SSC CPO SI MOCK TEST - 04 (SOLUTION)

1. (C)

2. (C) $400: 20:: 484: 22$

ASquare ASquare
3. (D) 4. (C) 5. (B)
6. (C)

SPR I NG GONE
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ And $\downarrow \downarrow \downarrow \downarrow$
\# 2% @ $4=74$ ©
Similarly, S I G N

$$
\downarrow \downarrow \downarrow \downarrow
$$

$$
\text { \# } a_{1}=4
$$

7. (A) After changing the signs according to the question, the new equation will be
(A) $72 \div 6 \times 3+5-3=38$

$$
\begin{aligned}
12 \times 3+5-3 & =38 \\
36+5-3 & =38 \\
41-3 & =38 \\
\mathbf{3 8} & =\mathbf{3 8} \quad \text { (True) }
\end{aligned}
$$

8. (B) STONE ROCK HILL MOUNTAIN RANGE $\begin{array}{lllll}5 & 1 & 2 & 3 & 4\end{array}$
9. (B)
(A) January \qquad 31 days
(B) June \qquad 30 days
(C) July 31 days
(D) August \square 31 days
10.(D)

(B) $T+4 \underset{+4}{ } \mathrm{X}+4 \uparrow+4 \uparrow$
(C) $\underset{\underline{L}+4}{J} \stackrel{N}{\wedge}+4 \uparrow+4 \uparrow$
(D) $\mathrm{Y} \underset{+3}{ } \mathrm{~B} \mathrm{E} \underset{\uparrow}{\mathrm{H}}$
11.(D)
(A) ${ }_{L}^{M} \stackrel{L}{L} \quad \stackrel{N}{L+14}$

(C) | I | | |
| ---: | ---: | ---: |
| L | H | R |

(D)

12. (B) $14 \quad 42$ (14 is the factor of 42)
13. (C) $\mathrm{ab} \mathrm{b} \underline{\mathrm{a}} / \mathrm{abb} \underline{\mathrm{a}} / \mathrm{ab} \underline{\mathrm{b}} \mathrm{a} / \underline{\mathrm{a}} \mathrm{b} \mathrm{b} \mathrm{a}$
14. (C) Universal rule $=$ This rule can be applied to any dice (standard or ordinary). It is applicable when we have been given 2,3 , or 4 situations of a dice. According to the rule identity any two situation in which we have only one digit common. In the given dice only one digit is common i.e. (5). Now write the numbers as clockwise from the common number.

(i)

(II)

Here we have $5 \rightarrow 4 \rightarrow 2$ in figure (I). Now look at the second figure.
Here we have $5 \rightarrow 3 \rightarrow 1$.
Now write both of them one above the after as.

$$
5 \rightarrow 4 \rightarrow 2
$$

§opp \downarrow opp \downarrow opp
$5 \rightarrow 3 \rightarrow 1$
15. (A)
16. (A)

(A) 8

17. (A)
18. (D)

19. (B)

20. (C) $5 \times 6-7=23$
$4 \times 5-6=14$
$3 \times 4-5=7$
21. (A)

(Here black part is middle cube)
In any cube, middle cube have only two faces colored. Thus we can calculate the number of middle cubes with the following formula:

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Numbers of middle cubes $=12(x-2)$
12 (4-2)
12 (2)
= $12 \times 2=24$
Thus, number of cubes $=24$
22. (D)

16 hours $=\mathbf{F} / \mathbf{R}$
23. (B) $33,86,88,41$
24. (C)

25. (D)
26. (D) 4 minutes difference $=1$ day

$$
\begin{aligned}
\therefore 12 \text { hours } & =\frac{1}{4} \times 12 \times 60 \text { days } \\
& =180 \text { days }
\end{aligned}
$$

27. (C)

28. (A)
29. (C)

$$
\mathrm{AD}=4 \mathrm{~km}
$$

30. (C)

31. (C)
32. (C)

33. (D) 6 is common to all the three geometrical figures
34. (B)
35. (B) I $\left\{\begin{array}{l}\text { Dinesh } \\ \text { Arun } \\ \text { Elias }\end{array}\right.$ 35. (C)

Elias
II $\left\{\begin{array}{l}\text { Kiran } \\ \text { Dinesh } \\ \text { Chandar }\end{array}\right.$
from I \& II (Bikram
$\left\{\begin{array}{l}\text { Dinesh } \\ \text { Arun } \\ \text { Elias }\end{array}\right.$
Position of Chandar is below Dinesh but not confirmed in relation to Arun \& Elias
37. (D) CRUMBS
38. (D) Z E A L
39. (C) how old are you \rightarrow Ko to po ha.....
you are very beautiful \rightarrow na po da to
\therefore how $=$ ko or ha
40. (D) Here total numbers of children are not given. So given data is inadequate.
41. (A)

42. (D)

Obviously, T is the cousin of P.
43. (D) Reject the expressions (A), (B) and (C) because in all the three expression R is represented a male
Now make a family tree for the expression (D).

Obviously, R is the wife of P .

