Campus

K D Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 25 (ANSWER KEY)

1. (D)	11. (C)	21. (D)	31. (B)	41. (C)	51. (C)	61. (B)	71. (A)	81. (B)	91. (A)
2. (A)	12. (C)	22. (C)	32. (D)	42. (A)	52. (A)	62. (C)	72. (A)	82. (A)	92. (D)
3. (D)	13. (B)	23. (B)	33. (C)	43. (B)	53. (C)	63. (D)	73. (D)	83. (B)	93. (A)
4. (C)	14. (A)	24. (A)	34. (B)	44. (B)	54. (D)	64. (A)	74. (B)	84. (A)	94. (B)
5. (C)	15. (C)	25. (D)	35. (B)	45. (A)	55. (A)	65. (D)	75. (A)	85. (C)	95. (B)
6. (A)	16. (B)	26. (C)	36. (D)	46. (D)	56. (B)	66. (B)	76. (B)	86. (B)	96. (A)
7. (A)	17. (D)	27. (C)	37. (A)	47. (C)	57. (A)	67. (B)	77. (B)	87. (A)	97. (C)
8. (A)	18. (A)	28. (B)	38. (C)	48. (A)	58. (B)	68. (A)	78. (C)	88. (B)	98. (C)
9. (B)	19. (B)	29. (A)	39. (B)	49. (B)	59. (B)	69. (C)	79. (D)	89. (C)	99. (B)
10. (B)	20. (A)	30. (A)	40. (B)	50. (B)	60. (D)	70. (B)	80. (B)	90. (B)	100. (A)

SSC TIER II (MATHS) MOCK TEST - 25 (SOLUTION)

1. (D) Using options,
$60 \times 60=₹ 3600$
and, $60 \times 60=3600$ paise
Total collection $=3600+36=3636$
\therefore Required number of members $=60$
2. (A) Remainder $=56$

Quotient $=\frac{3}{7} \times 56=24$
and, Divisor $=\frac{3}{2} \times 56=84$
Now, Dividend $=$ divisor \times quotient + remainder $=2072$
3. (D) Remainder
$\Rightarrow 97=11 \times 8+\underline{9}$
4. (C) A.T.Q.
$3 A=2 B$ and $4 B=5 C$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{2}{3}$ and $\frac{\mathrm{B}}{\mathrm{C}}=\frac{5}{4}$
$\begin{array}{ccc}\text { A } & \text { B } & \text { C } \\ \downarrow & \downarrow & \downarrow \\ 2 & 3 & 3 \\ \frac{5}{10} & \frac{5}{15} & \frac{4}{12}\end{array}$
$(10+15+12)$ units
$\Rightarrow 37$ units $=407$
$\Rightarrow 1$ unit $=\frac{407}{37}=11$
$\therefore 2$ nd number $=15 \times 11=165$
5. (C) $50^{2}-49^{2}+48^{2}-47^{2}+46^{2}$ \qquad -41^{2}
Taking $50^{2}-49^{2}$
$=(50+49)(50-49)=50+49$
i.e, the value of the expression will be equal to sum of the numbers from 41 to 50
$=$ sum of first 50 terms - sum of first 40
terms $=\frac{50 \times 51}{2}-\frac{40 \times 41}{2}=455$
6. (A) Let the numbers be $(a-d)$, a and $(a+d)$
sum $=a-d+a+a+d=45$

$$
\begin{aligned}
& \Rightarrow 3 a=45 \\
& \Rightarrow a=15
\end{aligned}
$$

Multiplication $=(a-d) \times a \times(a+d)$
$=3240$
$\Rightarrow(15-\mathrm{d}) \times 15 \times(15+\mathrm{d})=3240$
$\Rightarrow 225-\mathrm{d}^{2}=216$
$\Rightarrow d^{2}=9$
$\Rightarrow \mathrm{d}=3$
\therefore greatest number $=18$
7. (A) Let the hours per day be x, to complete the work hours.
A.T.Q

$$
\begin{aligned}
& \frac{8 \times 6}{120}=\frac{16 \times x}{280} \\
& \Rightarrow x=7
\end{aligned}
$$

8. (A) $(4913)^{-\frac{1}{3}} \times(512)^{\frac{1}{3} \times(289)^{\frac{1}{2}} \div(4096)^{\frac{1}{3}}}$ $=\frac{1}{17} \times 8 \times 17 \div 16=\frac{1}{2}$
9. (B) $\begin{aligned} & \mathrm{A}+\mathrm{B} \rightarrow 12 \\ & \mathrm{~B}+\mathrm{C} \rightarrow 9\end{aligned}>36<{ }_{4}^{3}$
[One third work is done by $\mathrm{B} \& \mathrm{C}$ in 3 days. Then complete work will be done in 9 days]
Now, ATQ.
$(\mathrm{A}+\mathrm{B}) 6+(\mathrm{B}+\mathrm{C}) 2-2 \mathrm{C}+7 \mathrm{C}=36$
$\Rightarrow 3 \times 6+4 \times 2+5 C=36$
$\Rightarrow 5 \mathrm{C}=10$
$\Rightarrow \mathrm{C}=2$
capacity of $B=4-2=2$
capacity of $A=3-2=1$
Time taken by A
$\Rightarrow \frac{36}{1}=36$ days

