

SSC CPO MOCK TEST - 02 (SOLUTION)

1. (C) They are antonyms.
2. (B) Umpire is a person who makes decisions during the game and makes sure that the rules are obeyed. Similarly, Moderator is a person who makes sure that participants are represented fairly in debate.
3. (B)

4. (A) Fresco is an art of painting that is done on freshly spread moist lime plaster.
5. (D)

6. (A)

7. (B)

8. (C)

9. (C)

10. (D)
(A) $\frac{749}{35}=35$
(B) $\frac{932}{61}=61$
(C) ${\underset{11}{989}=11, ~(1)}_{81}^{9}$
(B) $\underbrace{29}_{2 \underset{\text { wrong }}{539}=\underset{\uparrow}{29}}$

Difference of consecutive digits forms the numbers.
12. (D) Bronze is an alloy and all others are metal.
13. (B) In all others, the numerator is less than the denominator.
14. (C) Except option (C) all are divisible by 3.
15. (A)
(A) $\underset{\underset{L}{-2}}{\mathrm{~N}} \mathrm{~N}+1 \uparrow$

(B)	Y	X
T	$\mathrm{L}+2 \uparrow$	

(C) $\stackrel{N}{\mathrm{~N}} \mathrm{M}$ M O
(D) $\underset{-1}{\mathrm{R}} \mathrm{N}+2 \mathrm{~S}$
16.(C) Remaining are parts of hand.
17. (A)

(B) $\begin{aligned} & \mathrm{J}+2 \mathrm{~L} \\ & \mathrm{~N}+3 \mathrm{O} \mathrm{N}+4 \mathrm{~S}\end{aligned}$
(C) $\begin{gathered}\text { M } \\ +2 \uparrow+3 \\ +2 \uparrow+4 \uparrow\end{gathered}$
(D) $\begin{array}{lcc}\mathrm{C} & \mathrm{E} & \mathrm{H} \\ \mathrm{N}+2 \\ \mathrm{~L} \\ \mathrm{~N}+4 & \mathrm{~L} \\ \uparrow\end{array}$
18. (D) (A) $4+6=1+0$
$10=1$
$1+0=1$
$1+0=1$
$1=1 \quad$ (Correct)
(B) $4+2=3+3$
$6=6 \quad$ (Correct)
(C) $2+0=3+8$
$2=11$
$2=1+1$
$2=2 \quad$ (Correct)
(D) $9+1=1+2$
$10=3$
$1+0=3$
$1 \neq 3 \quad$ (False)
19. (C)

20. (C) Sister of my brother = My sister Father of my sister = My father Daughter of my father = My sister or me
21. (B) Taking the help of common alphabet of both words, we can find the code of STAGE $=* 48 \% 5$
22. (A)

Required distance $\mathrm{DE}=10+7$ Metres

$$
=17 \text { Metres }
$$

Here, $(\mathrm{OD}=\mathrm{CB}$ and $\mathrm{OE}=\mathrm{BF})$
23. (A) According to the universal rule, identity any two situation in which we have only one digit common. In the given dice only one digit is common i.e. (6). Now write the numbers as clockwise from the common number.

Here, we have $6 \rightarrow 4 \rightarrow 1$ in figure (I).
Now, look at the figure (II).
Where We have $6 \rightarrow 3 \rightarrow 5$.
Now, write both of them one above the after as.
From given dice I \& II
6-4-1
2(6) 3-5
Here $4 \underset{\longleftrightarrow}{\text { opp }} 3$
$1 \stackrel{\text { opp }}{\longleftrightarrow} 5$
So, 6 will be the opposite of 2 .
24. (C)

So, the oldest person - Fatima \& the youngest person - Diana
25. (C)

26. (D)
27. (C)

$$
\begin{aligned}
\text { Conclusions } & -\mathrm{I}-\boldsymbol{\checkmark} \\
& -\mathrm{II}-\boldsymbol{\checkmark}
\end{aligned}
$$

28. (A)

29. (C)

30. (D)
I $\left\{\begin{array}{l}\text { Raju } \\ \text { Vasant } \\ \text { Manohar }\end{array}\right.$
II $\left\{\begin{array}{l}\text { Manohar } \\ \text { Jayant } \\ \text { Dutta }\end{array}\right.$
I + II $\left\{\begin{array}{l}\text { Raju } \\ \text { Vasant } \\ \text { Manohar } \\ \text { Jayant } \\ \text { Dutta }\end{array}\right.$
31. (A) 2

32. (D)

| 5 | 11 | 23 | 47 | 95 | 191 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\lfloor 5 \times 2+1 \uparrow \underline{11 \times 2+1} \mathbf{N} 23 \times 2+1$ N $47 \times 2+1$ 个 $\lfloor 95 \times 2+1$ 个

