SSC CPO SI MOCK TEST－ 01 （SOLUTION）

1．（A）

Similarly，

2．（A）

$\stackrel{64}{ }^{64} \times 8 \quad \uparrow$
3．（C）Crocodile，Snake and Lizard all belong to Crawling Family where as Penguin does not belong to this family．
4．（A）Both Absent and Present are opposite to each other．Similarly，both against and for are opposite to each other．
5．（D）As we know single means one couple means two．

6．（A） | 841 | | | |
| :---: | :---: | :---: | :---: |
| | \downarrow | | |
| | | | |
| | | | |
| | | | |

$29^{2}: 19^{2}$
Similarly，

1225	$:$	625	
\downarrow		\downarrow	
35^{2}	$:$	25^{2}	$[\therefore 29-19=35-25]$

8．（B）As Judge gives the Judgment．Similarly， Doctor gives Diagnosis．
9．（C）As Air has maximum value of Nitrogen element．Similarly，Land has maximum value of Oxygen element．
10．（D）As 11 and 19 have two prime numbers（13， 17）between them Similarly，
53 and 67 have two prime number $(59,61)$ between them
11．（A）Extranet，Wide Area Network and Internet are the type of network which covers whole world．But Local Area Network is a type of network which covers a small town or a big office．
12．（D）All value has two even and two odd numbers except 1282 （it has three even numbers）．
13．（D）Sum of all digits of the numbers is 19 except 4566 （it＇s sum is 21 ）．
14．（C）Except AEIO，others have consonant．
15．（C）Except Fluorine，others are metal

16．（B）Difference between all values are
（i） $29-16=13$ ，
（ii） $143-157=-14$
（iii） $276-263=13$
（iv） $195-182=13$
Except（ii）others have same value of difference
17．（D） 249 is a non－prime number，while 211 ， 223， 241 are prime numbers．
18．（D）For AXDU
A 山睤posite $x \longrightarrow x$
$\begin{array}{lcc}1 & 26-2 & 24 \\ D \text { 山怆posite } & W \longrightarrow U\end{array}$
$4 \quad 23-2 \quad 21$
Similarly，CULM and DUIP have same relation except HRPJ．
19．（A）Eminase \rightarrow Eminence \rightarrow Eminencia \rightarrow Eminent

20．（C）Position of Sonu＝

$=50-33+1=18^{\text {th }}$ position from behind．
21．（A）-2
$0^{2}-2 \quad 2^{2}-2 \quad 4^{2}-2 \quad 6^{2}-2 \quad 8^{2}-2$
22．（D）
$1^{2}-1 \quad 4^{2}-1 \quad 7^{2}-1 \quad 10^{2}-1 \quad 13^{2}-1$
23．（B） $5 \quad 23 \quad 90 \quad 268 \quad 534$
24．（A）

$\begin{array}{ccccc} \\ \downarrow & \downarrow & 18 & 48 & 100 \\ & \downarrow & \downarrow & \downarrow\end{array}$

$$
1^{3}-1^{2} 2^{3}-2^{2} 3^{3}-3^{3} 4^{3}-4^{2} 5^{3}-5^{2}
$$

$$
\begin{array}{cc}
180 & 294 \\
\downarrow & \downarrow \\
6^{3}-6^{2} & 7^{3}-7^{2}
\end{array}
$$

25．（D）

26．（D）

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
27. (B) $9 \times 8-24=\frac{48}{2}=24$
$6 \times 9-6=\frac{48}{2}=24$
$6 \times 12-24=\frac{48}{2}=24$
$16 \times 29-416=\frac{48}{2}=24$
28. (C) $\left|-\frac{27,25}{2}\right| \times 5=130$
$\left|-\frac{24,22}{2}\right| \times 5=115$
$\left|-\frac{20,14}{2}\right| \times 5=85$
29. (A) $13 \times 9-24=93$
$45 \times 14-24=606$
$15 \times 15-24=201$
30. (D) 'RENT' Word is made by using the letters of 'ENTERPRENEUR’
31. Only son of Amar's mother's father \rightarrow Amar's maternal uncle.
So, the girl's maternal uncle is Amar's maternal uncle. Thus the girl's mother is Amar's Aunt.
32.(A) 1 January $2006 \rightarrow$ Saturday

