2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

## HARYANA SSC MOCK TEST - 46 (SOLUTION)

1. (C)
2. (C)
3. (A)
4. (B)
5. (D)
6. (B)
7. (A)
8. (A)
9. (C)
10. (C)
11. (D)
12. (C)
13. (C)
14. (B)
15. (B)
16. (C)
17. (A)
18. (D)
19. (B)
20. (A)
21. (C)
22. (B)
23. (A)
24. (C)
25. (B)

Explanation:
41. (C)

(B)

(C)

(D)

42. (C)

43. (A) French is the language of France. Similarly, dutch is the language of Holland.
44. (B) Here English alphabet is coded as following -

51. (B)
52. (B)
53. (A)
54. (B)
55. (A)
56. (D)
57. (A)
58. (B)
59. (D)
60. (D)
61. (C)
62. (B)
63. (B)
64. (C)
65. (D)
66. (D)
67. (B)
68. (C)
69. (A)
70. (A)
71. (C)
72. (A)
73. (A)
74. (C)
75. (C)
76. (A)
77. (A)
78. (B)
79. (A)
80. (D)
81. (D)
82. (D)
83. (D)
84. (A)
85. (D)
86. (B)
87. (C)
88. (A)
89. (D)
90. (C)
91. (*)
92. (C)
93. (A)
94. (A)
95. (C)
96. (D)
97. (B)
98. (A)
99. (B)
100. (C)

Now,


Similarly,

45. (B) $(2 \times 7)+8+(6 \times 5)=52$

$$
(5 \times 6)+2+(3 \times 2)=38
$$

Similarly,
$(3 \times 4)+2+(6 \times 2)=26$
46. (D) $\frac{S_{n_{1}}}{S_{n_{2}}}=\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}$
$=\frac{\left[2 a_{1}+(n-1) d_{1}\right]}{\left[2 a_{2}+(n-1) d_{2}\right]}$

$$
\begin{align*}
\Rightarrow \frac{5 n+2}{11 n-7} & =\frac{\left[2 a_{1}+(n-1) d_{1}\right]}{\left[2 a_{2}+(n-1) d_{2}\right]}  \tag{i}\\
\frac{a_{6}}{b_{6}} & =\frac{a_{1}+5 d_{1}}{a_{2}+5 d_{2}} \\
& =\frac{2 a_{1}+10 d_{1}}{2 a_{2}+10 d_{2}} \\
& =\frac{2 a_{1}+(11-1) d_{1}}{2 a_{2}+(11-1) d_{2}}
\end{align*}
$$

From (i) and (ii)

$$
\begin{aligned}
& \Rightarrow \quad \frac{a_{6}}{b_{6}}=\frac{S_{11}}{S_{11}^{\prime}}=\frac{5 \times 11+2}{11 \times 11-7} \\
& =\frac{57}{121-7}=\frac{57}{114}=\frac{1}{2}=1: 2
\end{aligned}
$$

46. (B) $\frac{\text { Umber }}{2} \frac{\text { Umbra }}{1} \frac{\text { Umbrage }}{4} \frac{\text { Umlaut }}{3}$
47. (D)
48. (B)
49. (B) Sanjeev $\rightarrow$ Atanu $\rightarrow$ Manoj $\rightarrow$ Joy $\rightarrow$ Amar

$$
\begin{array}{lllll}
5 & 4 & 3 & 2 & 1
\end{array}
$$

50. (B) Let the age of son $=x$ year
$\therefore$ The age of father $=5 x$ year
According to question,
$(5 x+24)=2(x+24)$
or, $5 x+24=2 x+48$
or, $5 x-2 x=48-24$
or, $3 x=24$

$$
\therefore x=8 \text { years }
$$

So the age of son $=8$ years and the age of father $=5 x$ years

$$
=5 \times 8=40 \text { years } .
$$

51. (B
$\mathrm{CI}-\mathrm{SI}=\mathrm{P}\left[\left(\frac{R}{100}\right)^{3}+3\left(\frac{R}{100}\right)^{2}\right]$

$$
\begin{aligned}
15 \frac{1}{2} & =\mathrm{P}\left[\left(\frac{10}{100}\right)^{3}+3\left(\frac{10}{100}\right)^{2}\right] \\
\frac{31}{2} & =\mathrm{P}\left[\frac{1}{1000}+\frac{3}{100}\right] \\
\mathrm{P} & =\frac{31}{2} \times \frac{1000}{31} \\
& =₹ 500
\end{aligned}
$$

52.(B) Speed of upstream = speed in still water - speed of the stream $\Rightarrow 6=$ speed in still water -2
$\Rightarrow$ Speed in still water $=8 \mathrm{~km} / \mathrm{hr}$
53.(A) SI $=₹(9200-8000)$

$$
\text { = ₹ } 1200
$$

$$
\mathrm{R}=\frac{S I \times 100}{P \times T}=\frac{1200 \times 100}{8000 \times 3}=5 \%
$$

New ratio of interest $=(5+2) \%=7 \%$

$$
\begin{aligned}
& \mathrm{SI}=\frac{8000 \times 7 \times 3}{100}=₹ 1680 \\
& \begin{array}{l}
\text { Amount }=₹(8000+1680) \\
\quad=₹ 9,680
\end{array}
\end{aligned}
$$