33. (C)

34. (D)

35. (A)
$\frac{\text { field }}{5} \frac{\text { grain }}{4} \frac{\text { rat }}{1} \frac{\text { snake }}{3} \frac{\text { eagle }}{2}$
36. (C)

37. (A)

Similarly,

38. (D) $20+(2)^{2}=24$

$$
30+(3)^{2}=39
$$

Similarly,

$$
40+(4)^{2}=56
$$

39. (C) $2 \times 2=4$

$$
\begin{aligned}
& 4 \times 2=8 \\
& 8 \times 4=32 \\
& 32 \times 8=256
\end{aligned}
$$

1 st digit $\times 2$ nd digit $=3$ rd digit

41. (C) $(1 \times 6)+(5 \times 5)=31$
$(1 \times 9)+(1 \times 1)=10$
$(1 \times 3)+(7 \times 1)=10$
Similarly,
$(1 \times 0)+(8 \times 8)=64$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (B)

There are 10 triangles in the given figure AFO, FBO, BGO, GCO, CHO, EAO, ABO, $\mathrm{BCO}, \mathrm{ABC}$ and ACD .
43. (D)
44. (D)
45. (B)
46. (A
47. (B)
48. (A)
49. (A) CRIME
50. (A) The numerical groups of the PARROT will be -
P-56, 65, 76, 85, 97
A-00, 12, 20, 31, 40
$\mathbf{R}-58,69, \mathbf{7 7}, 88,98$
R-58, 69, 77, 88, 98
O-55, 66, 75, 86, 95
T-59, 67, 79, 89, 99
101. (B) Required number = Number of people taking lemon tea - Number of people taking tea with milk
$=(33 \%-30 \%)$ of $1,00,000$
$=3 \%$ of $1,00,000=3,000$
102. (A) Number of people taking coffee only $=5 \%$ of $1,00,000=5,000$
103. (B) Number of people who do not take coffee or lemon juice
$=$ Total people - Number of people
who take coffee or lemon juice
$=\{100 \%-(5 \%+28 \%)\}$ of $1,00,000$
$=(100 \%-33 \%)$ of $1,00,000$
$=67 \%$ of $1,00,000=67,000$
104. (C) Required number of people taking any type of tea
$=(30 \%+33 \%)$ of $(1,00,000+5,000)$
$=63 \%$ of $1,05,000=66,150$
105. (C) Required angle $=$ (percentage of people who used to take tea with milk $\times 3.6)^{\circ}$ $=(30 \times 3.6)^{\circ}=108^{\circ}$
106. (A) LCM of 3, 4, 5, $6=60$
$\Rightarrow A: B: C: D=\frac{1}{3} \times 60: \frac{1}{4} \times 60: \frac{1}{5} \times 60: \frac{1}{6} \times 60$

$$
=20: 15: 12: 10
$$

Min. number of pens

$$
=20+15+12+10
$$

$=57$
107. (A) $\mathrm{SP}=125 \%$ of 900

$$
\begin{aligned}
& =\frac{125}{100} \times 900=\text { Rs. } 1125 \\
\text { MP } & =? \quad \% \text { discount }=10 \% \\
\text { MP } & =\frac{\mathrm{SP} \times 100}{100-\% \text { discount }} \\
& =\frac{1125 \times 100}{100-10} \\
& =\text { Rs. } 1250
\end{aligned}
$$

108. (D) Let $a+b=\sqrt{33-4 \sqrt{35}}$

$$
\begin{aligned}
(a+b)^{2} & =33-4 \sqrt{35} \\
& =(2 \sqrt{7})^{2}+(\sqrt{5})^{2}-2.2 \sqrt{7} \times \sqrt{5} \\
& =(2 \sqrt{7}-\sqrt{5})^{2} \\
\Rightarrow a+b & = \pm(2 \sqrt{7}-\sqrt{5})
\end{aligned}
$$

109. (D) Speed of the person $=30 \mathrm{~m} / \mathrm{min}$.
$=\frac{30}{60}=\frac{1}{2} \mathrm{~m} / \mathrm{s}$.
$\frac{2 r}{\frac{1}{2}}+30=\frac{2 \pi r}{\frac{1}{2}}$
$4 r+30=4 \pi r$
$r=\frac{7}{2}=3.5 \mathrm{~m}$.
110. (B)