1 Jan $2007 \rightarrow$ Sunday
1 Jan $2008 \rightarrow$ Monday
1 Jan $2009 \rightarrow$ Wednesday
(due to leap year).
1 January $2010 \rightarrow$ Thursday
33. (A) As $4 \times 2-1 \times 3=8-3=5$

Similarly,
$5 \times 3-4 \times 2=15-8=7$
34. (C) P E N C A R D
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
1651431154
and

Similarly,

$$
\begin{array}{cccccc}
\mathrm{T} & \mathrm{~W} & \mathrm{E} & \mathrm{~L} & \mathrm{~V} & \mathrm{E} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
20 & 23 & 5 & 12 & 22 & 5
\end{array}
$$

35. (B)
36. (A)
37. (D)

Neither (i) nor (ii) follows.
38. (B)

1. False
2. True

Only (ii) conclusion follows.
39. (A)

AOF, AOE, BOF, BOG, AOB, EOD, HOD, $\mathrm{AOD}, \mathrm{COH}, \mathrm{GOC}, \mathrm{DOC}, \mathrm{GOB}, \mathrm{ADC}, \mathrm{ABC}$, $\mathrm{ADB}, \mathrm{BDC}$.
40. (C)
41. (A)
42. (B)
43. (D)
44. (C) As

Similarly,

45. (B)
46. (A) $3 \times 9-45 \div 5$
$=3 \times 9-9$
= $27-9=8$
47. (A)
48. (A) abcddabccdabbcdaabcd
49. (B)
50. (D)
101. (D) Given series is an Arithmetic Progression series
So, 3, 6, 9 243 having same common difference (d) to find the number of terms (n)

We know,

$$
l=a+(n-1) d
$$

last term first term

$$
\begin{aligned}
243 & =3+(n-1) 3 \\
240 & =(n-1) 3 \\
n-1 & =80 \\
n & =81
\end{aligned}
$$

Then $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(a+l)$
Sum of series $=\frac{81}{2}(3+243)=\frac{87}{2} \times 123$ $81 \times 123=9963$
102. (A) $\frac{\sin \rho-\cos \rho}{\sin \rho \cos } \quad$ put $\theta=60$
$\frac{\frac{\sqrt{3}}{2}-\frac{1}{2}}{\frac{\sqrt{3}}{2}, \frac{1}{2}}=\frac{\sqrt{3}-1}{\sqrt{3}, 1}$
$=\frac{\sqrt{3}-1}{\sqrt{3}, 1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3,1-2 \sqrt{3}}{\left.) \sqrt{3} *^{2}-\right) 1 *^{2}}$
$=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3}$
103. (A) We know that
$1+\cos \theta=2 \cos ^{2} \frac{\rho}{2}$
$1-\cos \theta=2 \sin ^{2} \frac{\rho}{2}$
Put these value in equation
$\sqrt{\frac{1, \cos \rho}{1-\cos \rho}}=\sqrt{\frac{2 \cos ^{2} \frac{\rho}{2}}{2 \sin ^{2} \frac{\rho}{2}}}=\tan \frac{\rho}{2}$
104. (C)

Property $\frac{A D}{D C}=\frac{A B}{B C}$ is a property of angle bisector
So,

$$
\begin{aligned}
\angle \mathrm{DBA} & =\angle \mathrm{CBD} \\
\angle \mathrm{DBA} & =180^{\circ}-60^{\circ}-80^{\circ} \\
& =40^{\circ}
\end{aligned}
$$

then,
$\angle \mathrm{BCA}=180^{\circ}-\angle \mathrm{CBA}-\angle \mathrm{CAB}$

$$
\begin{aligned}
& =180^{\circ}-80^{\circ}-60^{\circ} \\
& =40^{\circ}
\end{aligned}
$$

105. (C) Unit's place of series will be 'Zero' because $5 \times$ even $=$ Number that contains last digit as zero
In given series
$55 \times 84=0$ last digit.
106. (A) In I ${ }^{\text {st }}$ condition profit $=5 \%$