44. (C)

Obviously, R is the son-in-law of P .
45. (C)
46. (C) The hands of a clock are opposite to each other 11 times in every 12 hours.
47. (A)

Conclusion $\begin{gathered}\text { II }-\downarrow \\ \text { II } \\ \boldsymbol{x}\end{gathered}$
48. (A)

Conclusion $\begin{array}{r}\text { II }-\downarrow \\ \text { II }-\boldsymbol{x}\end{array}$
49. (A)
50. (B)
101. (D) $a+b+c+d=1$

Then value of $(1+a)(1+b)(1+c)(1+d)$ will be maximum if $a=b=c=d=\frac{1}{4}$
\therefore Required value

$$
\begin{aligned}
& =\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right) \\
& =\left(\frac{5}{4}\right)^{4}
\end{aligned}
$$

102. (D)
\therefore Chord $\mathrm{AB}=$ radius of the circle.
$\therefore \triangle \mathrm{AOB}$ is equilateral or equiangular.
$\therefore \angle \mathrm{AOB}=60^{\circ}$

$$
\begin{aligned}
\text { Again, } \angle \mathrm{AOB} & =2 \angle \mathrm{AMB} \\
60^{\circ} & =2 \angle \mathrm{AMB} \\
\Rightarrow \quad \angle \mathrm{AMB} & =30^{\circ}
\end{aligned}
$$

Angle made by an arc at the centre is double the angle made by it in the remaining part of the circle.
103. (C)

ABC is a Δ and BP and $C P$ are bisectors of the exterior angles $\angle \mathrm{MBC} \& \angle \mathrm{NCB}$ respectively.

$\angle \mathrm{BPC}=60^{\circ}$ (given)
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[Angle sum property of a Δ)
$\Rightarrow \quad \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}$
$\Rightarrow\left(180^{\circ}-\angle \mathrm{MBC}\right)+\left(180^{\circ}-\angle \mathrm{NCB}\right)$
$=180^{\circ}-\angle \mathrm{A}$
$\left[\because \angle \mathrm{B}+\angle \mathrm{MBC}=\angle \mathrm{C}+\angle \mathrm{NCB}=180^{\circ}\right.$, linear pairs]
$\Rightarrow 360^{\circ}+\angle \mathrm{A}=\angle \mathrm{MBC}+\angle \mathrm{NCB}+180^{\circ}$
$\frac{1}{2}\left[360^{\circ}+\angle \mathrm{A}\right]=\frac{1}{2}[\angle \mathrm{MBC}+\angle \mathrm{NCB}+180]$
$180+\frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{MBC}+\frac{1}{2} \angle \mathrm{NCB}+90^{\circ}$
$\Rightarrow 90^{\circ}+\frac{1}{2} \angle \mathrm{~A}=\angle \mathrm{PBC}+\angle \mathrm{PCB}$
[\because BP \& CP bisect \angle MBC $\&$ \angle NCB respectively]
$90^{\circ}+\frac{1}{2} \angle \mathrm{~A}=180^{\circ}-\angle \mathrm{BPC}$
$90^{\circ}+\frac{1}{2} \angle \mathrm{~A}=180^{\circ}-60^{\circ}$
$\frac{1}{2} \angle \mathrm{~A}=120^{\circ}-90^{\circ}$
$\frac{1}{2} \angle \mathrm{~A}=30^{\circ}$
$\angle \mathrm{A}=60^{\circ}$
104. (A)

$$
\begin{aligned}
& \because \mathrm{OM} \perp \mathrm{AB} \\
& \Rightarrow \mathrm{AM}=\mathrm{MB}
\end{aligned}=\frac{1}{2} \mathrm{AB}, \text { (}
$$

[perpendicular from centre to any chord bisects the chord]

Similarly, $\mathrm{CN}=\mathrm{ND}=\frac{1}{2} \mathrm{CD}=12 \mathrm{~cm}$

In $\triangle \mathrm{AMO}$,

$$
\begin{aligned}
\mathrm{OM}^{2} & =\mathrm{OA}^{2}-\mathrm{AM}^{2} \\
& =13^{2}-5^{2} \\
& =169-25=144 \\
\mathrm{OM} & =12 \mathrm{~cm}
\end{aligned}
$$

In $\Delta \mathrm{CNO}$,

$$
\begin{aligned}
\mathrm{ON}^{2} & =\mathrm{OC}^{2}-\mathrm{CN}^{2} \\
& =13^{2}-12^{2} \\
\mathrm{ON} & =5 \mathrm{~cm}
\end{aligned}
$$

\therefore The distance between the two parallel chords $=\mathrm{MN}=\mathrm{MO}+\mathrm{ON}$

$$
=12+5=17 \mathrm{~cm}
$$

105. (B)
$\triangle \mathrm{ANB} \sim \triangle \mathrm{ABC}$
(by AA Similarity)

$$
\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BN}}{\mathrm{BC}}=\frac{\mathrm{AN}}{\mathrm{AB}}
$$

From 1st and last ratio

$$
\begin{aligned}
\Rightarrow \frac{6}{10} & =\frac{\mathrm{AN}}{6} \\
\mathrm{AN} & =\frac{36}{10}=3.6 \mathrm{~cm} \\
\Rightarrow \mathrm{NC} & =\mathrm{AC}-\mathrm{AN}=10-3.6=6.4 \mathrm{~cm}
\end{aligned}
$$