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
10. (B) $\begin{aligned} & \text { Vinit } \rightarrow 15 \\ & \text { Vinita } \rightarrow 20\end{aligned}>60<{ }_{3}^{4}$

Work done by Vinit \& Vinita in 5 days
$=(4+3) \times 5=35$
Remaining work $=60-35=25$
This work has been done in 5 days.
So, the capacity of Chamindavash $=\frac{25}{5}$
$=5$ Required time taken $=\frac{60}{5}=12$ days
11. (C)

	A	B	C	
3	1.5	1		
	$\times 2$	$\times 2$	$\times 2$	
	\Downarrow	\Downarrow	\Downarrow	
Capacity	6.	3	2	[capacity
Time	1	2	3	\times time $=$ constant]
A takes 12 days.				

i.e, 1 unit = 12
then 3 unit $=3 \times 12=36$ days.
C will take 36 days to complete the work.
12. (C)
$\begin{aligned} & \mathrm{A} \rightarrow 12 \\ & \mathrm{~B} \rightarrow 15\end{aligned}>60<{ }_{4}^{5}$
Work done by A \& B in 4 days $=(5+4) \times 4$ $=36$
Remaining work $=60-36=24$
Now, Capacity of $A \& C=\frac{24}{3}=8$
and, Capacity of $\mathrm{C}=8-5=3$
time taken by C to complete the work
$=\frac{60}{3}=20$ days
13. (B) Let the no. be x,
$(x-7):(x-9)::(x-11):(x-12)$
$\Rightarrow \frac{x-7}{x-9}=\frac{x-11}{x-12}$
$\Rightarrow x^{2}-12 x-7 x+84=x^{2}-11 x-9 x+99$
$\Rightarrow-19 x+20 x=99-84$
$\Rightarrow x=15$
14. (A) $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+1}\right) \ldots \ldots\left(1+\frac{1}{x+23}\right)$
$=\frac{x+1}{x} \times \frac{x+2}{x+1} \times \frac{x+3}{x+2}$
............ $\frac{x+24}{x+23}$
$=\frac{x+24}{x}$
15. (C) A.T.Q,
$35 \% \Rightarrow \frac{135}{100} \Rightarrow \frac{27}{20} \rightarrow \mathrm{MP}$
15% discount $\Rightarrow \frac{85}{100} \Rightarrow \frac{17}{20} \rightarrow \mathrm{SP}$

MP CP $\quad \mathrm{SP} \times 20$
$27 \quad 20$
$\begin{array}{ll}20 & 17\end{array} \times 27$
We get $\mathrm{CP}=400$ and $\mathrm{SP}=27 \times 17$
(27×17) units $=688.5$
400 units $=\frac{688.5}{27 \times 17} \times 400=₹ 600$
\therefore Required cost price $=₹ 600$
16. (B) A.T.Q,
$25 \%=54$
$\Rightarrow 1 \%=\frac{54}{25}$
$\Rightarrow 100 \%=\frac{54}{25} \times 100=\mathbf{2 1 6}$
\therefore Required cost price $=₹ 216$
17. (D) Price at which the person sold the
article $=3000-3000 \times 6 \frac{2}{3} \%=₹ 2800$
Profit $=16 \frac{2}{3}=\frac{1}{6}$
7 units $=2800$
6 units $=2800 \times \frac{6}{7}=2400$
\therefore cost price $=₹ 2400$
Discount $\%=\frac{3000-2400}{3000} \times 100$
$=\frac{600}{3000} \times 100=20$
18. (A) A.T.Q,

$$
\begin{aligned}
& 7 x+2 x=315 \\
& \Rightarrow 9 x=315 \\
& \Rightarrow x=35
\end{aligned}
$$

Male workers $=245$, Female workers $=70$ After arrival of 15 male workers,
Male workers $=245+15=260$

\therefore required number of female workers
$=104-70=34$
19. (B) Let the no's be $7 x, 5 x \& 9 x$
A.T.Q,
$(7 x)^{2}+(5 x)^{2}+(9 x)^{2}=5580$
$\Rightarrow x^{2}[49+25+81]=5580$
$\Rightarrow x^{2} \times 155=5580$
$\Rightarrow x^{2}=36 \Rightarrow x=6$
Difference between second and third number $=4 \mathrm{x}=4 \times 6=24$.

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

20. (A) Milk Water

New ratio
Milk Water
I. 159
II. $\frac{48}{63} \frac{24}{33}$

New ratio of milk \& water $=63: 33$

$$
=21: 11
$$

21. (D) Let one part $=x$
then, other part $=\frac{3}{11} x$
Now, ATQ,
$x+\frac{3 x}{11}=210$
$\Rightarrow \frac{14 x}{11}=210$
$\Rightarrow x=\frac{210 \times 11}{14}=165$
and $\frac{3 x}{11}=\frac{3 \times 165}{11}=45$
Required difference $=165-45=120 \mathrm{cms}$
22. (C)

Copper Aluminium
$\begin{array}{llll}\text { I alloy } & 5 & 7 & 12\end{array}$
II alloy $13 \quad 5 \Rightarrow 18$
Mixture $5 \quad 4 \Rightarrow 9$
Using alligation method.

