

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

HARYANA SSC MOCK TEST - 45 (SOLUTION)

1.	(C)	26.	(C)
2.	(B)	27.	(B)
3.	(B)	28.	(A)
4.	(A)	29.	(B)
5.	(D)	30.	(D)
6.	(B)	31.	(A)
7.	(D)	32.	(D)
8.	(A)	33.	(D)
9.	(B)	34.	(A)
10.	(A)	35.	(B)
11.	(B)	36.	(B)
12.	(C)	37.	(D)
13.	(A)	38.	(D)
14.	(D)	39.	(C)
15.	(C)	40.	(B)
16.	(A)	41.	(C)
17.	(D)	42.	(B)
18.	(A)	43.	(B)
19.	(A)	44.	(A)
20.	(A)	45.	(B)
21.	(B)	46.	(A)
22.	(D)	47.	(D)
23.	(D)	48.	(D)
24.	(C)	49.	(A)
25.	(D)	50.	(C)

51. (B)
52. (A)
53. (C)
54. (D)
55. (D)
56. (A)
57. (A)
58. (D)
59. (B)
60. (A)
61. (D)
62. (A)
63. (C)
64. (A)
65. (B)
66. (D)
67. (A)
68. (B)
69. (C)
70. (D)
71. (B)
72. (D)
73. (D)
74. (B)
75. (D)
76. (A)
77. (B)
78. (A)
79. (D)
80. (C)
81. (B)
82. (B)
83. (C)
84. (A)
85. (C)
86. (B)
87. (C)
88. (A)
89. (C)
90. (B)
91. (C)
92. (B)
93. (B)
94. (B)
95. (C)
96. (C)
97. (D)
98. (C)
99. (B)
100. (B)

Explanation:

41. (C) Except option (C), all are used as home appliance.
42. (B)

43. (B)

44. (A)

Similarly,

45. (B) $(6 \times 5)+(3 \times 3)=39$
$(7 \times 5)+(4 \times 4)=51$
46. (A) \mathbf{p} on $\underline{\mathbf{m}} 1 \mathrm{kj} \mathrm{i} h \mathbf{g} \mathrm{fe} \underline{\mathbf{d}} \mathrm{c}$ b $\underline{\mathbf{a}}$
47. (D) MONITER
48. (D) Sagar Arjun Aman Biplab I
49. (A)

Required distance $=\mathrm{EF}$
$=(\mathrm{CB}+\mathrm{BD})-(\mathrm{CF}+\mathrm{DE})$ $=(5+5)-(4+4)=10-8=2 \mathrm{~km}$
50. (C)

(Here, $x=3$)

Similarly,
$(5 \times 5)+(3 \times 4)=37$
According to rule Middle Cube :-

$$
12(x-2) \text { or, } 12(3-2) \text { or, } 12 \times 1=12
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
51. (B) Required no. $=\mathrm{HCF}$ of $(38-2),(45-3)$ and (52-4)
$=\mathrm{HCF}$ of $36,42,48=6$
52.(C) Let the two digit number be $10 x+y$.

Then, we have;
$x+y=8$
. (i) and
$10 y+x=10 x+y-54$
or, $x-y=\frac{54}{9}=6$
From (i) \& (ii),
$x=\frac{8+6}{2}=7$ and $y=1$
\therefore The required number $=7 \times 10+1=71$
53.(D) $3^{a}=729$
\& $\quad 2^{b}=1024$
$\Rightarrow \quad 3^{a}=3^{6} \quad$ and $\quad 2^{b}=2^{10}$
$\Rightarrow \quad a=6 \quad$ and $\quad b=10$
Now,
$\frac{4 a+6 b}{6 b-3 a}=\frac{4 \times 6+6 \times 10}{6 \times 10-3 \times 6}=\frac{24+60}{60-18}=\frac{84}{42}=2$
54.(D) Required percentage
$=\frac{400}{400+200+800+100} \times 100=26.67 \%$
55.(A) $\frac{\text { son }}{\text { wife }}=\frac{3}{1} ; \frac{\text { wife }}{\text { daughter }}=\frac{3}{1}$
\Rightarrow son : wife : daughter $=9: 3: 1$
son - daughter = ₹ 10,000
$\Rightarrow 9 x-x=₹ 10,000$
$\Rightarrow x=₹ \frac{10,000}{8}=₹ 1,250$
Total property of the man
$=9 x+3 x+x=13 x=13 \times 1250=₹ 16,250$
56.(A) Let the cost price of the book $=₹ 100$

$$
\mathrm{SP}_{1}=\frac{120}{100} \times 100=₹ 120
$$

If he had bought it at 20% less
$\Rightarrow C P=80 \%$ of $100=₹ 80$
$\Rightarrow \mathrm{SP}_{2}=₹ 80 \times \frac{125}{100}=₹ 100$
$\mathrm{SP}_{2}-\mathrm{SP}_{1}=₹ 20, \mathrm{CP}=₹ 100$
$\mathrm{SP}_{2}-\mathrm{SP}_{1}=₹ 18, \mathrm{CP}=\frac{100}{20} \times 18$

$$
=₹ 90
$$

57.(D) Let the cost price of goods be ₹ 100 and it is increased by $x \%$.
Then,

$$
\mathrm{MP}=₹(100+x)
$$

SP after 10\% discount $=90 \%(100+x)$
SP at 20% profit $\quad=120 \%$ of 100
$\therefore \quad 90 \%(100+x)=120 \%$ of 100
$x=\frac{120 \times 100}{90}-100=\frac{100(120-90)}{90}$
$=\frac{100 \times 30}{90}=33 \frac{1}{3} \%$
58. (B) Number of each type of coin
$=\frac{\text { Total amount }}{\text { Sum of values of each type of coins }}$
$=\frac{35}{1+0.5+0.25}=\frac{35}{1.75}=20$
59. (A) Copper in 1 st alloy $=\frac{5}{7}$

Copper in 2nd alloy $=\frac{3}{7}$
Copper in (1st +2 nd) alloy
$=\frac{1}{1+1}=\frac{1}{2}$
By alligation rule,
$=\frac{\mathrm{q}_{\mathrm{I}} \text { alloy }}{\mathrm{q}_{\mathrm{II}} \text { alloy }}=\frac{\frac{1}{2}-\frac{3}{7}}{\frac{5}{7}-\frac{1}{2}}=\frac{\frac{7-6}{14}}{\frac{10-7}{14}}=\frac{1}{3}$
So, quantity of 1 st alloy

$$
\begin{aligned}
& =\frac{\mathrm{q}_{\mathrm{t}}}{\mathrm{q}_{\mathrm{t}}+\mathrm{q}_{\mathrm{II}}} \times 28 \\
& =\frac{1}{4} \times 28=7 \mathrm{~kg}
\end{aligned}
$$

Quantity of 2 nd alloy

$$
=28-7=21 \mathrm{~kg}
$$

60. (D) Length of the train (when there were 12
boggies) $=12 \times 15=180 \mathrm{~m}$
Its speed $=\frac{180}{18}=10 \mathrm{~m} / \mathrm{s}$
New length of the train (when two boggies are detached)

$$
=10 \times 15=150 \mathrm{~m}
$$

Now, time taken by the train to cross
telegraph post $=\frac{150}{10}=15$ seconds

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

