

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

HARYANA SSC MOCK TEST - 55 (SOLUTION)

1. (A)
2. (B)
3. (B)
4. (A)
5. (B)
6. (C)
7. (D)
8. (A)
9. (A)
10. (D)
11. (A)
12. (C)
13. (A)
14. (B)
15. (C)
16. (C)
17. (C)
18. (C)
19. (B)
20. (D)
21. (D)
22. (A)
23. (C)
24. (B)
25. (D)
26. (A)
27. (B)
28. (B)
29. (D)
30. (D)
31. (B)
32. (D)
33. (C)
34. (B)
35. (A)
36. (A)
37. (A)
38. (B)
39. (B)
40. (C)
41. (B)
42. (C)
43. (C)
44. (B)
(
45. (C)
46. (B)
47. (D)
48. (D)
49. (C)
50. (A)
51. (D)
52. (A)
53. (D)
54. (B)
55. (A)
56. (A)
57. (C)
58. (B)
59. (B)
60. (A)
61. (B)
62. (C)
63. (B)
64. (D)
65. (B)
66. (C)
67. (A)
68. (B)
69. (D)
70. (B)
71. (A)
72. (B)
73. (C)
74. (C)
75. (A)
76. (D)
77. (A)
78. (B)
79. (A)
80. (C)
81. (D)
82. (C)
83. (C)
84. (D)

85. (D) (A) $\underset{\substack{\text { M } \\-2 \wedge-4 \wedge-6 \wedge}}{\mathrm{~K}} \mathrm{G}$

86. (A)

87. (B)

88. (B) $\frac{\text { Competition }}{1} \frac{\text { Countryside }}{3} \frac{\text { Convention }}{2}$ $\frac{\text { Curriculum }}{5} \frac{\text { Culmination }}{4}$
89. (C)

90. (B)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Total no. of person $=18+10-1=27$
51. (D) CP of the goods $=₹ 900$

SP of the goods $=110 \%$ of 900
$=₹ 990$

MP

$$
=\frac{\mathrm{SP} \times 100}{100-\% \text { discount }}
$$

$$
=\frac{990 \times 100}{100-10}
$$

$=\frac{990 \times 100}{90}$

$$
=₹ 1100
$$

52. (C) C's 1 day work $=\frac{1}{4}-\left(\frac{1}{8}+\frac{1}{12}\right)$

$$
\begin{aligned}
& =\frac{1}{4}-\left[\frac{3+2}{24}\right] \\
& =\frac{1}{4}-\frac{5}{24} \\
& =\frac{1}{24}
\end{aligned}
$$

$\mathrm{A}: \mathrm{B}: \mathrm{C}=\frac{1}{8}: \frac{1}{12}: \frac{1}{24}$

$$
=3: 2: 1
$$

Share's of $C=\frac{1}{6} \times 4500=₹ 750$
53. (A) Let the cost price of the article $=₹ 100$

$$
\begin{aligned}
\mathrm{MP} & =130 \% \text { of } 100=₹ 130 \\
\mathrm{SP} & =90 \% \text { of } 130 \\
& =₹ 117 \\
\therefore \% \text { profit } & =(117-100) \% \\
& =17 \%
\end{aligned}
$$

54. (A) 7 men $=10$ women

1 man $=\frac{10}{7}$ women
$\therefore 14$ men and 20 women
$=14 \times \frac{10}{7}$ women +20 women
$=40$ women

Now, more work, more days more women, less days
$\left.\begin{array}{cc:c}\text { Work } & 1 & : 6 \\ \text { Women } & 40: 10\end{array}\right\}:: 10: x$
where x is no. of days.

$$
\begin{aligned}
\Rightarrow 1 \times 40 \times x & =10 \times 6 \times 10 \\
x & =\frac{10 \times 6 \times 10}{40} \\
& =15 \text { days }
\end{aligned}
$$

55. (B) Suppose there were x persons initially.

Time taken by 1 person $=55 \times x$ days
New number of persons $=x+6$
Time taken by 1 person

$$
=(x+6) \times 44,[11 \text { days less }]
$$

$\therefore(x+6) \times 44=55 \times x$
$\Rightarrow 44 \times 6=55 x-44 x$
$\Rightarrow \frac{44 \times 6}{11}=x$
$\Rightarrow \quad x=24$
56. (B) Let the SP of 1 orange $=₹ x$

Then, SP of 10 oranges $=₹ 10 x$ SP of 12 oranges $=₹ 12 x$
$\mathrm{CP}=₹ 10 x, \mathrm{SP}=12 x$

$$
\begin{aligned}
\% \text { profit } & =\frac{12 x-10 x}{10 x} \times 100 \\
& =\frac{2 x}{10 x} \times 100 \\
& =20 \%
\end{aligned}
$$

57. (C) For

$$
\begin{aligned}
1-2 x & =0 \\
x & =\frac{1}{2}
\end{aligned}
$$

$\because(1-2 x)$ is a factor of polynomial

$$
2 x^{4}-a x^{3}+4 x^{2}+2 x+1
$$

Its Remainder $=0$
$\Rightarrow 2\left(\frac{1}{2}\right)^{4}-a\left(\frac{1}{2}\right)^{3}+4\left(\frac{1}{2}\right)^{2}+2 \times \frac{1}{2}+1=0$
$\Rightarrow \frac{2}{16}-\frac{a}{8}+1+1+1=0$
$\Rightarrow \frac{1}{8}+3=\frac{a}{8}$
$\Rightarrow \frac{25}{8}=\frac{a}{8}$
$\Rightarrow \quad a=25$
58. (B) Quantity of alcohol in $400 \mathrm{ml} \mathrm{sol}{ }^{\mathrm{n}}$.

$$
\begin{aligned}
& =15 \% \text { of } 400 \\
& =60 \mathrm{ml}
\end{aligned}
$$

Let $x \mathrm{ml}$ alcohol is added to make the strength 32%.
Then,

$$
\begin{gathered}
32 \% \text { of }(400+x)=60+x \\
\frac{32}{100} \times 400+\frac{32}{100} \times x=60+x \\
128-60=x-\frac{32 x}{100} \\
68=\frac{68 x}{100} \\
\Rightarrow \quad x=100 \mathrm{ml}
\end{gathered}
$$

59. (D) Let there are 100 students.

No. of scholarship holders (boys)

$$
=75 \% \text { of } \frac{4}{5} \text { of } 100=60
$$

No. of scholarship holders (girls)

$$
=70 \% \text { of } \frac{1}{5} \text { of } 100=14
$$

\% of students who do not hold any scholarship $=[100-(60+14)]$

$$
=26 \%
$$

60. (A) Let the two digit number be $10 x+y$.

Two digit number (when digits are interchanged) $=10 y+x$
ATQ,

$$
(10 x+y)+(10 y+x)
$$

$=11 x+11 y$
$=11(x+y)$
Hence the resulting no. is divisible by 11 .