Now, $\frac{\mathrm{AN}}{\mathrm{NC}}=\frac{3.6}{6.4}=\frac{9}{16}$
AN : NC = $9: 16$
106. (B)

$$
\begin{aligned}
& \text { (B) } x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3 x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right) \\
& 0=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right) \\
& \Rightarrow\left(x+\frac{1}{x}\right)\left[\left(x+\frac{1}{x}\right)^{2}-3\right]=0 \\
& \Rightarrow\left(x+\frac{1}{x}\right)^{2}-3=0 \\
& \Rightarrow\left(x+\frac{1}{x}\right)^{2}=3
\end{aligned}
$$

$$
\therefore \quad x+\frac{1}{x} \quad=\sqrt{3}
$$

Now, $\left(x+\frac{1}{x}\right)^{4}=(\sqrt{3})^{4}=9$
107. (C

$$
\begin{align*}
& \text { (C) } x+\frac{1}{x}=3 \Rightarrow\left(x+\frac{1}{x}\right)^{3}=3^{3} \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}+3 \cdot x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)=27 \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}+3(3)=27 \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}=27-9 \tag{1}\\
& \therefore x^{3}+\frac{1}{x^{3}}=18
\end{align*}
$$

Also, $\left(x+\frac{1}{x}\right)^{2}=3^{2}$

$$
\begin{align*}
& \Rightarrow \quad x^{2}+\frac{1}{x^{2}}+2 \cdot x \cdot \frac{1}{x}=9 \\
& \therefore \quad x^{2}+\frac{1}{x^{2}}=7
\end{align*}
$$

Multiply (1) \& (2)

$$
\begin{aligned}
& \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{2}+\frac{1}{x^{2}}\right)=18 \times 7 \\
\Rightarrow & x^{5}+\frac{x^{3}}{x^{2}}+\frac{x^{2}}{x^{3}}+\frac{1}{x^{5}}=126 \\
\Rightarrow & x^{5}+\frac{1}{x^{5}}+\left(x+\frac{1}{x}\right)=126 \\
\Rightarrow & x^{5}+\frac{1}{x^{5}}=126-3 \\
\therefore & x^{5}+\frac{1}{x^{5}}=123
\end{aligned}
$$

108. (B) $\because B C=\sqrt{3} A B$

$$
\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\therefore \quad \theta=30^{\circ}$
The angle of elevation of the top of the tower $=30^{\circ}$
109. (C) $\tan 7 \theta \cdot \tan 2 \theta=1$

$$
\begin{aligned}
& \Rightarrow \frac{\sin 7 \theta \cdot \sin 2 \theta}{\cos 7 \theta \cdot \cos 2 \theta}=1 \\
& \Rightarrow \frac{\cos (7 \theta-2 \theta)-\cos (7 \theta+2 \theta)}{\cos (7 \theta+2 \theta)+\cos (7 \theta-2 \theta)}=1
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \cos 5 \theta-\cos 9 \theta=\cos 9 \theta+\cos 5 \theta$
$\Rightarrow 2 \cos 9 \theta=0$
$\Rightarrow \cos 9 \theta=0$
$\Rightarrow 9 \theta=(2 n+1) \frac{\pi}{2} \quad$ [if $\cos \theta=0$, then $\theta=$
$(2 n+1) \frac{\pi}{2}$, where n is an integer]

$$
\theta=(2 n+1) \frac{\pi}{18}
$$

Now, when $n=0$

$$
\begin{aligned}
\theta & =(2 \times 0+1) \frac{\pi}{18} \\
& =\frac{180}{18}=10^{\circ}\left[\because \pi \text { radius }=180^{\circ}\right]
\end{aligned}
$$

Now $\tan 3 \theta=\tan 3 \times 10=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
110. (A) $\tan \theta=2$

Now, $\frac{8 \sin \theta+5 \cos \theta}{\sin ^{3} \theta+2 \cos ^{3} \theta+3 \cos \theta}$
$=\frac{\cos \theta(8 \tan \theta+5)}{\cos ^{3} \theta \times\left(\tan ^{3} \theta+2+\frac{3}{\cos ^{2} \theta}\right)}$
$=\frac{\sec ^{2} \theta(8 \tan \theta+5)}{\tan ^{3} \theta+2+3 \sec ^{2} \theta}$
$=\frac{\left(1+\tan ^{2} \theta\right)(8 \tan \theta+5)}{\tan ^{3} \theta+2+3\left(1+\tan ^{2} \theta\right)}$
$=\frac{\left(1+2^{2}\right)(8.2+5)}{2^{3}+2+3\left(1+2^{2}\right)}=\frac{5 \times 21}{10+15}=\frac{5 \times 21}{25}=\frac{21}{5}$
111. (C) $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$7\left(1-\cos ^{2} \theta\right)+3 \cos ^{2} \theta=4$
$7-7 \cos ^{2} \theta+3 \cos ^{2} \theta=4$
$7-4=4 \cos ^{2} \theta$

$$
3=4 \cos ^{2} \theta
$$

$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$
$\cos \theta=\cos 30^{\circ}$
$\theta=30^{\circ}=\frac{\pi}{6}$
112. (B)
$\because \mathrm{AB}=24 \mathrm{~cm}$
$\Rightarrow \mathrm{AN}=\mathrm{NB}=12 \mathrm{~cm}$
Let $\mathrm{OM}=x \mathrm{~cm}$, then $\mathrm{ON}=(21-x) \mathrm{cm}$