54.(B) Let the time taken by Kaveri be $x$ days. Then,
time taken by Kanti $=\frac{x}{2}$ days
and time taken by Kalpana $=\frac{x}{3}$ days
ATQ,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{\frac{x}{2}}+\frac{1}{\frac{x}{3}}=1 \\
& \frac{1+2+3}{x}=1 \\
\Rightarrow & x=6 \text { days }
\end{aligned}
$$

Time taken by Kanti alone $=\frac{6}{2}=3$ days
55.(A) $\because x$ is real

$$
\begin{aligned}
& \Rightarrow(x-1)^{2} \geq 0 \\
& \Rightarrow x^{2}+1-2 x \geq 0 \\
& \Rightarrow x^{2}+1 \geq 2 x \\
& \Rightarrow \frac{x^{2}+1}{x} \geq 2 \\
& \Rightarrow \sin \theta \geq 2
\end{aligned}
$$

which is impossible, as $-1 \leq \sin \theta \leq 1$
56. $(\mathrm{D})(\mathrm{A}+\mathrm{B})+(\mathrm{B}+\mathrm{C})+(\mathrm{C}+\mathrm{A})$ 's 1 day's work

$$
=\frac{1}{12}+\frac{1}{15}+\frac{1}{20}=\frac{5+4+3}{60}=\frac{12}{60}=\frac{1}{5}
$$

Workdone by $2(\mathrm{~A}+\mathrm{B}+\mathrm{C})$ in 1 day $=\frac{1}{5}$
Workdone by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 1 day $=\frac{1}{10}$
Workdone by A alone in 1 day

$$
=\frac{1}{10}-\frac{1}{15}=\frac{3-2}{30}=\frac{1}{30}
$$

$\therefore$ A takes 30 days to complete the work.
57. (A) Let $f(x)=4 x^{3}-a x^{2}+b x-4$
$\because f(x)$ is divided by $(x-2)$
$\Rightarrow \quad$ Remainder $=f(2)=20$
$4(2)^{3}-a(2)^{2}+b(2)-4=20$
$32-4 a+2 b-4=20$
$8=4 a-2 b$
$\Rightarrow \quad 2 a-b=4$
Also, $f(x)$ is divided by $(x+1)$
$\therefore \quad$ Remainder $=f(-1)=-13$
$\Rightarrow \quad 4(-1) 3-a(-1)^{2}+b(-1)-4=-13$

$$
-4-a-b-4=-13
$$

$$
-a-b=-13+8
$$

$$
\begin{equation*}
a+b=5 \tag{ii}
\end{equation*}
$$

On solving (i) \& (ii), we have

$$
a=3 \& b=2
$$

58. (B) $\therefore \mathrm{CP}_{1} @ 25 \%$ gain $=\frac{1000 \times 100}{100+25}$

$$
\begin{aligned}
& =₹ 800 \\
\mathrm{CP}_{2} @ 20 \% \text { loss } & =\frac{1000 \times 100}{100-80} \\
& =₹ 1250
\end{aligned}
$$

$$
\% \text { loss }=\frac{[\text { Total } \mathrm{CP}-\text { Total SP }]}{\text { Total } \mathrm{CP}} \times 100
$$

$$
=\frac{[(800+1250)-(1000+1000)]}{(800+1250)} \times 100
$$

$$
=\frac{2050-2000}{2050} \times 100
$$

$$
=\frac{5000}{2050}=\frac{100}{41}=2 \frac{18}{41} \%
$$

59. (D)

$$
\begin{aligned}
& \quad \frac{a-b}{x-a}+\frac{a-b}{x-b}=\frac{a}{x-a}-\frac{b}{x-b} \\
& \Rightarrow \quad \frac{a-b}{x-a}-\frac{a}{x-a}=\frac{-b}{x-b}-\frac{a-b}{x-b}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{a-b-a}{x-a}=\frac{-b-a+b}{x-b} \\
& \Rightarrow \quad \frac{-b}{x-a}=\frac{-a}{x-b} \\
& \Rightarrow(x-a) a=(\mathrm{x}-\mathrm{b}) \mathrm{b} \\
& \Rightarrow x(a-b)=a^{2}-b^{2} \\
& \therefore \quad x \quad=a+b .
\end{aligned}
$$

60. (D) $\frac{S_{n_{1}}}{S_{n_{2}}}=\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}$

$$
=\frac{\left[2 a_{1}+(n-1) d_{1}\right]}{\left[2 a_{2}+(n-1) d_{2}\right]}
$$

$$
\begin{equation*}
\Rightarrow \frac{5 n+2}{11 n-7}=\frac{\left[2 a_{1}+(n-1) d_{1}\right]}{\left[2 a_{2}+(n-1) d_{2}\right]} \tag{i}
\end{equation*}
$$

$$
\frac{a_{6}}{b_{6}}=\frac{a_{1}+5 d_{1}}{a_{2}+5 d_{2}}
$$

$$
=\frac{2 a_{1}+10 d_{1}}{2 a_{2}+10 d_{2}}
$$

$$
=\frac{2 a_{1}+(11-1) d_{1}}{2 a_{2}+(11-1) d_{2}}
$$

From (i) and (ii)

$$
\begin{aligned}
\Rightarrow & \frac{a_{6}}{b_{6}}=\frac{S_{11}}{S_{11}^{\prime}}=\frac{5 \times 11+2}{11 \times 11-7} \\
& =\frac{57}{121-7}=\frac{57}{114}=\frac{1}{2}=1: 2
\end{aligned}
$$

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