In $\triangle \mathrm{BDE}$,
$A \& O$ are midpoint of $\mathrm{EB} \& \mathrm{BD}$
$\Rightarrow \mathrm{AO} \square \mathrm{ED} \Rightarrow \mathrm{AC} \quad \square \mathrm{DE}$ (by using midpoint theorem)
$\Rightarrow \mathrm{ED} \perp \mathrm{BD}(\because \mathrm{AC} \perp \mathrm{BD})$
In $\triangle \mathrm{ACF}$
$B \& O$ are midpoint of $A F \& A C$
$\Rightarrow \mathrm{BO} \square \mathrm{CF} \Rightarrow \mathrm{BD} \square \mathrm{CF}$ \qquad
then, (1) \& (2)
$\mathrm{ED} \perp \mathrm{CF}$
111. (B) Let $x \mathrm{~m}$ be the length of the square field.
In $\triangle \mathrm{APC}$

$\frac{\mathrm{PC}}{\mathrm{AC}}=\tan 60^{\circ}$
$\frac{P C}{\sqrt{2 x}}=\sqrt{3}$
$P C=\sqrt{6} x \mathrm{~m}$.
In $\triangle \mathrm{PCE}$
$\tan 30^{\circ}=\frac{\mathrm{PC}}{\mathrm{CE}}$
$\frac{1}{\sqrt{3}}=\frac{\sqrt{6 x}}{\sqrt{2} x+80}$
$\sqrt{18} x=\sqrt{2} x+80$
$3 \sqrt{2} x-\sqrt{2} x=80$
$x=\frac{80}{2 \sqrt{2}}=\frac{20 \times \sqrt{2} \times \sqrt{2}}{\sqrt{2}}=20 \sqrt{2} \mathrm{~m}$
length of the field $=20 \sqrt{2} \mathrm{~m}$.
112. (C) $\cos x=1-\cos ^{2} x=\sin ^{2} x$
$=\sin ^{12} x+3 \sin ^{10} x+3 \sin ^{8} x+\sin ^{6} x-1$
$=\cos ^{6} x+3 \cos ^{5} x+3 \cos ^{4} x+\cos ^{3} x-1$
$=\left(\cos ^{2} x\right)^{3}+3\left(\cos ^{2} x\right)^{2} \cos x+3\left(\cos ^{2} x\right)^{2}+$
$\cos ^{2} x \cdot \cos x-1$
$=(1-\cos x)^{3}+3(1-\cos x)^{2} \cos x+3(1-$ $\cos x)^{2}+\cos x(1-\cos x)-1$
$=1-\cos ^{3} x-3 \cos x+3 \cos ^{2} x+3\left(1+\cos ^{2} x\right.$
$-2 \cos x) \cos x+3\left(1+\cos ^{2} x-2 \cos x\right)$
$+\cos x-\cos ^{2} x-1$
$=1-\cos ^{3} x-3 \cos x+3 \cos ^{2} x+3 \cos x+$
$3 \cos ^{3} x-6 \cos ^{2} x+3+3 \cos ^{2} x-6 \cos x+\cos x$
$-\cos ^{2} x-1$
$=2 \cos ^{3} x-\cos x^{2}-5 \cos x+3$
$=2 \cos ^{2} x \cdot \cos x-\cos ^{2} x-5 \cos x+3$
$=2(1-\cos x) \cos x-\cos ^{2} x-5 \cos x+3$
$=2 \cos x-2 \cos ^{2} x-\cos ^{2} x-5 \cos x+3$
$=-3 \cos x-3 \cos ^{2} x+3$
$=-3\left(\cos x+\cos ^{2} x\right)+3$
$=-3(1)+3=0$
113. (B) Part of the work completed after 64 days $=\frac{2}{3}$
Remaining work $=1-\frac{2}{3}-\frac{1}{3}$
$\because \frac{2}{3}$ work is done by 120 men in 64 days $\therefore 1$ work is done by 120 men in $64 \times \frac{2}{3}=$ 96 day
\therefore In 32 days, $\frac{1}{3}$ work is done by 120 men
In 1 day, $\frac{1}{3}$ work is done by 120×32

In 60 days, $\frac{1}{3}$ work is done by $\frac{120 \times 32}{60}$
$=64 \mathrm{men}$.
No. of men discharged $=120-64=56 \mathrm{men}$.
114. (B) $x^{2}+y^{2}+z^{2}-2(x-y-z)+3=0$

$$
\left(x^{2}-2 x+1\right)+\left(y^{2}+2 y+1\right)+\left(z^{2}+2 z+1\right)=0
$$

$$
\Rightarrow(x-1)^{2}+(y+1)^{2}+(z+1)^{2}=0
$$

It is possible only when $x-1=0, y+1=0$
\& $z+1=0$
$\Rightarrow x, y, z=1,-1,-1$
Now,
$2 x-3 y+4 z$
$=2 \times 1-3(-1)+4(-1)$