$$
\begin{aligned}
& \frac{5}{12} _{\frac{5}{9}}^{\frac{13}{18}-\frac{5}{9}=\frac{3}{18} \quad \frac{5}{9}-\frac{5}{12}=\frac{5}{36}} \\
& \text { Ratio } \Rightarrow \frac{3}{18}: \frac{5}{36} \\
& \Rightarrow 6: 5
\end{aligned}
$$

23. (B) Let the capacity of container P be 100. Quantity of milk in container R
$=\frac{100}{2}-30 \%$ of $\left(\frac{100}{2}\right)=50-15=35$
Quanity of milk in $Q=100-35=65$
to make equal quantity of milk in containers $Q \& R$, quantity of milk
taken out from $\mathrm{Q}=\frac{65-35}{2}=15$
then, 15 units $=31.5$
1 unit $=\frac{31.5}{15}$
\therefore Capacity of $\mathrm{P}=\frac{31.5}{15} \times 100=210$ litres
24. (A) Let the average run after $12^{\text {th }}$ innings be x.
Then average run in $11^{\text {th }}$ innings is $x-2.5$
A.T.Q.
$11(x-2.5)+48=12 x$
$\Rightarrow 11 x-27.5+48=12 x$
$\Rightarrow x=48-27.5=20.5$
25. (D) Average speed $=\frac{2 \times a \times b}{a+b}$
$=\frac{2 \times 48 \times 36}{48+36}=41 \frac{1}{7} \mathrm{kms} / \mathrm{h}$
26. (C) Mon. + Tue. + Wed. + Thr.
$=37 \times 4=148 \ldots \ldots$ (i)
Tue. + Wed. + Thr. + Fri
$=41 \times 4=164 \ldots \ldots$. (ii)
From (i) and (ii),
Fri. - Mon. $=164-148=16$
Temp. of Monday $=50-16=34^{\circ} \mathrm{C}$
27. (C) Discount on gift $=12 \frac{1}{2} \%=\frac{1}{8}$
S.P. $\rightarrow \frac{7}{8} \rightarrow \frac{945}{945}$
M.P $\rightarrow 1080$

After returning the gift, the amount of money which Murari gets
$=1080 \times \frac{60}{100}=₹ 648$
Profit earned by shopkeeper $=945-648$

$$
\text { = ₹ } 297
$$

28. (B) Required percentage
$=\frac{28}{100-28} \times 100=\frac{28}{72} \times 100=38.88 \%$
29. (A) Total distance
$=\mathrm{x}+2 \times \frac{x}{2}+2 \times \frac{x}{4}+2 \times \frac{x}{8}+$
$=2\left[x+\frac{x}{2}+\frac{x}{4} \ldots \mathrm{n}\right.$ times $]-x$
$=2\left[\frac{x\left(1-\frac{1}{2^{n}}\right)}{1-\frac{1}{2}}\right]-x$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=4 x\left(1-\frac{1}{2^{n}}\right)-x \Rightarrow 4 x-\frac{4 x}{2^{n}}-x$
$\Rightarrow 3 x-\frac{x}{2^{n-2}}$
$\Rightarrow x\left[3-\frac{1}{2^{n-2}}\right]$
30. (A) 5 ft 10 inch $=5 \frac{10}{12}=\frac{35}{6} \mathrm{ft}$ (boys)

5 ft 2 inch $=5 \frac{2}{12}=\frac{31}{6} \mathrm{ft}($ girls $)$
5 ft 8 inch $=5 \frac{8}{12}=\frac{34}{6} \mathrm{ft}$ (over all)
Using alligation method,
Boys Girls
$\frac{\frac{35}{6}}{4} \frac{34}{6}$
3 units $=\frac{120}{3} \times 4=90$
\therefore number of boys $=90$
31. (B)

\downarrow
$\stackrel{\downarrow}{87.5} \times \frac{115}{100}=100.625$
Difference $=100.625-92=8.625$
Now, 8.625 units $=207$
1 unit $\quad=\frac{207}{8.625}$
\therefore Required CP $=\frac{207}{8.625} \times 100=₹ \mathbf{2 4 0 0}$
32. (D) $50 \mathrm{P} \quad 25 \mathrm{P}$ ₹ 1

Number $\rightarrow 15 \quad 108$
Value $\quad \rightarrow 7.5 \quad 2.58$

Now, 18 units = 108
7.5 units $=\frac{108}{18} \times 7.5=45$

Now, Number of 50 paise coins
$=45 \times 2=90$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

38. (C)

44 units $=1716$
1 unit $=\frac{1716}{44}$
100 units $=\frac{1716}{44} \times 100=3900$
\therefore original number of people $=3900$
39. (B) Total distance $=270 \mathrm{kms}$

