## IBPS PO PHASE-I MOCK TEST-58 (SOLUTION)

## REASONING

1. (1) Given statements :

Combining both statements, we get
$\mathrm{L}<\mathrm{P} \geq \mathrm{N}=\mathrm{S}<\mathrm{R}<\mathrm{Q}$
Thus, we can't compare $L$ and $Q$. Hence II ( $\mathrm{L} \geq \mathrm{Q}$ ) is not true.
$\mathrm{T}>\mathrm{L}$ is true.
Hence I is true.
2. (5) Given statements :

Combining both statements, we get
$\mathrm{M} \leq \mathrm{R} \leq \mathrm{N}=\mathrm{B}<\mathrm{S} \leq \mathrm{K}$
Thus, $K>R$ is true. Again, $\mathrm{M}<\mathrm{S}$ is true.
Hence both I and II are true.
3. (1) Given statements :

Combining bot statements, we get
$\mathrm{W}>\mathrm{U}=\mathrm{T} \geq \mathrm{B}$
Thus, $\mathrm{W}>\mathrm{T}$ is true. Hence I is true.
Again from (i), we can't compare U and J.

Hence II $(\mathrm{J}>\mathrm{U})$ is not true. Hence only I is true.
4. (4) Given statements :

Combining (i) and (ii) get $\mathrm{B}<\mathrm{U}=\mathrm{T}>\mathrm{X}=\mathrm{P}$
Thus, we can't compare $B$ and $P$.
Hence $I(B \geq P)$ is not true.
Again, from (i), we can't compare W and M.

Hence II ( $\mathrm{M} \leq \mathrm{W}$ ) is not true. So, neither conclusion I nor II is true.
5. (5) Given statements :

Combining both statements, we get
$\mathrm{G} \geq \mathrm{H}>\mathrm{K} \geq \mathrm{L}>\mathrm{R} \geq \mathrm{Q}$
Thus, $\mathrm{G}>\mathrm{R}$ is true.
Again, $\mathrm{H}>\mathrm{Q}$ is true. Hence both I and II are true.
(6-7) :

6. (5) Conclusion :
I. True
II. True
7. (2) Conclusion :
I. Can't Say II. True
(8-9) :

8. (5) Conclusions :
I. True
II. True
9. (2) Conclusions :
I. Can't say
II. True
10. (2) Conclusions :

(11-12) :


Three fathers ( $\mathrm{G}, \mathrm{A}, \mathrm{C}$ ), two brothers ( A and E ), two sisters ( B and F ), one husband (C), one wife (B), two brothers-in-law ( A and C ), two daughters ( B and F), three sons (A, D and E), three cousins (D, E and F), two nephews (D and E), one grandfather $(\mathrm{G})$ and one niece $(\mathrm{F})$
11. (2)
12. (1)
13. (3)
(14-18) :

14. (2)
15. (4)
16. (1)
17. (3)
18. (4)
(19-20) :

19. (5) $3 \mathrm{~km} \quad$ 20. (4)

## KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

| (21-25) : |  |  |
| :---: | :---: | :---: |
| Person | Subject | Year |
| P | Marathi | $2^{\text {nd }}$ |
| Q | Geography | $1{ }^{\text {st }}$ |
| R | Economics | $1{ }^{\text {st }}$ |
| S | Chemistry | $3^{\text {rd }}$ |
| T | Biology | $2^{\text {nd }}$ |
| U | Physics | $1{ }^{\text {st }}$ |
| V | Mathematics | $2^{\text {nd }}$ |
| W | English | $3^{\text {rd }}$ |

21. (2) 22. (4) 23. (5)
22. (3)
23. (1)
24. (2) From I. Possible diagrams:


Hence I alon is not sufficient to answer the question.
From II.


Hence, $C$ is second to the left of $E$
Hence II alone is sufficient to answer the question.
27. (5) From both I and II.
$\mathrm{Z}>\mathrm{Y}>\mathrm{V}=\mathrm{W}>\mathrm{X}$
$(x+p)(x+5)(x+5)$
Hence $Z$ scores the highest runs.
28. (5) From both I and II


Hence, A is grandmother of E
29. (5) From both I and II.
$T V S X P-Q$
Q_P X S V T
Hence X is the middle of the row.
30. (1)
(31-35) :
In every step, words whose first letter is a vowel, are arranged according to dictionary from left to right in descending order and words whose first letter is a constant are arranged from right to left in ascending order.