$$
2+3-4=1
$$

115. (B) Put $\mathrm{a}=\cos x \& \mathrm{~b}=\sin x$

Now, $\cos x \sin \theta+\sin x \cos \theta=c$

$$
\begin{aligned}
& \quad\left[\because \mathrm{a}^{2}+\mathrm{b}^{2}=1\right] \\
& \sin (x+\theta)=c
\end{aligned}
$$

consider $a \cos \theta-b \sin \theta$
$=\cos x \cos \theta-\sin x \sin \theta$
$=\cos (x+\theta)$
$=\sqrt{1-\sin ^{2}(x+\theta)}$
$=\sqrt{1-c^{2}}$
$=\sqrt{a^{2}+b^{2}-c^{2}}$
Hence, $a \cos \theta-b \sin \theta=\sqrt{a^{2}+b^{2}-c^{2}}$
116. (B) Speed of policeman $=\frac{1}{8} \mathrm{~km} /$ minute

$$
\begin{aligned}
& =\frac{1000}{8} \mathrm{~m} / \text { minute } \\
& =\frac{1}{10} \mathrm{~km} / \text { minute } \\
& =\frac{1000}{10} \mathrm{~m} / \text { minute } \\
& =100 \mathrm{~m} / \text { minute }
\end{aligned}
$$

Speed of thief

So,
Time taken by policeman to overpower the thief

$$
\begin{aligned}
& =\frac{\text { Initial distance between them }}{\text { Speed of (Policeman }- \text { thief })} \\
& =\frac{100 \mathrm{~m}}{(125-100) \mathrm{m} / \text { minute }} \\
& =4 \text { minutes }
\end{aligned}
$$

So,
the distance covered by the thief before he is over-powered

$$
\begin{aligned}
& =(100 \mathrm{~m} / \text { minute }) \times 4 \text { minutes } \\
& =400 \text { meter }
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
117. (D) Total age of Ram and his two children

$$
\begin{aligned}
& =(17 \times 3) \mathrm{yrs} . \\
& =51 \mathrm{yrs} .
\end{aligned}
$$

\& Total age of Ram's wife \& the two children

$$
\begin{aligned}
& =(16 \times 3) \mathrm{yrs} \\
& =48 \mathrm{yrs} .
\end{aligned}
$$

So, Difference between the age of Ram and his wife $=(51-48)$ yrs.

$$
=3 \mathrm{yrs} .
$$

So,
Age of Ram's wife $=$ Ram's age -3 yrs.
$=33 \mathrm{yrs}-3 \mathrm{yrs}$
$=30 \mathrm{yrs}$.
118. (A)

Discount	No. of kites sold	No. of free kites
5\%	19	1
$\Rightarrow 10 \%$	19	2
$\Rightarrow 10 \%$	27	$\frac{2}{19} \times 27$

119. (A) 8 men $=12$ boys
$\Rightarrow 6$ boys $=4 \mathrm{men}$
So,

$$
\begin{aligned}
20 \text { men }+6 \text { boys } & =20 \text { men }+4 \text { men } \\
& =24 \text { men }
\end{aligned}
$$

Now,
$\because 8$ men $\xrightarrow{\text { complete the work in }} 16$ days

$$
\begin{aligned}
\therefore 24 \text { men do complete work in } & \frac{16 \times 8}{24} \\
& =5 \frac{1}{3} \text { days }
\end{aligned}
$$

120. (B) Part of the trip travelled by train

$$
\begin{aligned}
& =1-\left(\frac{2}{5}+\frac{1}{3}\right) \\
& =1-\frac{11}{15}=\frac{4}{15} \text { part }
\end{aligned}
$$

Now, $\frac{2}{5}$ of the total distance $=1200 \mathrm{~km}$
So, $\frac{4}{15}$ of the total distance

$$
=\left(1200 \times \frac{5}{2} \times \frac{4}{15}\right) \mathrm{km}=800 \mathrm{kms}
$$

121. (D) $\frac{a}{b}=\frac{4}{5}$ and $\frac{b}{c}=\frac{15}{16}$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}: \mathrm{b}: \mathrm{c}=12: 15: 16 \\
& \Rightarrow \mathrm{a}: \mathrm{c}=12: 16 \\
&=3: 4
\end{aligned}
$$

So,

$$
\begin{align*}
\frac{18 c^{2}-7 a^{2}}{45 c^{2}+20 a^{2}} & =\frac{18 \times(4)^{2}-7 \times(3)^{2}}{45 \times(4)^{2}+20 \times(3)^{2}} \\
& =\frac{288-63}{720+180}=\frac{225}{900}=\frac{1}{4} \tag{i}
\end{align*}
$$

