KD Campus KD Campus Pvt. Ltd 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009			
SSC TIER II (MATHS) MOCK TEST - 24 (ANSWER KEY)			
1. (B) 11. (A) 21. (B) 31. 2. (C) 12. (A) 22. (C) 32. 3. (D) 13. (D) 23. (D) 33. 4. (B) 14. (C) 24. (B) 34. 5. (D) 15. (A) 25. (C) 35. 6. (B) 16. (A) 26. (C) 36. 7. (B) 17. (A) 27. (C) 37. 8. (B) 18. (C) 28. (C) 38. 9. (C) 19. (D) 29. (C) 39. 10. (C) 20. (B) 30. (C) 40.	(A) 41. (D) (A) 42. (D) (B) 43. (D) (A) 44. (D) (D) 45. (A) (B) 46. (C) (B) 47. (D) (C) 48. (B) (B) 49. (C) (A) 50. (B)	51. 52. 53. 54. 55. 56. 57. 58. 59. 60.	(A) 61. (A) 71. (C) 81. (B) 91. (B) (C) 62. (C) 72. (A) 82. (C) 92. (C) (C) 63. (A) 73. (C) 83. (C) 93. (A) (C) 64. (B) 74. (B) 84. (A) 94. (C) (C) 65. (C) 75. (B) 85. (B) 95. (C) (A) 66. (C) 76. (B) 86. (C) 96. (A) (C) 67. (B) 77. (A) 87. (B) 97. (B) (B) 68. (B) 78. (B) 88. (B) 98. (C) (A) 69. (B) 79. (A) 89. (B) 99. (A) (A) 70. (B) 80. (B) 90. (B) 100. (B)
SSC TIER II (MATHS) MOCK TEST - 24 (SOLUTION)			
1. (B) $\frac{11}{14} = 0.78, \frac{7}{9} = 0.77$		7.	(B) $667 = 23 \times 29$ $1073 = 29 \times 37$ Sum = $23 + 29 + 37 = 89$
$\frac{33}{43} = 0.76, \frac{3}{4} = 0.75$ $\therefore \frac{3}{4} \text{ is the smallest}$ 2. (C) $\frac{Q^{P-1}}{P}$ If P is a prime number and Q is a number co-prime to P, then Q^{p-1} gives a remainder 1 when divided by P. 3. (D) Let the price of watch = ₹ x According to the question, $\frac{2000 + 3x}{12} = \frac{1600 + 2x}{9}$ $\Rightarrow 6000 + 9x = 6400 + 8x$ $\Rightarrow x = 400$ 4. (B) $(n^3 - n) (n^2 - 4) = n(n^2 - 1)(n - 2)(n + 2)$ = n(n - 1)(n - 2)(n + 1)(n + 2) because $n > 2$, but $n = 3$ $= 3 \times 2 \times 1 \times 4 \times 5$ = 120 5. (D) $(4)^{20} \times (49)^3 \times 16^4 \times 121 \times 100$ $= (2)^{40} \times (7)^6 \times (2)^{16} \times (11)^2 \times 2 \times 2 \times 5 \times 5$ Total prime factors = 40 + 6 + 16 + 2 + 4		 8. 9. 10. 	(B) $\frac{1+\sin^2\theta}{\cos^2\theta} + \frac{1+\cos^2\theta}{\sin^2\theta}$ $= \sec^{2\theta} + \tan^{2\theta} + \csc^{2\theta} + \cot^{2\theta}$ $= 1 + \tan^{2\theta} + \tan^{2\theta} + 1 + \cot^{2\theta} + \cot^{2\theta}$ $= 2 + 2 (\tan^{2\theta} + \cot^{2\theta})$ $= 2 + 2 (2\sqrt{1}) = 6$ (C) $\frac{\sin\theta}{M} = \frac{\cos\theta}{N} = \frac{1}{K}$ $M = K\sin\theta$ $and, N = K\cos\theta$ $M^2 + N^2 = K^2(\sin^2\theta + \cos^2\theta) = K^2$ $\Rightarrow K = \sqrt{M^2 + N^2}$ and, $\sin\theta - \cos\theta = \frac{M}{K} - \frac{N}{K} = \frac{M - N}{K}$ $= \frac{M - N}{\sqrt{M^2 + N^2}}$ (C) Given, $\frac{\cos^2\theta}{M} + \frac{\sin^2\theta}{N} = \frac{1}{P^2 + Q^2} \dots (i)$ $and, \frac{P\cos\theta}{\sqrt{P^2 + Q^2}} + \frac{-Q\sin\theta}{\sqrt{P^2 + Q^2}} = 1$ $\sin\theta = \frac{-Q}{\sqrt{P^2 + Q^2}} (\cos^2\theta + \sin^2\theta = 1)$
6. (B) $\sqrt{\frac{(0.03)^2 + (0.31)^2 + (0.025)^2}{(0.003)^2 + (0.031)^2 + (0.0025)^2}}$ $= \sqrt{\frac{\frac{3^2}{10000} + \frac{31^2}{100000} + \frac{25^2}{1000000}}{\frac{3^2}{1000000} + \frac{31^2}{1000000} + \frac{25^2}{100000000}}}$ $= \sqrt{\frac{100000000}{1000000}} = \sqrt{100} = 10$ Ph: 0955510888		8	since $\sqrt{P^2 + Q^2}$ (cos or sin $0 = 1$) and, $\cos\theta = \frac{P}{\sqrt{P^2 + Q^2}}$ Putting the value of $\sin\theta$ and $\cos\theta$ in equation (i), $\frac{P^2}{(P^2 + Q^2)M} + \frac{Q^2}{(P^2 + Q^2)N} = \frac{1^2}{P^2 + Q^2}$ $\Rightarrow \frac{P^2}{M} + \frac{Q^2}{N} = 1$ 095552088888 1