In $\triangle \mathrm{ANO}$,

$$
\begin{array}{rlrl}
& \mathrm{OA}^{2} & =\mathrm{AN}^{2}+\mathrm{NO}^{2} \\
\Rightarrow & 15^{2} & =12^{2}+(21-x)^{2} \\
\Rightarrow 225-144 & =(21-x)^{2} \\
& 81 & =(21-x)^{2} \\
\Rightarrow \quad 21-x & =9 \\
\therefore \quad & x & =21-9=12
\end{array}
$$

Again $\quad \mathrm{CM}^{2}=\mathrm{CO}^{2}-\mathrm{OM}^{2}$

$$
=15^{2}-12^{2}
$$

$$
=225-144=81
$$

$$
\mathrm{CM}=9 \mathrm{~cm}
$$

\therefore The length of the 2 nd chord $C D$

$$
=2 \mathrm{CM}=2 \times 9=18 \mathrm{~cm}
$$

113. (B) In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\angle \mathrm{ABC}=75^{\circ}, \angle \mathrm{ACB} & =\left(\frac{\pi}{4}\right)^{\circ} \\
& =\left(\frac{180}{4}\right)^{\circ}=45^{\circ}
\end{aligned}
$$

$\because \quad \angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$
[Angle sum property of a Δ]

$$
\begin{aligned}
75^{\circ}+45^{\circ}+\angle \mathrm{BAC} & =180^{\circ} \\
\angle \mathrm{BAC} & =180^{\circ}-120^{\circ} \\
& =60^{\circ} \\
& =\frac{\pi}{3} \text { radius }
\end{aligned}
$$

114. (B) $(1101)^{2}=1212201$

$$
\text { Now, } \begin{aligned}
\sqrt{121.2201} & =\sqrt{\frac{1212201}{10000}} \\
& =\frac{\sqrt{1212201}}{\sqrt{10000}} \\
& =\frac{1101}{100}=11.01
\end{aligned}
$$

115. (C) $\because \mathrm{p}, \mathrm{q}, \mathrm{r}$ are in GP.

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}} \quad(\because \text { The common ratio in a } \\
& \Rightarrow \mathrm{q}^{2}=\mathrm{pr} \\
& \Rightarrow \mathrm{q}=\text { is always same }) \\
& \Rightarrow=\sqrt{\mathrm{pr}}
\end{aligned}
$$

K D Campus Pvt. Ltd

116. (D) HCF a \& b = 12
$\Rightarrow \mathrm{a}$ and b must be multiplies of 12 (e.g. $12,24,36,48, \ldots)$
Also, $\mathrm{a}>\mathrm{b}>12$
So, the smallest possible values of $\mathrm{a} \& \mathrm{~b}$ will be as follows :-
b $=2 \times 12=24$
a $=3 \times 12=36$
So, Answer is 36, 24.
117. (D) Work done by A \& B in 1 day

$$
=\frac{1}{6}+\frac{1}{12}=\frac{2+1}{12}=\frac{1}{4} \text { work }
$$

$\frac{1}{4}$ work is completed by A $\& B$ in 1 day 1 work is completed by A \& B in $\frac{1}{\frac{1}{4}}$ $=4$ days
118. (B) $100 \times 10-100+2000 \div 100$
$=100(10-1)+20$
$=100 \times 9+20=920$
119. (B) Total property given by the person

$$
=\frac{1}{4}+\frac{1}{2}+\frac{1}{5}=\frac{5+10+4}{20}=\frac{19}{20}
$$

120. (D) Marked price $=120 \%$ of 1500

$$
=\frac{120}{100} \times 1500=\text { Rs. } 1800
$$

SP $=108 \%$ of 1500
$=\frac{108}{100} \times 1500=$ Rs. 1620

$$
\begin{aligned}
\% \text { Discount } & =\frac{1800-1620}{1800} \times 100 \\
& =\frac{180}{1800} \times 100=10 \%
\end{aligned}
$$

121. (C) $\frac{\text { Length }}{\text { Perimeter }}=\frac{5}{18}$

$$
\begin{array}{lcl}
\Rightarrow & \frac{l}{2(l+b)} & =\frac{5}{18} \\
\Rightarrow & 10 l+10 b & =18 l \\
\Rightarrow & 10 b & =8 l \\
\Rightarrow & \frac{l}{b} & =\frac{10}{8} \\
\therefore & l: b & =5: 4
\end{array}
$$

122. (C) Let x be added to each of the number $7,16,43,79$

Then, $\frac{16+x}{7+x}=\frac{79+x}{43+x}$
$\Rightarrow \quad(79+x)(7+x)=(16+x)(43+x)$
$\Rightarrow \quad 553+86 x+x^{2}=688+59 x+x^{2}$
$\Rightarrow \quad 86 x-59 x=688-553$
$27 x=135$
$x=5$
123. (C) Total expenditure during the year

$$
\begin{aligned}
& =2200 \times 3+2550 \times 4+3120 \times 5 \\
& =\text { Rs. } 32400
\end{aligned}
$$