122. (B) $\mathrm{x}^{2}+\mathrm{x}+1$

Also, $\left(x+\frac{1}{2}\right)^{2}+q^{2}=x^{2}+x+\frac{1}{4}+q^{2}$

$$
\begin{equation*}
=x^{2}+x+\frac{1}{4}+q^{2} \tag{ii}
\end{equation*}
$$

On comparing (i) and (ii),
We get,

$$
\begin{array}{rlrl}
& & \frac{1}{4}+q^{2} & =1 \\
\Rightarrow & \mathrm{q}^{2} & =1-\frac{1}{4}=\frac{3}{4} \\
\Rightarrow & & \mathrm{q} & = \pm \frac{\sqrt{3}}{2}
\end{array}
$$

123. (B)

$\triangle A B C$ is a scalene triangle.
$\Rightarrow \quad \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
and
$\mathrm{P} \rightarrow$ position of vertical pole.
ATQ,
angle of elevation of the top of the pole from each corner of the park ($\mathrm{A}, \mathrm{B} \& \mathrm{C}$)
is same.
The above condition is only possible when $\mathrm{AP}=\mathrm{BP}=\mathrm{CP}$
$\Rightarrow \mathrm{P}$ must be circumcentre.
124. (A) Let $\mathrm{x}=\mathrm{CP}$ of each cow So,
$(20 x \times 0.15)+(40 x \times 0.19)+(16 x \times 0.25)$
$=$ Rs. 6570
or, $x\{(20 \times 0.15)+(40 \times 0.19)+(16 \times 0.25)\}$
$=$ Rs. 6570
or, $x(3+7.6+4)=$ Rs. 6570
$\Rightarrow x=$ Rs. $\frac{6570}{14.6}=$ Rs. 450
125. (C)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\left[\angle A B O=\angle A C O=90^{\circ} \because\right.$ Angle between tangent and radius $=90^{\circ}$]

$$
\begin{aligned}
\mathrm{AB}=\mathrm{AC} & =\sqrt{12^{2}-3^{2}} \\
& =\sqrt{144-9}=\sqrt{135} \\
& =3 \sqrt{15}
\end{aligned}
$$

Now,
Area of quadrilateral ABOC
$=$ Area of $(\triangle A B O+\triangle A C O)$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 3 \sqrt{15} \times 3\right) \times 2 \\
& =9 \sqrt{15} \text { sq. cm. }
\end{aligned}
$$

126. (B) $\tan 21^{\circ} \tan 47^{\circ} \tan 43^{\circ} \tan 69^{\circ}$
$=\tan 21^{\circ} \tan 47^{\circ} \frac{1}{\cot 43^{\circ}} \times \frac{1}{\cot 69^{\circ}}$
$=\frac{\tan 21^{\circ} \tan 47^{\circ}}{\cot 43^{\circ} \cot 69^{\circ}}$
$=\frac{\tan \left(90-69^{\circ}\right) \tan \left(90^{\circ}-43^{\circ}\right)}{\cot 43^{\circ} \cot 69^{\circ}}$
$=\frac{\cot 69^{\circ} \cot 43^{\circ}}{\cot 43^{\circ} \cot 69^{\circ}}=1$
127. (A) Anil's profit i.e. difference of C.I. \& S.I.
in 2 years $=\frac{P R^{2}}{100^{2}}$
$\left\{\begin{array}{l}\text { Where } \\ \mathrm{P} \rightarrow \text { Principal } \\ \mathrm{R} \longrightarrow \text { Common Rate of Interest p.a. }\end{array}\right\}$

$$
=\frac{30000 \times 25}{100 \times 100}=₹ 75
$$

128. (B) $\mathrm{A}: \mathrm{B}$ and $\mathrm{B}: \mathrm{C}$

$$
\Rightarrow \begin{array}{rlrr}
4: 5 & & 2: 3 \\
\mathrm{~A} & : & \mathrm{B}^{2}: & \mathrm{C} \\
4 \times 2 & : & 5 \times 2 & : \\
8 & : & 10 & : \\
\hline
\end{array}
$$

Now, A has ₹ 800
$\Rightarrow \quad 8 \equiv ₹ 800$
So, $(A+B+C)$ i.e. $(8+10+15)$
i.e. $33 \equiv ₹ 3300$
129. (D) Speed $=\frac{\text { Distance }}{\text { Time }}$