Let C. P (in percentage) $=100 \%$
S.P (in percentage) $=105 \%$

In 2 nd condition
C.P (according to Ist and IInd condition)
= 90\%
S.P (according to IInd condition)
$=\frac{90 \propto 130}{100}$
= 117%
S.P in 2 nd condition - S.P in Ist condition $=3300$
$117 \%-105 \%=3300$
$12 \%=3300$
$1 \%=275$
$100 \%=27500$
So, CP will be ₹ 27500
107. (D) Let speed and length of train $x \& y$ respectively in Ist condition.
$\frac{y}{x-6 * \propto \frac{5}{18}}=9$
$y=9 \times(x-6) \times \frac{5}{18}$
According to 2 nd condition.
$\frac{y}{x-9 * \propto \frac{5}{18}}=10$
$y=(x-9) \times \frac{5}{18} \times 10 .$.
Equation both equation (i) \& (ii)
$(x-9) \times \frac{5}{18} \times 10=(x-6) \times 9 \times \frac{5}{18}$
$x=36 \mathrm{~km} / \mathrm{h}$
108. (A) Let Average age of team $=x$ total age of team $=11 x$.
Reduction effect on the age average on team eliminating 2 players and introduced new 2 members
$9 \times 2=18$ month.
total age of terminating player
$=18+25$
$=43$ year
then total age of new player
$=43$ year -18 months
$=41$ year, 6 month .
Hence, average age of new player
$=\frac{41 \text { year } 6 \text { months }}{2}$
$=20$ years, 9 months
$=20$ years, 9 months
109. (D) $\frac{1}{1, x^{n-m}}+\frac{1}{1, x^{m-n}}$
$=\frac{1}{1, x^{n-m}}+\frac{1}{1, x^{- \text {年-m*}}}$
$=\frac{1}{1, x^{n-m}}+\frac{1}{1, \frac{1}{x^{n-m}}}$
$=\frac{1}{1, x^{n-m}}+\frac{x^{n-m}}{x^{n-m}, 1}=1$
110. (B) 4th proportional mean
$\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$
$\frac{a}{b}=\frac{c}{d}$
ATQ,
Let the 4th proportion $\rightarrow x$
$\frac{10}{12}=\frac{15}{x}$
$x=18$
111. (B) For real or imaginary roots we check
condition $=\sqrt{b^{2}-4 a c}$
$a=1, b=-7, c=21$
Put in condition $\sqrt{49-84}=\sqrt{-35}$
This value is an imaginary
Thus, this equation has imaginary roots.
112. (A) ATQ,
$x+\frac{1}{x}=\sqrt{3}$
Taking cube on both side.
$\left(x,\left.\frac{1}{x}\right|^{3}=(\sqrt{3})^{3}\right.$
$x^{3}+\frac{1}{x^{3}}=3-3$
$\frac{x^{6}, 1}{x^{3}}=0 \Rightarrow x^{6}+1=0$
According to condition,
$x^{96}-1=\left(x^{48}-1\right)\left(x^{48}+1\right)$
$=\left(x^{24}-1\right)\left(x^{24}+1\right)\left(x^{48}+1\right)$
$=\left(x^{12}-1\right)\left(x^{12}+1\right)\left(x^{24}+1\right)\left(x^{48}+1\right)$
$=\left(x^{6}-1\right)\left(x^{6}+1\right)\left(x^{12}+1\right)\left(x^{24}+1\right)\left(x^{48}+1\right)$
$=0$

According to Ist equation $x^{6}+1=0$
113. (A) As we know the previous question.
$x+\frac{1}{x}=\sqrt{3}$
Taking cube
$x^{6}+1=0$
ATQ,
$x^{72}+x^{66}+x^{34}+x^{28}+x^{12}+x^{6}+1$
$x^{66}\left(x^{6}+1\right)+x^{28}\left(x^{6}+1\right)+x^{6}\left(x^{6}+1\right)+1$
$x^{66} \times 0+x^{28} \times 0+x^{6} \times 0+1=1$
114. (A) Let the radius of sphere r.