Total saving = Rs. 1260
Total income $=$ Rs. $32400+1260=33660$
Average monthly income $=\frac{33660}{12}$
= Rs. 2805
124. (A) Suppose ' m ' stand for man
and ' b ' stand for boy
ATQ,

$$
\begin{aligned}
12(3 m+4 b) & =10(4 m+3 b) \\
36 m+48 b & =40 m+30 b \\
18 b & =4 m
\end{aligned}
$$

Now, $36 m+48 b$
$=36 \times \frac{18}{4} b+48 b$
$=162 b+48 b$
$=210 \mathrm{~b}$
$\because 210$ boys complete the work in 1 day
$\therefore \quad 1$ boy complete the work in 210 days
$\therefore 2 m+3 b=\left(2 \times \frac{18}{4} b+3 b\right)$
12 boys complete the work $=\frac{210}{12}$ days

$$
\begin{aligned}
& =\frac{70}{4}=\frac{35}{2} \text { days } \\
& =17 \frac{1}{2} \text { days }
\end{aligned}
$$

125. (C) \% Discount $=\frac{6000-5500}{6000} \times 100$

$$
\begin{aligned}
& =\frac{500}{6000} \times 100 \\
& =\frac{25}{3} \%=8 \frac{1}{3} \%
\end{aligned}
$$

126. (D) CP of 10 cycles $=10 \times 500$

$$
\text { = Rs. } 5000
$$

Repairing charge = Rs. 2000
Net CP = Rs. 7000

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\mathrm{SP}=$ Rs. $750 \times 5+550 \times 5$
$=3750+2750$

$$
=6500
$$

$\because \mathrm{SP}<\mathrm{CP}$

$$
\begin{aligned}
\therefore \% \text { loss } & =\frac{7000-6500}{7000} \times 100 \\
& =\frac{500}{7000} \times 100 \\
& =7 \frac{1}{7} \%
\end{aligned}
$$

127. (D) Required $\%=\frac{72}{3600} \times 100$

$$
=2 \%
$$

128. (C) Let the total number of students be x No. of students passed in Eng.
$=90 \%$ of $x=\frac{90 x}{100}$
$n(\mathrm{E})=\frac{90 x}{100}$
$n(\mathrm{M})=\frac{85 x}{100}$
$n(\mathrm{E} \cap \mathrm{M})=150$
$\because \quad n(\mathrm{E} \cup \mathrm{M})=n(\mathrm{E})+n(\mathrm{M})-\mathrm{m}(\mathrm{E} \cap \mathrm{M})$

$$
\begin{aligned}
x & =\frac{90 x}{100}+\frac{85 x}{100}-150 \\
150 & =\frac{90 x+85 x}{100}-x \\
150 & =\frac{175 x-100 x}{100} \\
75 x & =150 \times 100 \\
x & =\frac{150 \times 100}{75} \\
x & =200
\end{aligned}
$$

129. (D) Speed $=3 \frac{1}{3}=\frac{10}{3} \mathrm{~m} / \mathrm{s}$
$=\frac{10}{3} \times \frac{18}{5}$
$=12 \mathrm{~km} / \mathrm{hr}$
130. (C) Let $\mathrm{P}=$ Rs. 100

CI for Ist year $=5 \%$ of $100=$ Rs. 5
CI for the 2 nd year $=5+5 \%$ of 5

$$
=\text { Rs. } 5.25
$$

When CI is Rs. $5.25, \quad \mathrm{P}=$ Rs. 100

When CI is Re. 1

$$
\mathrm{P}=\text { Rs. } \frac{100}{5.25}
$$

When CI is Rs. 420

$$
P=\frac{100}{5.25} \times 420
$$

$$
\text { = Rs. } 8000
$$

131. (C) $r=11 \mathrm{~cm}$

CSA of hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 11 \times 11 \\
& =760.57 \mathrm{~cm}^{2}
\end{aligned}
$$

132. (C) 5 years ago sum of ages of $P \& Q=30 \mathrm{yrs}$ Total age of $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ at present

$$
=20 \times 3=60 \mathrm{yrs}
$$

Age of R at present $=60-(30+10)$

$$
=60-40=20 \mathrm{yrs}
$$

Age of R 10 years later $=20+10=30 \mathrm{yrs}$.
133. (A) Let the CP of the goods = Rs. x

SP of the goods $=132 \%$ of x

$$
=\frac{132 x}{100}
$$

Now, 88% of MP $=\frac{132 x}{100}$

$$
\begin{aligned}
\mathrm{MP} & =\frac{132 x}{100} \times \frac{100}{88} \\
& =\frac{3 x}{2}
\end{aligned}
$$

Required $\%=\frac{\frac{3 x}{2}-x}{x} \times 100$

$$
\begin{aligned}
& =\frac{\frac{x}{2}}{x} \times 100 \\
& =\frac{1}{2} \times 100=50 \%
\end{aligned}
$$