Average speed $=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{270}{4+3}=\frac{270}{7}=38 \frac{4}{7} \mathrm{kms} / \mathrm{h}$
40. (B) Let the velocity of A be $a \mathrm{~km} / \mathrm{h}$ and, that of B be $b \mathrm{~km} / \mathrm{h}$
A.T.Q,
$a+b=\frac{120}{6}$
$\Rightarrow a+b=20 \mathrm{kms} / \mathrm{hr}$
and, $\frac{3}{4} a+\frac{1}{2} b=\frac{120}{8}$
$\Rightarrow 3 a+2 b=60$
On solving equation (i) and (ii) we get,
$a=20, b=0$
i.e., b doesn't move
\therefore Difference between their speeds
$=20 \mathrm{kms} / \mathrm{h}$
41. (C) $\mathrm{A}+\mathrm{B} \rightarrow x$ days
$\mathrm{A} \rightarrow x+18$ days
$\mathrm{B} \rightarrow x+8$ days
A's one day work + B's one day work
$=(A+B)^{\prime}$ s one day work
$\Rightarrow \frac{1}{x+18}+\frac{1}{x+8}=\frac{1}{x}$
On solving we get $x=12$
Time taken by A to complete the work $=12+18=30$ days.
42. (A) Simple interest $=\frac{P \times r \times t}{100} \Rightarrow 1100$
$\therefore \frac{20000 \times r \times 1}{100} \Rightarrow r=\frac{11}{2}=5.5 \%$
Using alligation,

3

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

49. (B) Let the length of the race $x \mathrm{~m}$.

A B
$x \quad x-12$
C
$x \quad x-10$
Ratio of B's distance and C's distance should be equal.
$\frac{x-12}{x}=\frac{x-20}{x-10}$
$\Rightarrow x^{2}-22 x+120=x^{2}-20 x$
$\Rightarrow \quad 2 x=120$
$\Rightarrow x=60 \mathrm{~m}$
50. (B) $\frac{P \times r \times 3}{100}=648$
$\frac{P \times r}{100}=216$
Now compound interest for 2 years
$\Rightarrow \mathrm{P}\left[\left(1+\frac{r}{100}\right)^{2}-1\right]=449.28$
$\Rightarrow \mathrm{P}\left[\left(1+\frac{r}{100}+1\right)\left(1+\frac{r}{100}-1\right)\right]=449.28$
$\Rightarrow \mathrm{P}\left(2+\frac{r}{100}\right)\left(\frac{r}{100}\right)=449.28$
On putting $\frac{\mathrm{Pr}}{100}=216$,
$2+\frac{r}{100}=\frac{449.28}{216}$
$\Rightarrow \frac{r}{100}=\frac{17.28}{216} \Rightarrow \mathrm{r}=\frac{1728}{216}=8 \%$
51. (C) Circumradius $(\mathrm{R})=\frac{2 h}{3}$
$\Rightarrow \frac{2 h}{3}=24 \sqrt{3} \Rightarrow \mathrm{~h}=36 \sqrt{3}$
and, we know that $\mathrm{h}=\frac{\sqrt{3}}{2} a$
$\Rightarrow \frac{\sqrt{3}}{2} a=36 \sqrt{3} \Rightarrow \mathrm{a}=72$
Area $=\frac{\sqrt{3}}{4} \times 72 \times 72=1296 \sqrt{3} \mathrm{~cm}^{2}$
52. (A) Given, $h=r+8$
and, $2 \pi r(h+r)=330$
$\Rightarrow 2 \times \frac{22}{7} \times r[r+8+r]=330$
$\Rightarrow r[2 r+8]=\frac{330 \times 7}{22 \times 2}$
$\Rightarrow 2 r^{2}+8 r=\frac{105}{2}$
$\Rightarrow 4 r^{2}+16 r-105=0$
On solving, we get $r=3.5$
Now, volume $=\pi r^{2} \mathrm{~h}$
$=\frac{22}{7} \times 3.5 \times 3.5 \times 11.5=442.75 \mathrm{~cm}^{3}$
53. (C) When a sphere is cut into 4 equal parts,

Surface Area of each part
$=\pi r^{2}+\frac{\pi r^{2}}{2}+\frac{\pi r^{2}}{2}=2 \pi r^{2}$
Total surface area of 4 parts
$=4 \times 2 h r^{2}=8 \pi r^{2}$
Total change $=\frac{8-4}{4} \times 100=100 \%$
54. (D) Ratio of sides $\Rightarrow \frac{1}{3}: \frac{1}{4}: \frac{1}{5}: \frac{1}{6}$
$\Rightarrow \frac{20}{60}: \frac{15}{60}: \frac{12}{60}: \frac{10}{60}$
$\Rightarrow 20: 15: 12: 10$
Now, $(20+15+12+10)$ units $=171$
1 unit $=3$
10 units $=30$
\therefore Length of smallest side $=30 \mathrm{~cm}$
55. (A) Volume of the prism
$=$ area of the base \times height
$=\left(\frac{\sqrt{3}}{4} \times 6 \times 6\right) \times 6 \times 15=810 \sqrt{3} \mathrm{~cm}^{3}$
56. (B) Let the radius of the ball be r cm
A.T.Q
$\Rightarrow \frac{4}{3} \pi r^{3}=\pi\left(\mathrm{R}^{2}-r^{2}\right) h$
$\Rightarrow \quad \frac{4}{3} r^{3}=\left[(8.25)^{2}-(6.75)^{2}\right] \times 25$
$\Rightarrow \quad \frac{4}{3} r^{3}=(8.25-6.75)(8.25+6.75) \times 25$
$\Rightarrow \mathrm{r}^{3}=\frac{3}{4} \times 1.5 \times 15 \times 25$
$\Rightarrow \mathrm{r}=7.5 \mathrm{~cm}$
57. (A) Circumference of the circular field
$=\frac{2376}{27}=88 \mathrm{~m} \Rightarrow 2 \pi r=88$
$\Rightarrow 2 \times \frac{22}{7} \times r=88 \Rightarrow \mathrm{r}=14 \mathrm{~m}$
Area of the circular track
$\Rightarrow \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \quad[\because \mathrm{R}=r+3.5]$
$\Rightarrow \quad \frac{22}{7}[\mathrm{R}-r][\mathrm{R}+r]$
$=\frac{22}{7} \times 3.5 \times 17.5=192.5 \mathrm{~m}^{2}$
Total cost $=192.5 \times 50=₹ 9625$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