Input : gem stat ace cast omit fan rate uncut era input
Step I: uncut gem stat ace omit fan rate era input cast
Step II : uncut omit gem stat ace rate era input fan cast
Step III : uncut omit input stat ace rate era gem fan cast
Step IV : uncut omit input era stat ace rate gem fan cast
Step V : uncut omit input era ace stat rate gem fan cast
31. (3)
32. (1)
33. (1)
34. (4)
35. (5)

## MATHS

36. (4) $?=(4576+3286+5639) \div(712+415+$ 212) $=13501 \div 1339=10.08 \approx 10$
37. (5) $?=675.456+12.492 \times 55.671$
$\approx 675+12.5 \times 56$
$=675+700=1375 \approx 1371$
38. $(1)$ ? $\approx(447)^{2}=199809 \approx 200000$
39. (3) $?=\frac{4374562 \times 64}{7777}=35999.99 \approx 36000$
40. 


41. (3) Males in $\mathrm{D}_{1}=\frac{9000 \times 18}{100} \times \frac{7}{20}=567$ Similarly, $D_{2}=609, D_{3}=488, D_{4}=726$, $D_{5}=351, D_{6}=969, D_{7}=240$
$\therefore \quad$ Total number of males $=3950$
42. (4) Total employees in $D_{3}$
$9000 \times \frac{12.2}{100}=1098$
Females in $\mathrm{D}_{3}=1098 \times \frac{5}{9}=610$
$\therefore \quad \operatorname{Reqd} \%=\frac{610}{1098} \times 100=55.55 \% \approx 55.5 \%$
43. (5) Ratio of males to females in Department $\mathrm{D}_{7}$
$=\mathrm{M}: \mathrm{F}=8: 13$
$\therefore \quad$ Reqd $\%=\frac{(13-8)}{8} \times 100=62.5 \%$
44. (3) $\mathrm{D}_{1}=9000 \times \frac{18}{100}=1620$

Male : Female $=7: 13$
$\therefore$ Difference $=1620 \times \frac{(13-7)}{20}=486$
Similarly, $D_{2}=1305 \times \frac{1}{15}=87$

## KD Campus

$D_{3}=1098 \times \frac{1}{9}=122$
$D_{4}=1485 \times \frac{1}{45}=33$
$D_{5}=810 \times \frac{4}{30}=108$
$D_{6}=2052 \times \frac{2}{36}=114$
$\mathrm{D}_{7}=630 \times \frac{5}{21}=150$
45. (3) Females in $\mathrm{D}_{1}=\frac{9000 \times 18}{100} \times \frac{13}{20}=1053$

Similarly, $D_{2}=696, D_{3}=610, D_{4}=759$, $D_{5}=459, D_{6}=1083, D_{7}=390$
$\therefore \quad$ Total females $=1053+696+610+759$
$+459+1083+390=5050$
$\therefore \quad$ Reqd $\%=\frac{5050}{9000} \times 100=56.11 \%$
46. (1) The given number series is based on the following pattern.
$1^{1}=1 ; 2^{2}=4$
$3^{3}=27 ; 4^{4}=256$
$5^{5}=3125 ; 6^{6}=46656$
Hence 46658 is the wrong number.
47. (4) The given number series is based on the following pattern.
$18000 \div 5=3600$
$3600 \div 5=720$
$720 \div 5=144 \neq 142.2$
$144 \div 5=28.3$
$28.8 \div 5=5.76$
Hence 142.2 is the wrong number.
48. (5) The given number series is based on the following pattern.
$12+15^{2}=12+225=237$
$237+13^{2}=237+169=406$
$406+11^{2}=406+121=527$
$527+9^{2}=608=527+81=608$
$608+7^{2}=608+49=657$
Hence 604 is the wrong number.
49. (3) The given number series is based on the following pattern.
$3 \times 7+2 \times 7=21+14=35$
$35 \times 6+3 \times 6=210+18$
$=228 \neq 226$
$228 \times 5+4 \times 5=1140+20=1160$
$1160 \times 4+5 \times 4=4640+20=4660$
$4660 \times 3+6 \times 3=13980+18=13998$
Hence 226 is the wrong number
50. (2) The given number series is based on the following pattern.
$18 \times 7-7=126-7=119$
$119 \times 6-6=714-708$
$708 \times 5-5=3540-5=3535 \neq 3534$
$3535 \times 4-4=14140-4=14136$
$14136 \times 3-3=42405$
Hence 3534 is the wrong number.
51. (2) Using Alligation Method,

