

Ph: 0955510<u>8888, 09555208888</u>

EXAMPLES 15 FLOOR, OPPOSITE MUKHEREE NAGAR POLICE STATION, DELHI-110009
0.8 × 2 = 1.6 []
10.8, binary equivalent of 0.3 is :
(0.3)₁₀ = (0.01001...)₂
19. (Aft is a four letter word out of which two, 0
and B, are workl.
Thus, binary equivalent of 0.3 is :
(0.3)₁₀ = (0.0101...)₂
19. (Aft is a four letter word out of which two, 0
and B, are workl.
Thus the total number of events = 'C,
Number of ways of selecting 2 letters from 2
The probability of selecting two vowels
=
$$\frac{Favourable number of events}{Total number of events}} = C_{C_{2}}^{2}$$

 $= \frac{1}{6}$
20. (B) Given that $z = 1 + itana$
 $\pi < \alpha < \frac{3\theta}{2}$
 $z = 1 + itana$
 $|z| = \sqrt{1}, tan2\beta$
 $= \sqrt{50c^{2}\beta}$
Given that $z = 1 + itana$
 $|z| = \sqrt{1}, tan2\beta$
 $= \sqrt{50c^{2}\beta}$
21. (D) We know that if the vectors are coplanar,
then ther scalar triple product is zero.
Hence,
 $|2 = -3 + \frac{1}{2} - 2$
 $= \frac{3}{5}$
22. (B) CosC $= \frac{a^{2} + b^{2} - c^{2}}{2x8 \times 10}$
 $= \frac{6^{4} + 10^{-124}}{2 \times 8 \times 10}$
 $= \frac{6^{4} + 10^{-144}}{160}$
 $z = (c) = \frac{1}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{a^{2} + b^{2} - c^{2}}{2x8 \times 10}$
 $z = \frac{(c)}{160}$
 $z = (c) = \frac{1}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2} + \frac{(c)}{2}$
 $z = (c) = \frac{(c)}{2} + \frac{($

Γ.

EXAMPLES INTERPORT PROVIDENT MUMBERIE NAGAR POLICE STATION, DELHI-110009
39. (C) If
$$\vec{a} \cdot \vec{b} = 0$$
, then \vec{a} and \vec{b} are parallel vectors.
If $\vec{a} \times \vec{b} = 0$, then \vec{a} and \vec{b} are parallel vectors.
Since both of the above conditions cannot be satisfied simultaneously, either one of the vectors \vec{a} or \vec{b} should be a null vector.
40. (D) $y = \log \sqrt{\tan x}$
 $\Rightarrow y = \frac{1}{2} \log(\tan x)$
Differentiating the above function with respect to x , we have,
 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\tan x} \times \sec^2 x$
 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\tan x} \times \sec^2 x$
 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\tan x} \times \sec^2 x$
 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\tan x} (\frac{\theta}{4}) \times \sec^2 \frac{1}{k44}$
 $= \frac{1}{2} \times \frac{1}{1} \times \sqrt{2} \hat{s}$
 $= 1$
41. (A) $\tan 15^4 \tan 15^4 = \tan 15^4 \tan 180^4 + 15^4$
 $= \tan 15^4 \tan 15^4 : (-\tan 180^4 + 16^4 + 16^4 + 1 \cos x) \sin x$
 $= \frac{1 - \cos 2 \times 15^4}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2 \times 15^6}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2 \times 15^6}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2 \times 15^6}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2 \times 15^6}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2 \times 15^6}{1 + \cos 2 \times 15^6}$
 $= \frac{1 - \cos 2}{4} \frac{1}{2} \times \frac{1}{4} \frac{1}{3} \frac{1}{2}$
Utiliplying by c to each and every observations.
1. Arithmetic mean $AM = \frac{a + b}{2}$
Multiplying by c to each and every observation.
42. (C) Volume of the sphere is given as $\sqrt{=\frac{4}{3}\pi^{7^4}}$
Here, $\sqrt{=\frac{1}{4}\pi^{7}}$
Here, $\sqrt{=\frac{1}{4}\pi^{7}}$ K
Differentiating with respect to 'V, we have,
 $\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dt}{dt}$
 $= 3 \times \frac{4}{3}\pi^{7^2} \times \frac{dt}{dt}$