134. (C)

Let $A B C$ is an equilateral
Δ of side 'a' unit. then
median AM^{2}

$$
\begin{aligned}
& =\sqrt{\mathrm{AB}^{2}-\mathrm{BM}^{2}} \\
& =\sqrt{\mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
=\frac{\sqrt{3}}{2} \mathrm{a}
$$

Now, $\frac{\sqrt{3}}{2} \mathrm{a}=6 \sqrt{3}$
$\mathrm{a}=12 \mathrm{~cm}$
Perimeter of $\Delta \mathrm{ABC}=3 \times 12=36 \mathrm{~cm}$
135. (C) Area of verandah
$=$ Area of the hall including verandah - Area of the hall only
$=(25+3.5+3.5) \times(15+3.5+3.5)-$ 25×15
$=32 \times 22-25 \times 15$
$=704-375=329 \mathrm{~m}^{2}$
Cost @ of Rs.27.50 per m ${ }^{2}$

$$
\begin{aligned}
& =329 \times 27.50 \\
& =\text { Rs. } 9047.50
\end{aligned}
$$

136. (A) Let ' r ' be the base radius \& ' h ' is the height of the cone.
then, $l=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
TSA of cone $=\pi \mathrm{rl}+\pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =\pi \mathrm{r} \cdot \sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}+\pi \mathrm{r}^{2} \\
& =\pi \mathrm{r}\left[\sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}+\mathrm{r}\right] \\
& =\pi \mathrm{r}\left[\sqrt{\mathrm{r}^{2}+\mathrm{r}^{2}}+\mathrm{r}\right][\because \mathrm{h}=\mathrm{r}] \\
& =\pi \mathrm{r}(\sqrt{2} \mathrm{r}+\mathrm{r}) \\
& =\pi \mathrm{r}^{2}(\sqrt{2}+1)
\end{aligned}
$$

TSA of the hemisphere $=3 \pi r^{2}$
Required ratio $=\frac{\pi r^{2}(\sqrt{2}+1)}{3 \pi r^{2}}$

$$
\begin{aligned}
& =\frac{\sqrt{2}+1}{3} \\
& =\sqrt{2}+1: 3
\end{aligned}
$$

137. (B) Length of the
parallelopiped ' l ' $=6+6=12 \mathrm{~cm}$

$$
\begin{aligned}
b & =6 \mathrm{~cm} \\
h & =6 \mathrm{~cm}
\end{aligned}
$$

TSA of the rectangular parallelopiped

$$
\begin{aligned}
& =2(l b+b h+l h) \\
& =2[12 \times 6+6 \times 6+12 \times 6] \\
& =2[72+36+72] \\
& =360 \mathrm{~cm}^{2}
\end{aligned}
$$

138. (B) The expression

$$
=x^{4}-2 x^{2}+k \text { is a perfect square. }
$$

If its discriminant $=0$

$$
\Rightarrow \quad b^{2}-4 a c=0
$$

$$
\Rightarrow(-2)^{2}-4 \times 1 \times k=0
$$

$$
\Rightarrow 4-4 k=0
$$

$$
\therefore \quad k=1
$$

139. (C)

Co-ordinates of points $\mathrm{A}=(0,1)$
$B=(1,0)$
$\mathrm{C}=(3,0)$
$\mathrm{D}=(0,2)$
Area of quad. $\mathrm{ABCD}=\operatorname{ar}(\Delta \mathrm{ABC})+\operatorname{ar}(\Delta \mathrm{ACD})$
$\left[\because\right.$ Area of a $\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[0(0-0)+1(0-1)+3(1-0)]+$
$\frac{1}{2}[0(0-2)+3(2-1)+0(1-0)]$
$=\frac{1}{2}[0-1+3]+\frac{1}{2}[0+3+0]$
$=1+\frac{3}{2}=\frac{5}{2}$ sq. unit
$=2 \frac{1}{2}$ sq. unit

Shortcut method:-

Required area

$$
\begin{aligned}
& =\operatorname{ar}(\Delta \mathrm{OCD})-\operatorname{ar}(\triangle \mathrm{OBA}) \\
& =\frac{1}{2} \times 2 \times 3-\frac{1}{2} \times 1 \times 1 \\
& =\frac{6}{2}-\frac{1}{2}=\frac{5}{2}=2 \frac{1}{2} \text { sq. unit }
\end{aligned}
$$

140. (D) Each exterior angle of a regular polygon

$$
\begin{aligned}
& =\frac{360^{\circ}}{x} \\
72 & =\frac{360^{\circ}}{x}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
x=5
$$

Sum of all interior angles of the polygon of 5 sides

$$
\begin{aligned}
& =(2 \times 5-4) \times 90 \\
& =6 \times 90 \\
& =540^{\circ}
\end{aligned}
$$