## $\begin{array}{ll}\text { Sugar I } & \text { Sugar II } \\ 5.75 & 4.50\end{array}$



$$
\begin{array}{rl}
5.50-4.50 & 5.75-5.50 \\
=1.00 & =0.25
\end{array}
$$

$$
\text { i.e., } 4 \text { : } 1
$$

Hence, the required quantity of Sugar I

$$
=\frac{75}{1} \times 4=300 \mathrm{~kg}
$$

52. (2) The numbers of points term scored $=8 \times 84-92+85=672-92+85=665$
53. (2) $\mathrm{SI}=\frac{15000 \times 9 \times 2}{100}=₹ 2700$
$\mathrm{CI}=12000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]$
$=12000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=12000\left[\frac{729-625}{625}\right]$
$=12000 \times \frac{104}{625}=₹ 1996.8$
$\therefore$ Total interest earned
$=₹(2700+1996.8)=₹ 4696.8$
54. (3) Total marked Price of article

$$
=25 \times 45=₹ 1125
$$

Selling Price (Giving 10\% discount)
$=\frac{90}{100}$ of $1125=₹ 1012.5$
$\mathrm{CP}=\frac{1012.50}{150} \times 100=₹ 675$
Now the selling price is $₹ 1125$ then
profit $=1125-675=₹ 450$
$\%$ profit $=\frac{450}{675} \times 100=66 \frac{2}{3} \%$
55. (2) Let the length of the piece be $x m$

Cost of price $=₹ 35$
Then, price per metre $=₹ \frac{35}{x}$
$\therefore \quad(x+4)\left(\frac{35}{x}-1\right)=35$
$\Rightarrow x=10 \mathrm{~m}$
56. (3) Annual sales of all companies in FY $2006-07=(150+200+225+250+300)$ = 1125 lakh
Annual sales of all companies in FY $2011-12=(325+350+400+450+500)$ = ₹ 2025 lakh
$\therefore$ Percentage increase
$=\frac{2025-1125}{1125} \times 100=80 \%$
57. (4) Honda $\rightarrow$ Sales in FY 2006-07
$=300$ lakh and in FY 2011-12 = 400 lakh
$\%$ increase in sales $=\frac{400-300}{300} \times 100$
= 33.33\%
Maruti $\rightarrow$ Sales in the FY 2006-07 $=250$ lakh and in FY 2011-12 = 500 lakh
$\%$. increase in sales $=\frac{500-250}{250} \times 100$ = 100\%
Tata $\rightarrow$ Sales in FY 2006-07 = 200 lakh and in FY 2011-12 = 325 lakh
$\%$ increase in sales $=\frac{325-200}{200} \times 100$ = 62.5\%
Hyundai $\rightarrow$ Sales in FY 2006-07 $=225$ lakh and in FY 2011-12 = 350 lakh
$\%$ increase in sales $=\frac{350-225}{225} \times 100$
= 55.55\%
Toyota $\rightarrow$ Sales in FY 2006-07 = 150 lakh and in FY 2011-12 = 450 lakh
$\%$ increase in sales $=\frac{450-150}{150} \times 100$
= 200\%
Hence, Toyota recorded highest percentage increase in sales.
58. (2) Average sales of all companies

In FY 2006-07 $=\frac{1}{5} \times(150+200+225+$
$250+300)=225$
In FY 2007-08 $=\frac{1}{5} \times(200+250+300$
$+350+450)=310$
In FY 2008-09 $=\frac{1}{5} \times(150+250+300$ $+325+350)=275$