So, here,
Speed of train $=\frac{\text { Length of train }}{\text { Time to cross the tree }}$
$=\frac{75 \mathrm{~m}}{20 \text { seconds }}=\left(\frac{15}{4}\right) \mathrm{m} /$ second
$=\left(\frac{15}{4} \times \frac{18}{5}\right) \mathrm{km} /$ hour $=13.5 \mathrm{~km} /$ hour
130. (A)

Line: $x+y=2$
at $x=0, \mathrm{y}=2$ i.e. $(0,2)$
at $y=0, x=2$ i.e. $(2,0)$
Line: $x+2 y=4$
at $x=0, \mathrm{y}=2$ i.e. $(0,2)$
at $y=0, x=4$ i.e. $(4,0)$

So, Required area of $\triangle A B C$
$=\frac{1}{2} \times$ base \times perpendicular height
$=\frac{1}{2} \times(4-2) \times 2=2$ sq. unit
131. (D)
$\begin{array}{ccccccc}A & : & B & \text { and } & B & : & C \\ 5 & : & 3 & & 4 & : & 5\end{array}$
So, A : B : C
$5 \times 4: 3 \times 4: 3 \times 5$
So, Runs scored by B

$$
=\frac{12}{(20+12+15)} \times 564=144
$$

132. (A) 125% of $x=100$

$$
\begin{aligned}
& \Rightarrow \quad \frac{125}{100} \times x=100 \\
& \Rightarrow \quad x=\frac{100 \times 100}{125}=80
\end{aligned}
$$

133. (D) Required percentage increase

$$
\begin{aligned}
& =\left(100 \times \frac{130}{100} \times \frac{120}{100}-100\right) \% \\
& =(156-100) \%=56 \%
\end{aligned}
$$

134. (C) Area swept by the 7 cm long minute hand in 30 minutes.

$$
\begin{aligned}
& =\frac{\pi \times(7)^{2}}{2} \mathrm{~cm}^{2} \\
& =\frac{22 \times 7 \times 7}{7 \times 2} \mathrm{~cm}^{2} \\
& =77 \mathrm{~cm}^{2}
\end{aligned}
$$

135. (D) Let $x=$ true discount

So, $216=x+8 \%$ of x
$=x+0.08 x$
$=1.08 x$
$x=\frac{216}{1.08}$
= Rs. 200
136. (B) Time difference between 9 : 00 AM \& 2 : $00 \mathrm{PM}=5$ hours

Temperature difference between

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$21^{\circ} \mathrm{C} \& 36^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =36^{\circ} \mathrm{C}-21^{\circ} \mathrm{C} \\
& =15^{\circ} \mathrm{C}
\end{aligned}
$$

Now,
Time difference between 9 : 00 AM \&
12: 00 Noon $=3$ hours
Now,
In 5 hours $\xrightarrow{\text { temperature difference }} 15^{\circ} \mathrm{C}$
So, In 3 hours $\xrightarrow{\text { temperature difference }}\left(\frac{15}{5} \times 3\right)^{\circ} \mathrm{C}$ $=9^{\circ} \mathrm{C}$
So, Temperature at noon $=21^{\circ} \mathrm{C}+9^{\circ} \mathrm{C}$ $=30^{\circ} \mathrm{C}$
137. (D) Let the two numbers are a and b, where $\mathrm{a}>\mathrm{b}$.
So, ATQ, $\quad a-b=3$
and $\quad a^{2}-b^{2}=39$
Now, $\quad a^{2}-b^{2}=(a-b)(a+b)$
i.e. $39=3 \times(a+b)$
$\Rightarrow \quad a+b=\frac{39}{3}=13$
Now, (i) + (ii) $\Rightarrow \mathrm{a}-\mathrm{b}=3$

$$
\begin{aligned}
a+b & =13 \\
2 a & =16 \\
\Rightarrow a & =8
\end{aligned}
$$

\Rightarrow The larger number $=8$
138. (D)

Cost to A $\xrightarrow{10 \% \uparrow}$ Cost to B $\xrightarrow{5 \% \uparrow}$ Cost to C
\Rightarrow cost to $\mathrm{A} \times \frac{110}{100} \times \frac{105}{100}=$ Rs. 462
\Rightarrow cost to $A=$ Rs. $\frac{462 \times 100 \times 100}{110 \times 105}=$ Rs. 400
139. (B) Perimeter of a semi-circular area $=18 \mathrm{~cm}$

perimeter of semi-
circular area $=18 \mathrm{~cm}$
$\Rightarrow \frac{2 \pi r}{2}+2 r=18 \mathrm{~cm}$
$\Rightarrow r(\pi+2)=18 \mathrm{~cm}$
$\Rightarrow \mathrm{r}=\frac{18}{\pi+2} \mathrm{~cm}=\frac{18}{\frac{22}{7}+2} \mathrm{~cm}=\frac{18 \times 7}{22+14} \mathrm{~cm}$
$=\frac{18 \times 7}{36} \mathrm{~cm}=3 \frac{1}{2} \mathrm{~cm}$
140. (B) Length of edge of a cube
$=\sqrt[3]{\text { volume of cube }}$
$=\sqrt[3]{3.375 m^{3}}$
$=1.5 \mathrm{~m}$
141. (D)