58. (B) Curved surface area of cone
$=$ Curved surface area of cylinder
$\pi r_{1} l=2 \pi r_{2} \mathrm{~h} \Rightarrow r_{1} \sqrt{h^{2}+r_{1}^{2}}=2 r_{2} \mathrm{~h}$
On squaring both sides
$r_{1}^{2}\left(h^{2}+r_{1}^{2}\right)=4 r_{2}^{2} h^{2}$
$\Rightarrow r_{1}^{2} h^{2}+r_{1}^{4}=4 r_{2}^{2} h^{2}$
$\Rightarrow h^{2}\left(4 r_{2}^{2}-r_{1}^{2}\right)=r_{1}^{4}$
$\Rightarrow h^{2}=\frac{r_{1}^{4}}{4 r_{2}^{2}-r_{1}^{2}} \Rightarrow h=\frac{r_{1}^{2}}{\sqrt{4 r_{2}^{2}-r_{1}^{2}}}$
59. (B) S cube $>\mathrm{S}$ cylinder $>\mathrm{S}$ sphere
60. (D)

When a cone is cut by the plane parallel to its axis then ratio of radius and height remains the same.
i.e, $\frac{r_{1}}{h_{1}}=\frac{r_{2}}{h_{2}}=\frac{r_{3}}{h_{3}}$
$\Rightarrow r_{1}: r_{2}: r_{3}=1: 2: 3$ and $h_{1}: h_{2} h_{3}=1: 2: 3$
Area of I part $=1^{2} \times 1=1$
Area of I + II part $=2^{2} \times 2=8$
Area of I + II + III part $=3^{2} \times 3=27$
Area of I part = 1
Area of II part $=8-1=7$
Area of III part $=27-8=19$
\therefore Required ratio $=1: 7: 19$
61. (B) Given, $\frac{n_{1}}{n_{2}}=\frac{4}{5}$
and, ratio of interior angles $=15: 16$
Then, $\frac{\frac{\left(n_{1}-2\right) \times 180^{\circ}}{n_{1}}}{\frac{\left(n_{2}-2\right) \times 180^{\circ}}{n_{2}}}=\frac{15}{16}$
$\Rightarrow \frac{n_{1}-2}{n_{2}-2}=\frac{15}{16} \times \frac{4}{5}=\frac{3}{4}$
Let, $n_{1}=4 a$ and $n_{2}=5 a$
$\frac{4 a-2}{5 a-2}=\frac{3}{4} \Rightarrow 16 a-8=15 a-6$
$\Rightarrow a=2$
$\therefore \quad n_{1}=8$ and $n_{2}=10$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
67. (B) $x^{2}-\sqrt{3} x+1=0$
$x^{2}+1=\sqrt{3} x$
On dividing by x on both sides
$x+\frac{1}{x}=\sqrt{3}$
Taking cube of both the sides,
$x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}\left(x+\frac{1}{x}\right)=3 \sqrt{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \sqrt{3}=3 \sqrt{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=0$
$\Rightarrow x^{6}+1=0$
$\Rightarrow x^{6}=-1$
On putting $x^{6}=-1$ in the equation
$\left(x^{6}\right)^{4}+\left(x^{6}\right)^{3}+\left(x^{6}\right)^{2}+x^{6}+1$
$=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$
$=1-1+1-1+1=1$
68. (A) $a^{3}+b^{3}+c^{3}-3 a b c$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=\frac{1}{2}[471+472+473]\left[(-1)^{2}+(-1)^{2}+2^{2}\right]$
$=\frac{1}{2} \times 6 \times 1416$
$=4248$
69. (C) $x=\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}$

Applying C and D method,
$\frac{x+1}{x-1}=\frac{\sqrt{a+1}}{\sqrt{a-1}}$
On squaring both sides
$\frac{(x+1)^{2}}{(x-1)^{2}}=\frac{a+1}{a-1}$
Again, applying C and D method
$\frac{2\left(x^{2}+1^{2}\right)}{4 x}=a$
$\Rightarrow x^{2}+1=2 a x$
$\Rightarrow x^{2}-2 a x=-1$
$\Rightarrow \quad x(x-2 a)=-1$
70. (B) $\mathrm{a}=3+2 \sqrt{2}$
$\Rightarrow \mathrm{b}=\frac{1}{\mathrm{a}}=\frac{1}{3+2 \sqrt{2}}=3-2 \sqrt{2}$
$a+b=3+2 \sqrt{2}+3-2 \sqrt{2}=6$
\& $a b=1$
$\frac{a^{2}}{b}+\frac{b^{2}}{a}=\frac{a^{3}+b^{3}}{a b}=\frac{(a+b)^{3}-3 a b(a+b)}{a b}$
On putting the values of $(a+b) \& a b$
$=\frac{(6)^{3}-3 \times 1 \times 6}{1}=216-18=198$
71. (A) Let $3^{x}=5^{y}=15^{z}=\mathrm{k}$