In FY 2009-10 $=\frac{1}{5} \times(100+250+275$
$+375+475)=295$
In FY 2010-11 $=\frac{1}{5} \times(200+250+300$
$+400+450)=320$
In FY 2011-12 $=\frac{1}{5} \times(325+350+400$ $+450+500)=405$
$\therefore \quad$ Average minimum sales is in FY 200607.
59.
(3) Total sales of Hyundai and Maruti in FY $2006-07=(225+250)=475$ lakh
Total sales of Tata and Honda in FY $2006-07=(200+300)=500$

Reqd $\%=\frac{500-475}{500} \times 100=\frac{25}{500} \times 100$
= $5 \%$ less.
Hence, total sale of Maruti and Hyundai is $5 \%$ less than the total sales of Tata and Honda.
60. (4) Total sale of Honda in 2009-10 $=375$

Total sale of Toyota in 2009-10 $=250$
$\therefore \quad$ Reqd $\%=\frac{375-250}{250} \times 100=50 \%$
61. (2) Time taken in walking one way + riding other way
$=6$ hours 35 minutes
Time taken in riding both ways
$=4$ hours 35 minutes
By equation (i) $\times 2-$ (ii),
$2 \times$ Time taken in walking one way
= 13 hours 10 minutes -4 hours
35 minutes
$=8$ hours 35 minutes

## KD Campus

62. (1) $\because 12$ men can complete the work in 36 days.
$\therefore \quad 12 \times 36$ men can complete the work in 1 day.
Again,
$\because \quad 18$ women can complete the work in 60 days.
$\therefore \quad 18 \times 60$ women can complete the work in 1 day.
Now, $12 \times 36$ men $=18 \times 60$ women
$\Rightarrow 2$ men $=5$ women
Now, 8 men +20 women
$=(4 \times 5+20)$ women $=40$ women
$\because \quad 18$ women complete the work in 60 days.
$\therefore 40$ womens' 20 days' work
$=\frac{40 \times 20}{18 \times 60}=\frac{20}{27}$
$\therefore \quad$ Remaining work $=1-\frac{20}{27}=\frac{7}{27}$
$\therefore \quad 18 \times 60$ women do 1 work in 1 day.
$\therefore \quad 1$ woman does $=\frac{1}{18 \times 60}$ Work in 1 day
$\therefore \quad 1$ woman does in 4 days
$=\frac{4}{18 \times 60}=\frac{1}{18 \times 15}$ Work
$\therefore \quad \frac{1}{18 \times 15}$ work is done in 4 days by 1 woman
$\therefore \quad \frac{7}{27}$ work is done in 4 days by $=\frac{18 \times 15 \times 7}{27}$ $=70$ days
63. (2) Number of balls $=6+5+8=19$ Exhaustive number of cases $=$ Ways of selecting 4 balls out of 19
$={ }^{19} \mathrm{C}_{4}=\frac{19 \times 18 \times 17 \times 16}{1 \times 2 \times 3 \times 4}=3876$
Favourable number of cases $=$ Selecting 4 red balls or any two green balls out of the four $=6 \mathrm{c}_{4}+5 \mathrm{c}_{2} \times 14 \mathrm{c}_{2}$
$=\frac{6 \times 5 \times 4 \times 3}{1 \times 2 \times 3 \times 4}+\frac{5 \times 4}{2} \times \frac{14 \times 13}{2}$
$=15+910=925$
$\therefore \quad$ Required probability
$=\frac{925}{3876}$

## KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
68. (1) I. $12 x^{2}+17 x+6=0$
$\Rightarrow 12 x^{2}+9 x+8 x+6=0$
$\Rightarrow 3 x(4 x+3)+2(4 x+3)=0$
$\Rightarrow(4 x+3)(3 x+2)=0$
$\Rightarrow x=-\frac{3}{4}$ or $-\frac{2}{3}$
II. $6 y^{2}+5 y+1=0$
$\Rightarrow 6 y^{2}+2 y+3 y+1=0$
$\Rightarrow 2 y(3 y+1)+1(3 y+1)=0$
$\Rightarrow(3 y+1)(2 y+1)=0$
$\Rightarrow \quad y=-\frac{1}{3}$ or $-\frac{1}{2}$
Clearly, $x<y$
69. (3) I. $20 x^{2}+9 x+1=0$
$\Rightarrow 20 x^{2}+5 x+4 x+1=0$
$\Rightarrow 5 x(4 x+1)+1(4 x+1)=0$
$\Rightarrow(4 x+1)(5 x+1)=0$
$\Rightarrow x=-\frac{1}{4}$ or $-\frac{1}{5}$
II. $30 y^{2}+11 y+1=0$
$\Rightarrow 30 y^{2}+6 y+5 y+1=0$
$\Rightarrow 6 y(5 y+1)+1(5 y+1)=0$
$\Rightarrow(5 y+1)(6 y+1)=0$
$\Rightarrow y=-\frac{1}{5}$ or $-\frac{1}{6}$
Clearly, $x \leq y$
70. (4) I. $x^{2}+17 x+72=0$
$\Rightarrow x^{2}+8 x+9 x+72=0$
$\Rightarrow x(x+8)+9(x+8)=0$
$\Rightarrow(x+9)(x+8)=0$
$\Rightarrow x=-9$ or -8
II. $y^{2}+19 y+90=0$
$\Rightarrow y^{2}+10 y+9 y+90=0$
$\Rightarrow y(y+10)+9(y+10)=0$
$\Rightarrow \quad(y+9)(y+10)=0$
$\Rightarrow \quad y=-9$ or -10
Clearly, $x \geq y$

## ENGLISH LANGUAGE

## (91-95) : (BDEACF)

91. (4)
92. (1)
93. (3)
94. (5)
95. (5)
96. (3) Replace 'who' by 'whom'.
97. (4) Replace 'elderly' by 'elders'.
98. (4) Replace 'at' by 'upto'.
99. (1) Replace 'do' by 'could'.
100. (4) Replace 'well' after 'policy'.


## KD Campus

## IBPS PO PHASE -I MOCK TEST - 58 (ANSWER KEY)

| 1. (1) | 26. (2) | 51. (2) | 76. (5) |
| :---: | :---: | :---: | :---: |
| 2. (5) | 27. (5) | 52. (2) | 77. (4) |
| 3. (1) | 28. (5) | 53. (2) | 78. (4) |
| 4. (4) | 29. (5) | 54. (3) | 79. (1) |
| 5. (5) | 30. (1) | 55. (2) | 80. (2) |
| 6. (5) | 31. (3) | 56. (3) | 81. (2) |
| 7. (2) | 32. (1) | 57. (4) | 82. (3) |
| 8. (5) | 33. (1) | 58. (2) | 83. (5) |
| 9. (2) | 34. (4) | 59. (3) | 84. (3) |
| 10. (2) | 35. (5) | 60. (4) | 85. (1) |
| 11. (2) | 36. (4) | 61. (2) | 86. (5) |
| 12. (1) | 37. (5) | 62. (1) | 87. (3) |
| 13. (3) | 38. (1) | 63. (2) | 88. (2) |
| 14. (2) | 39. (3) | 64. (5) | 89. (4) |
| 15. (4) | 40. (2) | 65. (2) | 90. (1) |
| 16. (1) | 41. (3) | 66. (2) | 91. (4) |
| 17. (3) | 42. (4) | 67. (2) | 92. (1) |
| 18. (4) | 43. (5) | 68. (1) | 93. (3) |
| 19. (5) | 44. (3) | 69. (3) | 94. (5) |
| 20. (4) | 45. (3) | 70. (4) | 95. (5) |
| 21. (2) | 46. (1) | 71. (4) | 96. (3) |
| 22. (4) | 47. (4) | 72. (4) | 97. (4) |
| 23. (5) | 48. (5) | 73. (3) | 98. (4) |
| 24. (3) | 49. (3) | 74. (3) | 99. (1) |
| 25. (1) | 50. (2) | 75. (5) | 100. (4) |

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to $\mathbf{8 8 6 0 3 3 0 0 0 3}$

