taken to cover distance of 15 km
$=20$ minutes
\therefore Speed of train $=\frac{15}{20} \times 60=45 \mathrm{~km} / \mathrm{hr}$ Speed after decreasing $=45-5=40 \mathrm{~km} / \mathrm{hr}$ Now,
Time taken by train $=\frac{15}{40} \times 60$
$=\frac{45}{2}$ minutes $=22 \frac{1}{2}$ minutes
87. (D) Let the original speed $=x \mathrm{~km} / \mathrm{hr}$
A.T.Q,
$\frac{x(x+5)}{5} \times \frac{20}{60}=\frac{x(x-3)}{3} \times \frac{20}{60}$
$\Rightarrow 3 x+15=5 x-15$
$\Rightarrow 2 x=30$
$\Rightarrow x=15 \mathrm{~km} / \mathrm{h}$
\therefore Required distance $=\frac{15(15+5)}{5} \times \frac{20}{60}$

$$
=20 \mathrm{~km}
$$

88. (C) According to question

3 Pens +5 pencils $=30$
5 pens +3 pencils $=34$
Multiplying (1) by 3 and (2) by 5
9 pens +15 pencils $=90$
25 pens +15 pencils $=170$

- -
- 16 pens $\quad=-80$
cost of one pen = ₹ 5

89. (B) According to question,

Let $x=90^{\circ}$ and other angle is y.
$x+y=180^{\circ}$
$y=90^{\circ}$
90. (C) We know that,
$\mathrm{A}+\mathrm{B}+\mathrm{C}=90^{\circ}$, Put $\mathrm{A}=\mathrm{B}=\mathrm{C}=30^{\circ}$
$\tan 60^{\circ}+\tan 60^{\circ}+\tan 60^{\circ}$
$=\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}=\frac{1+1+1}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}$
91. (A) According to question, $(43)^{17}-1$
when $\left(x^{n}-a^{n}\right)$ it is exactly divisible by $(x-\mathrm{a})$
$\therefore(43)^{17}-(1)^{17}$ is exactly divided by (43-1) and, $(43-1)=42$
and, 42 is multiple of 7 .
Hence, (43) ${ }^{17}-1$ is divided by 7 .
92. (C) Area of trapezium $=\frac{1}{2}$ (sum of parallel sides $) \times$ height $=\frac{1}{2}(25+17) \times 15$
$=\frac{1}{2} \times 42 \times 15=315 \mathrm{~cm}^{2}$
93. (D) According to question
$2^{12 x}-6^{4 x}$
$\left(2^{3}\right)^{4 x}-6^{4 x}$
$\Rightarrow 8^{4 x}-6^{4 x}$
$\Rightarrow\left(8^{2}\right)^{2 x}-\left(6^{2}\right)^{2 x}$
$\Rightarrow 64^{2 x}-36^{2 x} \quad(x=1)$
$\Rightarrow 64^{2}-36^{2}$
$\Rightarrow(64+36)(64-36)$
$\Rightarrow 100 \times 28$
Required number is 100
94. (C) A.T.Q

Radius of semi circle will be become slant height of cone.
Circumference of semi circular sheet
= circumference of cone
$\Rightarrow \pi \mathrm{R}=2 \pi \mathrm{r}$
$\Rightarrow \pi(18)=2 \pi r$
$\Rightarrow r=9$
$\Rightarrow \mathrm{r}=9 \mathrm{~cm}$
\Rightarrow slant height $=18 \mathrm{~cm}$

Campus

K D Campus Pvt. Ltd

 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009\Rightarrow height $=l^{2}-\mathrm{r}^{2}=324-81=243$
$\Rightarrow h=\sqrt{243}=9 \sqrt{3} \mathrm{~cm}$

$$
\begin{aligned}
\therefore \text { Volume of cone } & =\frac{1}{3} \times \pi \times 9 \times 9 \times 9 \sqrt{3} \\
& =420.80 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

95. (A) According to question,

$$
\begin{aligned}
& \mathrm{a}=11, \mathrm{~b}=9 \\
& \Rightarrow \mathrm{a}+\mathrm{b}=11+9=20 \\
& \text { and, } \mathrm{a}^{3}-\mathrm{b}^{3}=(11)^{3}-(9)^{3}=1331-729=602 \\
& \therefore \mathrm{a}-\mathrm{b}=11-9=2
\end{aligned}
$$

96. (D) According to question
\Rightarrow Percentage increase

$$
\begin{aligned}
& =\left(\frac{3360-2520}{2520}\right) \times 100 \\
& =\frac{840}{2520} \times 100 \\
& =\frac{100}{3} \%=33 \frac{1}{3} \%
\end{aligned}
$$

97. (B) A.T.Q

$$
\frac{5040}{3360}=1.5
$$

98. (A) (1997-98) year has the maximum foreign exchange reserves
99. (C) According to question

For 1992-93 $=\left[\frac{(3720-2640)}{2640} \times 100\right] \%$
$=40.91 \%$
$1994-95=\left[\frac{(3360-2520)}{2520} \times 100\right] \%$
$=33.33 \%$
$1996-1997=\left[\frac{(4320-3120)}{3120} \times 100\right] \%$
$=38.46 \%$
$1997-1998=\left[\frac{(5040-4320)}{4320} \times 100\right] \%$ = 16.67%
100. (B) According to question, Average of the foreign exchange reserves over the period under review
$=[1 / 8(2640+3720+2520+3360+3120$
$+4320+5040+3120)]=3480$
Foreign exchange reserves in 1991-92
$=2640$
\therefore Required percentage $=\frac{2640}{3480} \times 100=75.8 \%$

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