141. (B) $\mathrm{r}_{1} \rightarrow$ radius of cylinder
$r_{2} \rightarrow \quad$ radius of cone
$\mathrm{h}_{1} \rightarrow$ height of cylinder
$\mathrm{h}_{2} \rightarrow$ height of cone
$\because \quad r_{1}: r_{2}=\sqrt{3}: \sqrt{2} \& h_{1}: h_{2}=\sqrt{2}: \sqrt{3}$
$\frac{\text { Volume of Cylinder }}{\text { Volume of Cone }}=\frac{\pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}$
$=3\left(\frac{r_{1}}{r_{2}}\right)^{2} \times\left(\frac{h_{1}}{h_{2}}\right)$
$=3\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^{2} \times \frac{\sqrt{2}}{\sqrt{3}}$
$=\frac{3 \times \sqrt{3} \times \sqrt{3}}{\sqrt{2} \times \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{3}}$
$=\frac{3 \sqrt{3}}{\sqrt{2}}$
\therefore Required Ratio $=3 \sqrt{3}: \sqrt{2}$
142. (C) The production of wheat reached maximum in 1999.
143. (A) \% increase in production of wheat from

$$
1997-1998=\frac{1000-500}{500} \times 100=100 \%
$$

144. (C) \% decrease in production from 1996-97

$$
\begin{aligned}
& =\frac{600-500}{600} \times 100 \\
& =\frac{100}{600} \times 100=\frac{50}{3} \% \\
& =16 \frac{2}{3} \%
\end{aligned}
$$

\% decrease in production in 1995-96

$$
=\frac{1200-600}{1200} \times 100=50 \%
$$

\% decrease in production in 1999-2000

$$
\begin{aligned}
& =\frac{1500-1300}{1500} \times 100 \\
& =\frac{200}{1500} \times 100=13 \frac{1}{3} \%
\end{aligned}
$$

145. (D) Total production from 1995 to 1998

$$
\begin{aligned}
& =1200+600+500+1000 \\
& =3300 \text { quintals }
\end{aligned}
$$

146. (C) $\frac{\text { Amount spent for food }}{\text { Amount spent for medicine }}=\frac{30}{12 \frac{1}{2}}$

$$
=\frac{30 \times 2}{25}=\frac{12}{5}
$$

$\therefore \quad$ Reqd. Ratio $=12: 5$.
147. (A) Amount spent on buying clothes

$$
\begin{aligned}
& =12 \frac{1}{2} \% \text { of } 50,000 \\
& =\frac{25}{200} \times 50000 \\
& =\text { Rs. } 6250
\end{aligned}
$$

148. (A) Amount spent for study of children \& food together.

$$
\begin{aligned}
& =55 \% \text { of } 35000 \\
& =0.55 \times 35000 \\
& =\text { Rs. } 19250
\end{aligned}
$$

149. (C) Angle of pie chart representing the expenditure on entertainment

$$
=\frac{10}{100} \times 360=36^{\circ}
$$

150. (B) Let the total amount spent on buying clothes \& house maintenance = Rs. x Then,

$$
\begin{aligned}
(12.5-10) \% \text { of } x & =1500 \\
x & =\frac{1500 \times 100}{2.5} \\
& =\text { Rs. } 60000
\end{aligned}
$$

Amount spent for House maintenance

$$
=10 \% \text { of } 60000=\text { Rs. } 6000
$$

2007，OUTRAM LINES，1ST FLOOR，OPPOSITE MUKHERJEE NAGAR POLICE STATION，DELHI－110009

MEANINGS IN ALPHABETICAL ORDER

Word

Acrobat
Allure
Ample
Appetite
Asylum
Backlist
Baneful
Benign
Bibliography
Confided
Conjuror
Crooked
Curb
Devious
Disintegrate
Economical
Emerge
Extravagant
Gnaw
Juggler
Lavish
Malevolent
Malicious
Mania
Meagre
Optional
Ornate
Pedantic
Perish
Restrain
Retreat
Sanatorium
Scarce
Spiteful
Stingy
Superficial
Tempt
Thrifty
Vanish

Meaning in English

One who perform gymnastic feats
Attract／entice
Plentiful
A feeling of craving something
Shelter
List of older books still available from a publisher distinguished from books newly published Deadly
Kindness，beneficial
List of books on a particular subject
Entrust
One who shows tricks
Corrupt／not straight
Control／Restrict
Not straight／deceptive
Decay，decompose
Avoiding wasting money
To become known
Very expensive／wasteful
Bite or chew by teeth
One who performs tricks／one who manipulates
Having rich and expensive quality
wish evil for other
Vicious／desirous of causing harm to others
Obsession
Insufficient
Available as a choice
Decorated
One who shows off his knowledge
Die／disappear
Control／hold
Withdraw
Hospital for treatment of chronic disease
Very little
Showing evil ill will
Unwilling to spend money
Affecting only the outer part
Entice／Attract
Unwilling to spend money
Disappear