Then,
$3=\mathrm{k}^{\frac{1}{x}}$
$5=\mathrm{k}^{\frac{1}{y}}$.
$15=\mathrm{k}^{\frac{1}{z}}$. \qquad
Multiply (i) \& (ii)
$3 \times 5=\mathrm{k}^{\frac{1}{x}} \times \mathrm{k}^{\frac{1}{y}}$
$\Rightarrow 15=\mathrm{k}^{\frac{1}{x}+\frac{1}{y}}$
$\Rightarrow \mathrm{k}^{\frac{1}{x}+\frac{1}{y}}=\mathrm{k}^{\frac{1}{z}}$
$\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
$\Rightarrow \frac{x+y}{x y}=\frac{1}{z}$
$\Rightarrow z x+z y=x y$
$\Rightarrow z(x+y)-x y=0$
72. (A) $\frac{\mathrm{a}+\mathrm{b}}{\sqrt{\mathrm{ab}}}=\frac{4}{1} \Rightarrow \frac{\mathrm{a}+\mathrm{b}}{2 \sqrt{\mathrm{ab}}}=\frac{2}{1}$

On applying componendo and dividendo,
$\Rightarrow \frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{2+1}{2-1}$
$\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}}=\frac{3}{1}$
On taking square root both the sides
$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{3}}{1}$
Again, applying componendo and
dividendo, $\frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{b}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
On squaring both sides,
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{4+2 \sqrt{3}}{4-2 \sqrt{3}}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

73. (D) $\cos \theta+\cos ^{2} \theta+\cos ^{3} \theta=1$
$\Rightarrow \cos \theta+\cos ^{3} \theta=1-\cos ^{2} \theta$
$\Rightarrow \cos \theta\left(1+\cos ^{2} \theta\right)=\sin ^{2} \theta$
$\Rightarrow \cos \theta\left(2-\sin ^{2} \theta\right)=\sin ^{2} \theta$
On squaring both sides,
$\cos ^{2} \theta\left(2-\sin ^{2} \theta\right)^{2}=\sin ^{4} \theta$
$\Rightarrow\left(1-\sin ^{2} \theta\right)\left(4+\sin ^{4} \theta-4 \sin ^{2} \theta\right)=\sin ^{4} \theta$
$\Rightarrow 4+\sin ^{4} \theta-4 \sin ^{2} \theta-4 \sin ^{2} \theta-\sin ^{6} \theta+$
$4 \sin ^{4} \theta=\sin ^{4} \theta$
$\Rightarrow \sin ^{6} \theta-4 \sin ^{4} \theta+8 \sin ^{2} \theta=4$
74. (B) LCM of $15,18,21$ and 24
$=2520$
$2520 \times 1-9=2511$ (Not divisible by 43)
$2520 \times 2-9=5031$ (divisible by 43)
\therefore Required number $=₹ 5031$
75. (A) $\tan (\mathrm{A}+\mathrm{B})=\frac{\tan \mathrm{A}+\tan \mathrm{B}}{1-\tan \mathrm{A} \tan \mathrm{B}}$

Here, $\tan (A+B)=\tan \left(180^{\circ}-C\right)$

$$
=-\tan C
$$

and, $-\tan C=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow \tan A+\tan B=-\tan C+\tan A \cdot \tan B \cdot \tan C$
$\Rightarrow \tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan C$
76. (B) In triangles, equilateral triangle has the maximum area
Perimeter $=18 \mathrm{~cm}$
Each side $=\frac{18}{3}=6 \mathrm{~cm}$
Area $=\frac{\sqrt{3}}{4} \mathrm{a}^{2}=\frac{\sqrt{3}}{4} \times 6 \times 6=9 \sqrt{3} \mathrm{~cm}^{2}$
77. (B) No. of diagonals of a polygon
$=\frac{\mathrm{n}(\mathrm{n}-3)}{2} \Rightarrow \frac{\mathrm{n}(\mathrm{n}-3)}{2}=90$
On solving, we get $\mathrm{n}=15$
\therefore Required number of sides $=15$.
78. (C)

$\angle \mathrm{BAD}=90^{\circ}$
[$\because \mathrm{ABCD}$ is a square]
and, $\angle \mathrm{PAB}=60^{\circ}$
[\because PAB is an equilateral triangle]
$\angle \mathrm{DAP}=90^{\circ}-60^{\circ}=30^{\circ}$
and, $\angle \mathrm{APD}=75^{\circ} \quad[\because \mathrm{AP}=\mathrm{AD}]$
Similarly, $\angle \mathrm{BPC}=75^{\circ}$
$\angle \mathrm{DPC}=360^{\circ}-\left[75^{\circ}+75^{\circ}+60^{\circ}\right]=150^{\circ}$
79. (D) $\mathrm{FB}=\mathrm{BD}$
$D C=E C$ and
$\mathrm{AE}=\mathrm{AF}$