ATQ,
$\frac{4}{3} \pi \times r^{3}=38808$
$\frac{4}{3} \times \frac{22}{7} \times r^{3}=38808$
$r^{3}=\frac{38808}{4 \propto 22} \times 7 \times 3$
$r=21 \mathrm{~m}$
Surface area of sphere $=4 \pi r^{2}$
$4 \times \frac{22}{7} \times 21 \times 21=5544 \mathrm{~m}^{2}$
115. (D) Consider the radius of circle $=r \mathrm{~m}$ ATQ,
Circumference of a circle $=2 \pi r=308 \mathrm{~m}$
$2 \times \frac{22}{7} \times r=308$
$r=49 \mathrm{~m}$.
Then area of circle $=\pi r^{2}$
$\frac{22}{7} \times 49 \times 49=7546 \mathrm{~m}^{2}$
116. (B) Comparison for two group
$\frac{\mathrm{M}_{1} \mathrm{D}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2}}{\mathrm{~W}_{2}}$
ATQ,
$5 \mathrm{M} \times 15=15 \mathrm{~W} \times 15$
$1 \mathrm{M}=3 \mathrm{~W}$
According to 2 nd condition
$(8 M+6 W) \times D=5 M \times 15$
As we know
$1 \mathrm{M}=3 \mathrm{~W}$
$2 \mathrm{M}=6 \mathrm{~W}$
Put in equation (i)
$(8 \mathrm{M}+2 \mathrm{M}) \times \mathrm{D}=5 \mathrm{M} \times 15$
$10 \mathrm{M} \times \mathrm{D}=15 \times 5 \mathrm{M}$
D $=7 \frac{1}{2}$
So, $8 \mathrm{M}+6 \mathrm{~W}$ can do same piece of work

in $7 \frac{1}{2}$ days.
117. (A)

So, B's capacity $=\mathrm{A}-(\mathrm{A}-\mathrm{B})$
$15-13$ = 2
So B can empty the tank $=\frac{\text { Total unit }}{\text { Capacity }}$
$=\frac{195}{2}=97 \frac{1}{2}$ hours.
118. (A) According the Ist condition i.e annually 8000

For $1 \frac{1}{2}$ years it mean Ist year interest is added completely and half of 2nd year interest is added means.

Total interest for $1 \frac{1}{2}$ year.
$=400+\frac{420}{2}=400+210=610$
According to 2 nd condition i.e half yearly.
So the rate became half i.e. $\frac{5}{2}=2.5 \%$ Then

So, total interest $=215.125$
Difference $=215.125=210=₹ 5.125$
119. (A)

$\angle \mathrm{ADB}=35^{\circ}$
So, $\angle \mathrm{AOB}=2 \angle \mathrm{ADB}=2 \times 35^{\circ}=70^{\circ}$
So, reflexive angle of chord AB .
Thus,
$\angle \mathrm{ACB}=\frac{\text { reflexive angle of chord } \mathrm{AB}}{2}$
$=\frac{290}{2}=145$
120. (A) ATQ,
$A \times \frac{40}{100}=B \times \frac{30}{100}$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{4}$
Let $B=4 \& A=3$
$4=\frac{3}{100} \times x \%$
$x \%=\frac{400}{3} \%$
121. (B) ATQ,
S.P of mixed rice $=49.2$

So, C.P of mixed rice
$=\frac{x \propto 120}{100}=49.2$
$x=41$
According to condition of Allegation.

So the ratio will be 11: 1
122. (A) ATQ,

A	B	C	
3×3000	$:$	3×3000	$: 6 \times 6000$
9	$:$	$16:$	36

Total unit 61
Total profit for 61 units 6100
Profit for 9 unit $=\frac{6100 \propto 9}{61}=₹ 900$
Hence, A's share $=₹ 900$
123. (A) ATQ,

