

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Answer-key & Solution

SSC JE (Power System)
Date 17.9.2017

1. C	13. B	25. A	37. A	49. D	61. D	73. A	85. D
2. C	14. C	26. B	38. D	50. B	62. C	74. C	86. B
3. В	15. B	27. A	39. C	51. A	63. B	75. B	87. D
4. A	16. B	28. A	40. B	52. B	64. B	76. C	88. D
5. D	17. C	29. C	41. B	53. C	65. C	77. A	89. A
6. B	18. A	30. D	42. B	54. A	66. B	78. C	90. D
7. C	19. D	31. B	43. C	55. D	67. A	79. C	
8. C	20. B	32. D	44. B	56. A	68. C	80. B	
9. D	21. B	33. D	45. B	57. A	69. A	81. B	
10. C	22. C	34. B	46. B	58. B	70. D	82. B	
11. D	23. C	35. B	47. B	59. A	71. C	83. C	
12. B	24. D	36. D	48. A	60. D	72. C	84. C	

Note: If your opinion differ regarding any answer, please message the mock test and Question number to 9560620353

Note: If you face any problem regarding result or marks scored, please contact: 9313111777

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SOLUTION

(B) Per unit impedance $Z_{(pu)} =$

$$\frac{Z(ohms) \times (MVA)_{B}}{(kV)_{B}^{2}} = \frac{2 \times 100}{(10)^{2}} = 2 pu$$

- 58. (B) Leakage flux in a transformer occurs because air is not a good magnetic insulator.
- (A) 3-\$\phi\$ (LLL-G) fault is unsymmetrical 59.
- 61. (D) Making Current = $2.55 \times I_{\text{Braking}}$ = $2.55 \times 1500 = 3.825 \text{ kA}$
- 62. (C) To cool the machine.
- (B) Reserve capacity $R_{C} = P_{C} - P_{max} = 0$ $P_{C} = P_{max}$
- (B) Load factor and diversity factor both has direct effect on fixed cost of the unit generated.
- 65. (C) Load, factor,

$$P_{LF} = \frac{P_{avg}}{P_{max}}$$

$$P_{avg} = \frac{\text{Annual consumption}}{24 \times 365}$$
$$= \frac{700800}{24 \times 365} kW$$

$$P_{LF} = \frac{700800}{24 \times 365 \times 200} = 0.4$$

(B) For symmetrical fault, 66.

$$I_f = \frac{E}{Z_1 + Z_n}$$

$$E = 1 p.u.$$

and
$$Z_1 = 0.5 j$$

and
$$Z_1 = 0.5 j$$

or $Z_n = 0.1 j$

$$I_f = \frac{1}{0.5j + 0.1j}$$

$$\Rightarrow$$
 $I_f = -j1.67 p.u.$

67. (A) Diversity factor

$$= \frac{\text{Sum of individual max demand}}{\text{Max demand}}$$

$$=\frac{15000+12000+8500+6000+450}{22000}=1.91$$

68. (C)
$$P_{L1} = \frac{\text{Annual Energy Consumption}}{24 \times 365 \times P_{\text{max}}}$$

and
$$P_{LF} = \frac{\text{Daily Energy Consumption}}{24 \times P_{\text{max}}}$$

$$=\frac{20}{2.4\times2}=0.416=41.6\%$$

69. (A) Leakage resistance is inversely proportional the length then,

$$R \propto \frac{1}{l}$$

and
$$\frac{R_1}{R_2} = \frac{l_2}{l_1}$$

$$\Rightarrow R_2 = \frac{R_1 l_1}{l_2}$$

$$\Rightarrow R_2 = \frac{1 \times 150}{100} = 0.5 M\Omega.$$

- (D) Volume of conductor $\propto \frac{1}{\text{(Voltage)}^2}$ 70.
- 71. (C) $P_{LF} = \frac{\text{Daily Energy Consumption}}{24 \times P_{\text{max}}}$

$$P_{LF} = \frac{24}{24 \times 2} = 0.5 = 50\%$$

72. (C) Load factor

$$=\frac{2000\times0.8\times12+1000\times1\times12}{2000\times24}$$

$$=\frac{24\times0.8+12}{48}=0.65$$

- (A) Switching of a lamp in house produces noise in radion because switching operation produced are across separating contacts.
- (C) The small pockets of air in the high voltage cable provide Low relative permittivity high electric field and at these sites breakdown is likely to be initiated.