In $\Delta \mathrm{ABC}$,
Using pythagoras,
$(x+5)^{2}+35^{2}=(30+x)^{2}$
$\Rightarrow x^{2}+25+10 x+1225=900+x^{2}+60 x$
$\Rightarrow 50 x=350$
$\Rightarrow x=7$
So, $\mathrm{AB}=12, \mathrm{BC}=35, \mathrm{AC}=37$
Inradius of circle $=\frac{12+35-37}{2}=5 \mathrm{~cm}$
Area $=\pi \mathrm{r}^{2}=25 \pi \mathrm{~cm}^{2}$
and,
Area of triangle $=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 12 \times 35=210 \mathrm{~cm}^{2}$
80. (B)

Using appolonius theorem,
$\Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
$\Rightarrow 24^{2}+12^{2}=2\left(\mathrm{AD}^{2}+16^{2}\right)$
$\frac{576+144}{2}=\mathrm{AD}^{2}+256$
$\Rightarrow 360-256=\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=104$
$\Rightarrow \mathrm{AD}=2 \sqrt{26} \mathrm{~cm}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
81. (B) $\sec ^{4} \mathrm{~A}-\sec ^{2} \mathrm{~A}=1$ $\Rightarrow \sec ^{2} \mathrm{~A}\left(\sec ^{2} \mathrm{~A}-1\right)=1$
$\Rightarrow\left(1+\tan ^{2} \mathrm{~A}\right) \tan ^{2} \mathrm{~A}=1$
$\Rightarrow \tan ^{2} \mathrm{~A}+\tan ^{4} \mathrm{~A}=1$
82. (A)

Here BP is the height of house In $\triangle \mathrm{BPC}$,
$\tan 30^{\circ}=\frac{36}{\mathrm{BC}}$
$\frac{1}{\sqrt{3}}=\frac{36}{\mathrm{BC}} \Rightarrow \mathrm{BC}=36 \sqrt{3}$
In $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} \Rightarrow \sqrt{3}=\frac{\mathrm{AB}}{36 \sqrt{3}}$
$\Rightarrow A B=108 \mathrm{~m}$
\therefore Length of house $=108$
83. (B)

Using Appolonius theorem
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AC}^{2}+\mathrm{AC}^{2}\right)$
$\Rightarrow \mathrm{AB}^{2}=3 \mathrm{AC}^{2}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3}}{1}$
and, $\mathrm{AB}: \mathrm{AC}=\sqrt{3}: 1$
84. (A) Area of the quadrilateral
$=\frac{1}{2} \times$ Product of diagonals \times (sine of angle between them)
$=\frac{1}{2} \times 24 \times 18 \times \sin 45$
$=\frac{1}{2} \times 24 \times 18 \times \frac{1}{\sqrt{2}}=108 \sqrt{2} \mathrm{~cm}^{2}$
85. (C)

$\sec x=\frac{-5}{4}$
$\frac{\sin x+\tan x}{\cos x+\cot x}$
$=\frac{\frac{3}{5}+\left(\frac{-3}{4}\right)}{\left(\frac{-4}{5}\right)+\left(\frac{-4}{3}\right)}$
$=\frac{\frac{-3}{20}}{\frac{-32}{15}}=\frac{15 \times 3}{20 \times 32}=\frac{9}{128}$
86. (B) We know that

$$
\begin{aligned}
& \angle \mathrm{BAT}=\angle \mathrm{BCA} \\
& \text { and, } \angle \mathrm{BAT}+\angle \mathrm{BCA}=90 \\
& \Rightarrow 2 \angle \mathrm{BAT}=90^{\circ} \\
& \Rightarrow \angle \mathrm{BAT}=45^{\circ}
\end{aligned}
$$

87. (A)

$\mathrm{BC}=12 \mathrm{~cm}$
$\mathrm{DE}=\frac{12}{3}=4 \mathrm{~cm}$
$\mathrm{ME}=\frac{4}{2}=2 \mathrm{~cm}$
Height of equilateral triangle
$A M=\frac{\sqrt{3}}{2} \times a=\frac{\sqrt{3}}{2} \times 12=6 \sqrt{3} \mathrm{~cm}$
In $\triangle \mathrm{AME}$,
$\mathrm{AE}^{2}=\mathrm{AM}^{2}+\mathrm{ME}^{2}$
$\mathrm{AE}^{2}=(6 \sqrt{3})^{2}+2^{2}$
$\mathrm{AE}^{2}=108+4=112$
$\mathrm{AE}=2 \sqrt{23} \mathrm{~cm}$
Perimeter of $\triangle \mathrm{ADE}=\mathrm{AD}+\mathrm{AE}+\mathrm{DE}$
$=2 \sqrt{23}+2 \sqrt{23}+4=4[\sqrt{23}+1] \mathrm{cm}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
88. (B)