Total number of student $=1000$ i.e 100%
For cricket 45\%
$100 \% \rightarrow 1000$

$$
45 \% \rightarrow \frac{1000 \propto 45}{100}=450
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
124. (A) As we know total central angle is 360° i.e. 100%
$100 \% \rightarrow 360^{\circ}$
For different games $10 \% \rightarrow \frac{360^{\circ} \propto 10}{100}$
$=36^{\circ}$
Hence, the central angle for different games $=36^{\circ}$
125. (B) Difference the percentage of cricket $\&$ Football
$=45-20=25 \%$
ATQ,
$100 \% \rightarrow 1000$
$25 \% \rightarrow \frac{1000 \propto 25}{100}=250$
Hence, The difference between the student in cricket and football is 250 .
126. (C) Difference between the percentage of Hockey and football $=25 \%-20 \%=5 \%$
As we know
$100 \%=360$

$$
5 \%=\frac{360 \propto 5}{100}=18^{\circ}
$$

Hence the difference between the central angle of Hockey and football $=18^{\circ}$
127. (B) Central angle for Hockey and Different games is $25 \%+10 \%=35 \%$
$\Rightarrow 100 \rightarrow 360$
$35 \% \rightarrow \frac{360 \propto 35}{100}$
$=126^{\circ}$
128. (C) $\frac{\sqrt{11}, \sqrt{5}}{\sqrt{11}-\sqrt{5}}+\frac{\sqrt{11}-\sqrt{5}}{\sqrt{11}, \sqrt{5}}$
$\frac{3316,2.236}{3317-2.236}+\frac{3.317-2.236}{3.317,2.336}$
$=\frac{5.553}{1.081}+\frac{1.081}{5.553}$
$=5.137+0.195$
$=5.332$
129. (B) Let the side of cube is a use Pythagoras theorem to get the diagonal across the base.
$a^{2}+a^{2}=h^{2}$
and again use Pythagoras theorem the to get cube's diagonal, then solve for $12 \sqrt{3}$
$h^{2}+a^{2}=(12 \sqrt{3})^{2}$
$3 a^{2}=12 \sqrt{3} \times 12 \sqrt{3} \quad\left[\because h^{2}=a^{2}\right]$
$a=12$
Hence, volume of cube $=a^{3}=12^{3}$
$=1728 \mathrm{~m}^{3}$
130. (B) Let the number of each note $=x$ then,
$1 x+5 \times x+10 \times x=640$
$16 x=640$
So, total number of ₹ 1 Note $+₹ 5$ Note and ₹ 10 Note $=40+40+40=120$
131. (B)

ABC has AC (19 unit) as its base and BO (6 unit) as its height according to diagram
then, Area of $\Delta \mathrm{AB}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BO}$
$=\frac{1}{2} \times 19 \times 6=57$ unit 2.
132. (D) Area of shaded cone $=\frac{180}{360} \times \pi r^{2}$

- area of AOD - area of BOE
- area of FOC.
$\frac{1}{2} \times \frac{22}{7} \times 7 \times 7-\frac{\sqrt{3}}{4} \times 7 \times 7 \times 3$
$=13.42 \mathrm{~cm}^{2}$

133. (C)
efficiency
$\begin{aligned} & \mathrm{A} \downarrow 10 \\ & \mathrm{~B} \downarrow 12 \\ & \mathrm{C} \downarrow 15\end{aligned} \longrightarrow 60<+$
So, total unit $=60$ units
Work done by A + B in 4 days $=(6+5) \times 4$
$=44$ units
Remaining units done by $C=60-44$
$=16$ units
No. of day required by $C=\frac{16}{4}=4$ days
Total days required by them $=4+4=8$ days
134.(A) $\sqrt{\frac{1}{\cot ^{2} \theta+1}}=\sqrt{\frac{1}{\operatorname{cosec}^{2} \theta}}=\sqrt{\sin ^{2} \theta}$
$\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{1}{\sec ^{2} \theta}}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=\sqrt{\frac{\operatorname{Sec}^{2} \theta-1}{\operatorname{Sec}^{2} \theta}}$
135.(D) $\tan 75^{\circ}+\tan 15^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1}+\frac{\sqrt{3}-1}{\sqrt{3}+1}$
$=\frac{(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2}}{(\sqrt{3})^{2}-(1)^{2}}$
$=\frac{3+1+2 \sqrt{3}+3+1-2 \sqrt{3}}{3-1}$
$=\frac{8}{2}=4$
136.(A) $1 \times 2 \times 3 \times 4 \times$ \qquad $\times 19 \times 20$
Number of Zeroes $=10,20,2 \times 5,4 \times 15$
$=4$
137.(D) Let $1^{\text {st }}$ Number $=x$