Let $A B$ be a pillar of height ' h ' mtr.
In $\triangle A B C$,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{h}{x+10} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{h}{x+10} . \tag{i}
\end{align*}
$$

In $\triangle \mathrm{ABD}, \tan 45^{\circ}=\frac{h}{x}$

$$
\begin{equation*}
\Rightarrow 1=\frac{\mathrm{h}}{x} \Rightarrow \mathrm{~h}=x \tag{ii}
\end{equation*}
$$

\qquad
From (i) \& (ii)

$$
\frac{1}{\sqrt{3}}=\frac{h}{h+10}
$$

or, $\sqrt{3} h=h+10$
or, $h(\sqrt{3}-1)=10$
$\Rightarrow \mathrm{h}=\frac{10}{\sqrt{3}-1}$

$$
\begin{aligned}
& =\frac{10}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{10(\sqrt{3}+1)}{2}=5(\sqrt{3}+1) \mathrm{mtr}
\end{aligned}
$$

142. (C) Given, speed of boat $\left(\mathrm{S}_{\mathrm{B}}\right)=5 \mathrm{~km} / \mathrm{hr}$ Let speed of current $\left(\mathrm{S}_{\mathrm{C}}\right)=x \mathrm{~km} / \mathrm{hr}$ Now, As distance is same,
$\Rightarrow \frac{\text { speed in still water }}{\text { upstream speed }}=\frac{\text { upstream time }}{\text { time in still water }}$
ie. $\frac{\mathrm{S}_{\mathrm{B}}}{\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{C}}}=3$
ie. $\frac{5}{5-x}=3$
ie. $5=15-3 x$
$\Rightarrow 3 x=10$
$\Rightarrow x=3.33 \mathrm{~km} / \mathrm{hr}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
143. (D) Percentage of candidates failed in at least one subject $=45 \%+54 \%-18 \%$ = 81 \%
\Rightarrow Percentage of candidates who passed in both the subjects $=100 \%-81 \%=19 \%$
144. (B) Filling tap $\longrightarrow 6 \mathrm{hrs}$.

Empty tap $\longrightarrow 15 \mathrm{hrs}$.
Time taken by both the taps (when open simultaneously) to fill the $\frac{4}{5}$ th part of cistern $=\frac{4}{5}\left(\frac{6 \times 15}{15-6}\right) \mathrm{hrs}=\frac{4}{5} \times \frac{90}{9}=8 \mathrm{hrs}$ 145. (D) Let, the length of the bus $=x$ metre Condition I (when moving in opposite directions)
We have, $\frac{L_{T}+L_{B}}{\mathrm{~S}_{\mathrm{T}}+\mathrm{S}_{\mathrm{B}}}=4$ seconds
ie. $\frac{180 \mathrm{~m}+x \mathrm{~m}}{135 \mathrm{~km} / \mathrm{hr}+45 \mathrm{~km} / \mathrm{hr}}=4$ seconds
or, $\frac{(180+x) \mathrm{m}}{180 \mathrm{~km} / \mathrm{hr}}=4$ seconds
or, $(180+x) \mathrm{m}=(180 \mathrm{~km} / \mathrm{hr}) \times 4$ seconds
$=\left(180 \times \frac{5}{18}\right) \mathrm{m} /$ second $\times 4$ seconds
$=50 \mathrm{~m} /$ second $\times 4$ second
$=200 \mathrm{~m}$
$\Rightarrow x=200 \mathrm{~m}-180 \mathrm{~m}$
$=20 \mathrm{~m}$
\Rightarrow Length of bus $=20 \mathrm{~m}$ \{This value of length of the bus also satisfied the 2 nd condition (of 8 seconds)\}
146. (D)

$$
\left[\begin{array}{c}
\mathrm{M} \rightarrow \text { Mid-point of line AB } \\
\mathrm{N} \rightarrow \text { Mid-point of line } \mathrm{BC}
\end{array}\right]
$$

CD $=22 \mathrm{~cm}-16 \mathrm{~cm}$

$$
=6 \mathrm{~cm}
$$

$$
\mathrm{AD}=6 \mathrm{~cm}+2 \mathrm{~cm}
$$

$$
=8 \mathrm{~cm}
$$

So,

$$
\begin{aligned}
A C & =\sqrt{(C D)^{2}+(A D)^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64}=10 \mathrm{~cm}
\end{aligned}
$$