In $\triangle \mathrm{ABD}$,
$\tan \alpha=\frac{\mathrm{h}}{\mathrm{a}-x}$
$\Rightarrow \mathrm{a}-x=\frac{\mathrm{h}}{\tan \alpha} \ldots$ (i)
In $\triangle \mathrm{ADC}$,
$\tan \beta=\frac{h}{x}$

$$
\begin{equation*}
\Rightarrow x=\frac{\mathrm{h}}{\tan \beta} \tag{ii}
\end{equation*}
$$

On adding equation (i) $\&$ (ii), we get
$a=\frac{h}{\tan \alpha}+\frac{h}{\tan \beta}$
$\mathrm{h}\left(\frac{\tan \alpha+\tan \beta}{\tan \alpha \tan \beta}\right)$
$\Rightarrow \mathrm{h}=\frac{\mathrm{atan} \alpha \cdot \tan \beta}{\tan \alpha+\tan \beta}$
89. (C)

In $\triangle \mathrm{ABC}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{10 \sqrt{3}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{10 \sqrt{3}}$
$\Rightarrow \mathrm{AB}=10 \mathrm{~m}$
and, $\sin 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \frac{1}{2}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \mathrm{AC}=20 \mathrm{~m}$
length of tree $=A B+A C=30 \mathrm{~m}$
90. (B) $x=\sqrt{2}-1$
then, $\frac{1}{x}=\sqrt{2}+1$
$x+\frac{1}{x}=2 \sqrt{2}$ and $x-\frac{1}{x}=-2$
According to the question,
$\frac{x^{2}+5 x+1}{x^{2}+3 x-1}=\frac{x+\frac{1}{x}+5}{x-\frac{1}{x}+3}=\frac{2 \sqrt{2}+5}{-2+3}=2 \sqrt{2}+5$
91. (A) $3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$
$\Rightarrow 3 \cos ^{2} \theta-3 \sqrt{3} \sin \theta \cos \theta+\sqrt{3} \sin \theta \cos \theta-$ $3 \sin ^{2} \theta=0$
$\Rightarrow 3 \cos \theta(\cos \theta-\sqrt{3} \sin \theta)+\sqrt{3} \sin \theta$
$(\cos \theta-\sqrt{3} \sin \theta)=0$
$\Rightarrow(3 \cos \theta+\sqrt{3} \sin \theta)(\cos \theta-\sqrt{3} \sin \theta)=0$
$\Rightarrow \cos \theta=\sqrt{3} \sin \theta$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
92. (D) $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}} \ldots .+\frac{1}{\sqrt{15}+\sqrt{16}}$

On rationalization,
$\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+$ \qquad $+\sqrt{16}-\sqrt{15}$
$=\sqrt{16}-1=4-1=3$
93. (A) $\frac{\sin x+\sin 2 x}{1+\cos x+\cos 2 x}=\frac{\sin x+2 \sin x \cos x}{1+\cos x+2 \cos ^{2} x-1}$

$$
=\frac{\sin x(1+2 \cos x)}{\cos x(1+2 \cos x)}=\tan x
$$

94. (B) $\tan \theta+\cot \theta=3$

On squaring both sides,
$\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cdot \cot \theta=9$
$\Rightarrow \tan ^{2} \theta+\cot ^{2} \theta=7$
Again squaring both the sides
$\tan ^{4} \theta+\cot ^{4} \theta+2 \tan ^{2} \theta \cdot \cot ^{2} \theta=49$
$\Rightarrow \tan ^{4} \theta+\cot ^{4} \theta$
$=49-2=47$
95. (B) $\frac{(0.25)^{3}}{1-0.25}+\frac{(1-0.25)\left[1+0.25+(0.25)^{2}\right]}{1-0.25}$
$=\frac{(0.25)^{3}+1^{3}-(0.25)^{3}}{1-0.25}=\frac{1}{1-0.25}=\frac{1}{0.75}=\frac{4}{3}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

96. (A) Population of village C in 2016
$=5000 \times \frac{120}{100}=6000$
Total population of village $D \& F$
$=30+25=55$
A.T.Q,
$25 \%=6000$
$1 \%=\frac{6000}{25}$
$55 \%=\frac{6000}{25} \times 55=13200$
97. (C $100 \%=25500$

Then,
Sum of population of village A $\& B=15 \%$
$\Rightarrow 15 \%=\frac{25500}{100} \times 15=3825$
98. (C) Given,
$25 \%=5000$
$1 \%=200$
Population of village E in 2016
$\Rightarrow 5 \%=5 \times 200=1000$
$16 \frac{2}{3} \%$ decrease $\Rightarrow \frac{1}{6}$
\therefore Required population
$=\frac{1000 \times 6}{5}=1200$
99. (B) 100% subtends an angle of 360°

Then, angle subtended by 30%
$=\frac{360^{\circ}}{100} \times 30=108^{\circ}$
100. (A) Total population $=32400$

Population of village B
$=\frac{32400}{100} \times 5=1620$
Population of village D
$=\frac{32400}{100} \times 25=8100$
2000 people come in village B
Then, Population of $B=1620+2000$

$$
=3620
$$

2000 people migrate from village D
Then, population of village D
$=8100-2000=6100$
Difference $=6100-3620=2480$