According to Question,
Sum of last four number $=5 x$
Then
Sum of five numbers $\Rightarrow x+5 x=300$
$\Rightarrow 6 x=300$
$\Rightarrow x=50$
Hence, the first number is 50 .
138. (A) $2,3,5,7, \ldots \ldots$ are the prime number except 2 , there are 720 odd numbers that are prime number.
We know that odd + odd = even
Thus the sum of 720 odd numbers must be even
$2+720$ prime number $=$ even
and all even is divided by $=2$
139. (A) Diameter of circle = Diagonal of square

Thus $2 r=$ Diagonal of square
we know
Diagonal of square $=\sqrt{2} \times$ side of square
$2 \mathrm{r}=\sqrt{2} \times$ side of square
$\sqrt{2} r=$ side of square
140. (A) We know power of odd number gives odd number.
\Rightarrow odd number - $1=$ even no.
and all even number is divided by 2 Hence.
HCF of $3^{512}-1$ and $3^{511}-1=2$
141. (C) $\tan \theta+\cot \theta=5$
$\Rightarrow \tan \theta+\frac{1}{\tan \theta}=5$

So,
$\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=(5)^{2}-2=23 \rightarrow(i)$
$\tan ^{2} \theta+\frac{1}{\tan ^{3} \theta}=(5)^{3}-3 \times 5=110 \rightarrow$ (ii)
Adding (i) and (ii)
$\tan ^{3} \theta+\cot ^{3} \theta+\tan ^{2} \theta+\cot ^{2} \theta$
$=110+23=133$.
142. (C) Let the distance covered by boat $=z$
the speed of boat in still water $=x$ ATQ
In (i) condition
$\frac{z}{x+3}=8$
$z=8(x+3) \rightarrow(i)$
In (ii) Condition
$\frac{z}{x-3}=16$
$z=16(x-3) \rightarrow$ (ii)
Comparing (i) \& (ii)
$16(x-3)=8(x+3)$
$16 x-48=8 x+24$ $x=9 \mathrm{~km} / \mathrm{hr}$
143. (A) In $\triangle \mathrm{ABC}$
$\tan 60^{\circ}=\frac{h}{9} \rightarrow(\mathrm{i})$
In $\Delta \mathrm{ABD}$
$\tan 30^{\circ}=\frac{h}{16}$
$\Rightarrow \cot 60^{\circ}=\frac{h}{16} \rightarrow$ (ii)
Multiply both equation (i) \& (ii)
$\tan 60 \times \cot 60=\frac{h}{9} \times \frac{h}{16}$
$\Rightarrow h=12 \mathrm{~m}$
144. (C) Curved Surface Area of Cylinder
$=2 \pi r h=2 \times \frac{22}{7} \times 50 \times 14$
$=4400 \mathrm{~cm}^{2}$
145. (A) 600 m covers in 3 minutes

1 m covers in $\frac{3}{600}$ minutes
$6000 \mathrm{~m}(6 \mathrm{~km})$ covers in $\frac{3}{600} \times 6000$ minutes
$=30$ minutes $=\frac{1}{2}$ hours
146. $(\mathrm{A})=\frac{99 \times 6+66 \times 7+77 \times 9}{11 \times 2}$
$\frac{54+42+63}{2}=\frac{159}{2}$
147. (D) ($\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta) \sin 2 \theta$
$=\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right) \times\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right) \times 2 \sin \theta \cos \theta$
$=\cos ^{2} \theta \times \sin ^{2} \theta \times 2$
At $\theta=30=\frac{1}{4} \times \frac{(\sqrt{3})^{2}}{4} \times 2=\frac{3}{8}$
148. (B) We Know that
$\mathrm{OC}=\mathrm{OA}=\frac{24}{2}=12$
Similarly
$\mathrm{OB}=\mathrm{OD}=\frac{10}{2}=5$
Using Pythagoras theorem in any triangle we can calculate the side of rhombus
$5^{2}+12^{2}=13^{2}$
Hence, side of rhombus is 13
So, Perimeter of rhombus is 52 .
149.(B) Length of Cuboid after adding all cube $=7 \times 7=49$
Breadth and height of Cuboid Remaining same so curved area of cuboid is
$2(l h+b h)=2 \times(49 \times 7+7 \times 7)$
$=784 \mathrm{~cm}^{2}$
150.(D) Side of triangle $=\frac{24}{3}=8$