75. (B)
$$C_N = 2 C_{AB}$$

= 2 × 3 μ F = 6 μ F

(C) Dielectric stress $\alpha = \frac{1}{\text{diameter}}$ 76.

$$\frac{\text{maximum Dielectric stress}}{\text{minimum Dielectric stress}} = \frac{D}{d}$$

- (A) Compared to the breaking capacity of a circuit breaker, its making capacity should be more.
- 78. (C) Resistance switching is normally employed in air blast circuit breakers.
- 79. (C) Capacity factor = Load factor × utilisation factor.
- 80. (B) For insulation Resistance

$$R \propto \frac{1}{l}$$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$\frac{R_1}{R_2} = \frac{l_2}{l_1}$$

$$\frac{10}{R} = \frac{8}{2}$$

 $R=2.5 M\Omega$

81. (B) Resistance referred to high voltage side,

$$R_{02} = R_1 + k^2 R_2$$

= 0.1 + (5)² × 0.004
= 0.1 + 0.1 = 0.2 Ω

Resistance referred to low voltage side,

$$R_{01} = \frac{R_1}{k^2} + R_2$$
$$= \frac{0.1}{25} + 0.004$$

 $R_{_{O1}}$ = 0.008 Ω (B) Change in frequency from no load to 82. full load

$$f_1 = 50 \times 0.05 = 2.5 \ Hz$$

i.e., $f_{1_0} = 50 - 2.5 = 47.5 \ Hz$

Since both have same speed regulation then,

$$f_{1_d} = f_{fl_2}$$

For machine A,

$$\frac{50-f}{80-x} = \frac{50-47.5}{40}$$

$$\Rightarrow x - 16f = 80 - 16 \times 50$$
$$\Rightarrow x - 16f = -720$$

....(1)

$$\frac{50-f}{x} = \frac{50-47.5}{60}$$

$$\Rightarrow$$
 x + 24 f = 24 × 50

From equation (1) and (2)

$$x = 48 \text{ MW}$$

$$f = 60 \text{ Hz}$$

So, machine A operates at a load of 48 MW While machine B will operate at a load of 80 - 48 = 32 MW

83. (C) Demand factor

$$\frac{P_{\rm max}}{Sum~of~connected~load} = \frac{1.5}{2} = 0.75$$

84. (C) Running charge annually,

$$= 4.5 \times 1 \times 15 \times 365$$

= Rs. 24637.5

Fixed charge annually = $(Rs/month) \times 12$

 $= 1000 \times 12 = \text{Rs} \ 12000$

Total annual bill = 24637.5 + 12000

= Rs 36637.5

85. (D) The string efficiency is given as

> String efficiency = Operating voltage Number of disc

voltage across the disc nearest to the

conductor

$$= \frac{V_0}{N \times V_c}$$

 $\frac{V_0}{V_1}$ = 0.333 and N = 4

$$\Rightarrow \qquad \eta_{\text{string}} = \frac{1}{4 \times 0.3333}$$
$$= 0.75 \text{ or } 759$$

(B) From the curve, 86.

$$P_{avg} = \frac{100 \times 0.4 + 60 \times 0.3 + 40 \times 0.3}{0.4 + 0.3 + 0.3}$$

= 70 MW

 P_{max} = 100 MW (From the load duration curve)

$$\Rightarrow$$
 Load factor $=\frac{P_{avg}}{P_{max}} = \frac{70}{100} = 0.7$

87. (D) It is defined as, Discharge factor

> = Discharge voltage (crest value) Rated voltage (rms value)

$$=\frac{373\sqrt{2}}{211}=2.5$$

 $V_a = i_a \sqrt{\frac{L}{C}}$ (D)

$$\Rightarrow V_a = 10\sqrt{\frac{1}{(0.01 \times 10^{-6})}}$$
= 100 KV

 $P_L \propto \frac{1}{V^2}$ (A)

$$V_2 = 2V_1$$

$$\frac{P_{L_1}}{P_{L_2}} = \left(\frac{V_2}{V_1}\right)^2 = \left(\frac{2V_1}{V_1}\right)^2 = 4$$

$$\Rightarrow \qquad P_{L_2} = \frac{P_{L_1}}{4}$$

(D) Oil should be present. 90.