Meaning in Hindi

कला बा ज

आ कर्टष ता त्रना
प्रचु र
इचछा／ $\mathrm{T}_{\text {の }}$ ख
परप
प्रका शि तहा｀रही पु स वका
की सू ची
हा T तक
कृप लु
पु स्तकसू ची
रा ज़ा र बना ना
करतब दिखा ने वा ला
ゅし षट／ट＇ढ
अं कु प्र लगा ना
ट ढ़ T／ \mathcal{T} Tट का हु
विहा टि तहा｀जा ना
किष T यी
उ $\%$ र रना，प्रकट हा＇ना
ख ची ${ }^{\text { }}$ ला
कु तरना
करतबबा ज ध＇ख’ बा ज विला सिता पू प‘
बु रा चा हने वा ला नु कसा न पहु चा ने की
रख ने वा ला
समक
थT T＇ड．T／अप्य ${ }^{\text {TC }}$
विक्ल प
विभ T_{a} षिए त，सु स्र ${ }^{\prime}$ भि
ज्ञान प्रदक्ष न करने वा
मर जा ना／गा यह हा＇जा ना
दबा ना／अं कु श लगा
पे छे हट ना
आ रा＇${ }^{\top}$ यम T ला
दु लभ $\mathrm{T}^{`}$／कम
ई ठ्य ल लु
कं जू स
सर्सि न बा हरी $\mathscr{T} T$ गसे
ललचा ना
कं जू स
नष्ट हा＇ना ，आ’ झलह

T त

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
SSC CPO SI MOCK TEST - 04 (ANSWER KEY)

1.	(C)	26.	(D)	51.	(B)	76.	(D)	101. (D)	126. (D)	151. (C)	176. (C)
2.	(C)	27.	(C)	52.	(B)	77.	(B)	102. (D)	127. (D)	152. (A)	177. (B)
3.	(D)	28.	(A)	53.	(A)	78.	(D)	103. (C)	128. (C)	153. (B)	178. (D)
4.	(C)	29.	(C)	54.	(A)	79.	(C)	104. (A)	129. (D)	154. (C)	179. (A)
5.	(B)	30.	(C)	55.	(C)	80.	(D)	105. (B)	130. (C)	155. (C)	180. (C)
6.	(C)	31.	(C)	56.	(D)	81.	(A)	106. (B)	131. (C)	156. (C)	181. (C)
7.	(A)	32.	(C)	57.	(B)	82.	(D)	107. (C)	132. (C)	157. (C)	182. (D)
8.	(B)	33.	(D)	58.	(A)	83.	(A)	108. (B)	133. (A)	158. (D)	183. (B)
9.	(B)	34.	(B)	59.	(B)	84.	(A)	109. (C)	134. (C)	159. (C)	184. (A)
10.	(D)	35.	(C)	60.	(B)	85.	(D)	110. (A)	135. (C)	160. (D)	185. (C)
11.	(D)	36.	(B)	61.	(B)	86.	(B)	111. (C)	136. (A)	161. (C)	186. (A)
12.	(B)	37.	(D)	62.	(D)	87.	(B)	112. (B)	137. (B)	162. (D)	187. (B)
13.	(C)	38.	(D)	63.	(B)	88.	(D)	113. (B)	138. (B)	163. (C)	188. (B)
14.	(C)	39.	(C)	64.	(D)	89.	(C)	114. (B)	139. (C)	164. (B)	189. (A)
15.	(A)	40.	(D)	65.	(D)	90.	(B)	115. (C)	140. (D)	165. (A)	190. (C)
16.	(A)	41.	(A)	66.	(D)	91.	(B)	116. (D)	141. (B)	166. (D)	191. (B)
17.	(A)	42.	(D)	67.	(B)	92.	(A)	117. (D)	142. (C)	167. (A)	192. (C)
18.	(D)	43.	(D)	68.	(A)	93.	(D)	118. (B)	143. (A)	168. (C)	193. (B)
19.	(B)	44.	(C)	69.	(D)	94.	(B)	119. (B)	144. (C)	169. (B)	194. (D)
20.	(C)	45.	(C)	70.	(D)	95.	(C)	120. (D)	145. (D)	170. (D)	195. (D)
21.	(A)	46.	(C)	71.	(A)	96.	(A)	121. (C)	146. (C)	171. (B)	196. (A)
22.	(D)	47.	(B)	72.	(A)	97.	(A)	122. (C)	147. (A)	172. (D)	197. (A)
23.	(B)	48.	(A)	73.	(C)	98.	(B)	123. (C)	148. (A)	173. (C)	198. (B)
24.	(C)	49.	(D)	74.	(D)	99.	(C)	124. (A)	149. (C)	174. (C)	199. (D)
25.	(D)	50.	(B)	75.	(D)	100.	(C)	125. (C)	150. (B)	175. (B)	200. (B)

Explanation

151. (C); Change 'passing marks' into 'pass marks' which is a better choice. 'Pass marks' means the minimum marks needed to pass an exam.
152. (A); Add 'at' after 'knocked'. Preposition 'at' is fixed with 'knock', if it means 'to tap the door'.
153. (B); Change 'will' into 'would'. 'Said' the reporting verb is in past so 'reporting speech' is also in 'past'.
154. (C); Change 'much' into 'many'. 'Much' is used for uncountable nouns, 'Many' is used for countable nouns.
155. (C); Change 'of' into 'from'.

Explanation of Questions 171-175

171. Under a cloud In disgrace क्लं कितार्' ना
172. In a pickle In a serious position गं क ा१ र हा लत में हा' ना Have a friendly relationship
मिइT ता वा ले संबं धहा' ना
Leave quietly चु फ्वा पछा' ड Expecting with pleasure खु प१ के स था इं तजा र करना

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