We know that
height of equalateral triangle

$$
\begin{aligned}
& =\frac{(\text { Side })}{2} \sqrt{3}=\frac{8}{2} \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

Hence, the height of triangle $=4 \sqrt{3}$

SSC CPO SI MOCK TEST - 01 (ANSWER KEY)

1.	(A)	26.	(D)	51.	(B)	76.	(D)	101. (D)	126. (C)	151. (B)	176. (B)
2.	(A)	27.	(B)	52.	(B)	77.	(D)	102. (A)	127. (B)	152. (B)	177. (A)
3.	(C)	28.	(C)	53.	(D)	78.	(A)	103. (A)	128. (C)	153. (B)	178. (B)
4.	(A)	29.	(A)	54.	(D)	79.	(C)	104. (C)	129. (B)	154. (A)	179. (D)
5.	(D)	30.	(D)	55.	(B)	80.	(D)	105. (C)	130. (B)	155. (B)	180. (C)
6.	(A)	31.	(C)	56.	(C)	81.	(A)	106. (A)	131. (B)	156. (D)	181. (A)
7.	(B)	32.	(A)	57.	(A)	82.	(D)	107. (D)	132. (D)	157. (D)	182. (C)
8.	(B)	33.	(A)	58.	(B)	83.	(B)	108. (A)	133. (C)	158. (D)	183. (B)
9.	(C)	34.	(C)	59.	(C)	84.	(B)	109. (D)	134. (A)	159. (D)	184. (A)
10.	(D)	35.	(B)	60.	(B)	85.	(C)	110. (B)	135. (D)	160. (C)	185. (A)
11.	(A)	36.	(A)	61.	(C)	86.	(D)	111. (B)	136. (A)	161. (D)	186. (C)
12.	(D)	37.	(D)	62.	(B)	87.	(A)	112. (A)	137. (D)	162. (A)	187. (B)
13.	(D)	38.	(B)	63.	(B)	88.	(C)	113. (A)	138. (A)	163. (D)	188. (D)
14.	(C)	39.	(A)	64.	(B)	89.	(D)	114. (A)	139. (A)	164. (D)	189. (A)
15.	(C)	40.	(C)	65.	(C)	90.	(B)	115. (D)	140. (A)	165. (B)	190. (B)
16.	(B)	41.	(A)	66.	(D)	91.	(A)	116. (B)	141. (C)	166. (B)	191. (D)
17.	(D)	42.	(B)	67.	(D)	92.	(A)	117. (A)	142. (C)	167. (B)	192. (C)
18.	(D)	43.	(D)	68.	(A)	93.	(D)	118. (A)	143. (A)	168. (B)	193. (B)
19.	(A)	44.	(C)	69.	(B)	94.	(D)	119. (A)	144. (C)	169. (C)	194. (D)
20.	(C)	45.	(B)	70.	(D)	95.	(D)	120. (A)	145. (A)	170. (A)	195. (D)
21.	(A)	46.	(A)	71.	(A)	96.	(D)	121. (B)	146. (A)	171. (C)	196. (C)
22.	(D)	47.	(A)	72.	(C)	97.	(A)	122. (A)	147. (D)	172. (A)	197. (A)
23.	(B)	48.	(A)	73.	(A)	98.	(A)	123. (A)	148. (B)	173. (B)	198. (D)
24.	(A)	49.	(B)	74.	(B)	99.	(A)	124. (A)	149. (B)	174. (B)	199. (C)
25.	(D)	50.	(D)	75.	(C)	100.	(B)	125. (B)	150. (D)	175. (A)	200. (B)

Note:- Whatsapp with Mock Test No. and Question No. at 9560866063 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