EXAMPLE Support Links, 15 Floor, OPPOSITE MUKHENEL FAGAR POLICE STATION, DELHI-110009
EXAMPLANEL STATION, OPPOSITE MUKHENEL FAGAR POLICE STATION, DELHI-110009
The any constant of the state state of a polygon.
In an any vided polygon, there are n starting points and other two neighbouring points.
. The state state state and
$$n(1 - 3)$$
 ways to connect to $(m - 3)$ ways to connect the $(m - 3)$ ways to connect the two neighbouring points.
. The state state tate $n(1 - 3)$ ways to connect the form of diagonal in an n-sided pentagon is $\frac{n(1 - 3)}{2}$.
The state state $n(1 - 3)$ ways to connect to $(m - 3)$ ways to connect the $(m - 3)$ ways to connect the $(m - 3)$.
The state $(m - 3)$ ways to connect the $(m - 3)$ ways the the other $(m - 3)$ ways to the $(m - 3)$ ways to the $(m - 3)$ ways the the model $(m - 3)$ ways the the model $(m - 3)$ ways the the model $(m - 3)$ ways th

Γ.

EXAMPLES 13T FLOOR OPPOSITE MUKHERIZE NAGAR POLICE STATION, DELHI-110099
Thus, the principal value of sec⁻¹
$$\left|\frac{2}{\sqrt{3}}\right|$$
 is $\frac{6}{0}$
118. (B) Consider the series $S_1 = 2 + [\overline{0}] + 10 + 14$
 $+ 18 + 22 + [\overline{20}] + 30 + 24 + 38 + 42 + [\overline{40}] + 10$
 \cdots
Now, consider the second series
 $S_1 = 1 + [\overline{0}] + 11 + 16 + 21 + [\overline{20}] + 31 + 36$
 $+ 41 + [\overline{40}] \dots$
In both the series, common terms are
marked. The number sequence of common terms in S_1 ,
 $S_1 = 2 \text{ setum}$, $Tatism, 12 \text{ setum}}$, 12 setum , 12 setum , 13 setum , 14 setum , 12 setum , 12 setum , 14 setum , 12 setum , 14 setum , 16 setum , 13 setum , 14 setum , 12 setum , $14 \text{ setum$

<u>19</u>

Campus KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA MATHS MOCK TEST- 64 (ANSWER KEY)

		1		
1. (D)	26. (A)	51. (B)	76. (A)	101. (C)
2. (C)	27. (D)	52. (D)	77. (B)	102. (A)
3. (A)	28. (C)	53. (C)	78. (C)	103. (A)
4. (C)	29. (A)	54. (B)	79. (D)	104. (C)
5. (C)	30. (D)	55. (C)	80. (D)	105. (A)
6. (C)	31. (C)	56. (D)	81. (A)	106. (B)
7. (C)	32. (A)	57. (C)	82. (A)	107. (C)
8. (B)	33. (B)	58. (A)	83. (D)	108. (B)
9. (B)	34. (B)	59. (D)	84. (D)	109. (A)
10. (A)	35. (B)	60. (B)	85. (D)	110. (C)
11.(C)	36. (A)	61. (A)	80. (A)	111. (A) 110. (D)
12. (A) 12 (D)	37. (A) 28. (C)	02. (A) 62. (B)	ол. (В)	112. (D) 112 (D)
13. (D) 14 (A)	30. (C)	03. (Б) 64. (А)	80. (C)	113. (D) 114 (B)
$14. (\Lambda)$	39. (C) 40. (D)	04. (A) 65. (B)	89. (D) 90. (A)	114. (D) 115. (C)
16.(C)	40. (D) 41 (A)	66 (D)	91 (C)	116.(C)
17 (B)	42 (C)	67 (B)	92 (B)	110. (n) 117 (D)
18 (A)	43 (B)	68 (A)	93 (D)	118 (B)
19. (A)	44. (D)	69. (D)	94. (A)	119. (A)
20. (B)	45. (C)	70. (C)	95. (C)	120. (D)
21. (D)	46. (A)	71. (D)	96. (A)	
22. (B)	47. (D)	72. (B)	97. (B)	
23. (C)	48. (D)	73. (C)	98. (C)	
24. (C)	49. (D)	74. (A)	99. (A)	
25. (C)	50. (A)	75. (C)	100. (C)	
		1		
NT-4-		1:66		
Note	: If your opini	on aijjer r ego	iraing any ans	wer, please
messo	age the mock to	est and Ouest	ion number to 8	860330003
	lige the moone t			
Note	: If you face	any problem	reaardina resu	lt or marks
			777	
scored	i, piease conto	act : 9313#11	///	