So, from the Mid-point theorem Length of line segment MN

$$
\begin{aligned}
& =\frac{1}{2} \times \text { length of line AC } \\
& =\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}
\end{aligned}
$$

147.(A)

Total Area of the road $=\{(110 \times 75)-(100 \times 65)\} \mathrm{m}^{2}$
$=8250-6500 \mathrm{~m}^{2}=1750 \mathrm{~m}^{2}$
So, Required cost
$=1750 \times 17.50=$ Rs. 30625
148. (D) There is maximum gap between 1998 and 2000 for state U. And maximum percentage increase is also for state U .
149. (B) Required less \%

$$
=\frac{105-70}{105} \times 100=33 \frac{1}{3} \%
$$

150. (C) Avg. production

$$
=\frac{80+60+25+50+50+80+80}{7}
$$

$=60.72$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC CPO MOCK TEST - 02 (ANSWER KEY)

1. (C)	26. (D)	51. (C)	76. (A)	101. (B)	126. (B)	151. (B)	176. (B)
2. (B)	27. (C)	52. (A)	77. (B)	102. (A)	127. (A)	152. (C)	177. (B)
3. (B)	28. (A)	53. (A)	78. (B)	103. (B)	128. (B)	153. (B)	178. (B)
4. (B)	29. (C)	54. (A)	79. (D)	104. (C)	129. (D)	154. (B)	179. (D)
5. (A)	30. (D)	55. (C)	80. (D)	105. (C)	130. (A)	155. (C)	180. (B)
6. (D)	31. (A)	56. (C)	81. (A)	106. (A)	131. (D)	156. (D)	181. (B)
7. (A)	32. (D)	57. (A)	82. (A)	107. (A)	132. (A)	157. (B)	182. (C)
8. (B)	33. (C)	58. (B)	83. (B)	108. (D)	133. (D)	158. (A)	183. (D)
9. (C)	34. (D)	59. (A)	84. (A)	109. (D)	134. (C)	159. (B)	184. (A)
10. (C)	35. (A)	60. (A)	85. (A)	110. (B)	135. (D)	160. (C)	185. (B)
11. (D)	36. (C)	61. (B)	86. (B)	111. (*)	136. (B)	161. (B)	186. (C)
12. (D)	37. (A)	62. (A)	87. (A)	112. (C)	137. (D)	162. (B)	187. (D)
13. (B)	38. (D)	63. (C)	88. (C)	113. (B)	138. (D)	163. (A)	188. (A)
14. (C)	39. (C)	64. (D)	89. (A)	114. (B)	139. (B)	164. (D)	189. (B)
15. (A)	40. (A)	65. (C)	90. (D)	115. (B)	140. (B)	165. (D)	190. (D)
16. (C)	41. (C)	66. (A)	91. (C)	116. (B)	141. (D)	166. (B)	191. (D)
17. (A)	42. (B)	67. (B)	92. (B)	117. (D)	142. (C)	167. (B)	192. (A)
18. (D)	43. (D)	68. (B)	93. (B)	118. (A)	143. (D)	168. (C)	193. (D)
19. (C)	44. (D)	69. (C)	94. (A)	119. (A)	144. (B)	169. (A)	194. (D)
20. (C)	45. (B)	70. (D)	95. (C)	120. (B)	145. (D)	170. (C)	195. (A)
21. (B)	46. (A)	71. (C)	96. (A)	121. (D)	146. (D)	171. (B)	196. (B)
22. (A)	47. (B)	72. (B)	97. (C)	122. (B)	147. (A)	172. (A)	197. (A)
23. (B)	48. (A)	73. (B)	98. (A)	123. (B)	148. (D)	173. (B)	198. (D)
24. (C)	49. (A)	74. (B)	99. (A)	124. (A)	149. (B)	174. (A)	199. (C)
25. (C)	50. (A)	75. (A)	100.(D)	125. (C)	150. (C)	175. (C)	200. (C)

151.(B); When the reported speech is a question of 'wh family', no conjuction is used. Hence remove 'that'.
152.(C); Prevented takes preposition 'from'. 'from' will come in place of 'against'.
153.(B); 'That' is used in place of 'as'. Because here so...... that is the correct correlative that must be used.
154.(B); When two subjects are joined by 'along with' the verb agrees with the 1st subject. Hence 'wife' (singular subject) will take 'goes' (singular verb)
155.(C); Generally when a sentence starts with past, it ends in past. So 'does' will change into 'did'

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

