Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SBI PO PHASE-I - 88 (SOLUTION)

REASONING

(1-6) :

1. (3)
2. (1)
3. (4)
4. (2)
5. (5)
6. (5)
(7-11) :

Floor	Person	Car	Day
7	S	Ford	Wednesday
6	N	Scorpio	Monday
5	M	Mahindra	Tuesday
4	Q	Maruti	Friday
3	P	Swift	Sunday
2	R	Suzuki	Saturday
1	O	Nano	Thursday

7. (4)
8. (1)
9. (3)
10. (1)
11. (5)
12. (2) Vipin's : Javed $=4: 3$

Salaries $4 x$ and $3 x$
from statement II
$3 \mathrm{x}=₹ 4500$, $\mathrm{x}=₹ 1500$
Vipin's salary $=1500 \times 4=₹ 6000$
II alone is sufficient while I alone is not sufficient.
13. (3) From statement I

Weight of one Box $=5 \times 4=20 \mathrm{~kg}$
So weight of $10 \mathrm{Box}=200 \mathrm{~kg}$
from statement II
wt. of 3 boxes -wt . of 2 boxes $=20 \mathrm{~kg}$ 1 Box $=20 \mathrm{~kg}$
So wt. of 10 Boxes $=200 \mathrm{~kg}$ either I or II is sufficient.
14. (1) From statement I

$$
\begin{array}{lll}
\hline \text { Right or wrong - nik sa te } \\
\text { He is right - ro da nik } \\
\text { that is wrong - fe te ro }
\end{array}
$$

'or' code $\Rightarrow \mathrm{Sa}$
From statement II
that right man - pa nik la
this ©ry that - sar ne pa
Tell this there - ne ka re
'or' code \rightarrow sa
Either I or II sufficient.
15. (5) Both I and II are sufficient to give the answer.
(16-20) :

Room no	Color	Person
1	Pink	Q or O and D
2	Blue	B or F and E
3	Black	Q or O and A
4	Green	B or F and C
5	White	$R P$
6	Yellow	$M N$

16. (4)
17. (4)
18. (5)
19. (4)
(21-25) :

$@$	\rightarrow	\geq
$\#$	\rightarrow	$>$
$\$$	\rightarrow	$=$
$\%$	\rightarrow	\leq
$*$	\rightarrow	$<$

21. (1) $\mathrm{V}=\mathrm{Y} \geq \mathrm{Z} \leq \mathrm{X}>\mathrm{T}$
I. $\mathrm{T}>\mathrm{Z} \rightarrow$ False
II. $\mathrm{X}>\mathrm{Z} \rightarrow$ False
III. $Z>Y \rightarrow$ False

None follow
22. (1) $\mathrm{R} \geq \mathrm{J} \leq \mathrm{F}<\mathrm{E} \leq \mathrm{M}$
I. $\mathrm{M}>\mathrm{J} \rightarrow$ Ture
II. $\mathrm{F} \leq \mathrm{M} \rightarrow$ False
III. $\mathrm{M}<\mathrm{R} \rightarrow$ False

Only I follow.
23. (1) $\mathrm{H}>\mathrm{R} \geq \mathrm{L}<\mathrm{W} \leq \mathrm{F}$ I. $\mathrm{H}>\mathrm{L} \rightarrow$ True
II. $\mathrm{F}>\mathrm{L} \rightarrow$ True
III. $\mathrm{H}=\mathrm{F} \rightarrow$ False

Only I and II follow
24. (3) $\mathrm{H}>\mathrm{Q} \geq \mathrm{F}=\mathrm{M}>\mathrm{K}$
I. $\mathrm{H}>\mathrm{K} \rightarrow$ True
II. $\mathrm{Q}>\mathrm{K} \rightarrow$ True
III. Q > M \rightarrow True

All I, II and III follow
25. (1) $\mathrm{D}<\mathrm{Q}=\mathrm{L}>\mathrm{T}<\mathrm{H}$
I. $\mathrm{D}<\mathrm{L} \rightarrow$ True
II. L $\geq \mathrm{H} \rightarrow$ False
III. H < L \rightarrow False

Only I follow

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(26-28) :

26. (1)
27. (2)
28. (3)
(29-33) : In the term of height:
$\mathrm{Q}<\mathrm{U}, \mathrm{R}<\mathrm{U}, \mathrm{R}<\mathrm{S}, \mathrm{T}<\mathrm{S}, \mathrm{T}<\mathrm{S}, \mathrm{U}<\mathrm{T}, \mathrm{P}$ < T, U < P
So, $\mathrm{R}<\mathrm{U}<\mathrm{T}<\mathrm{S}, \mathrm{Q}<\mathrm{U}, \mathrm{U}<\mathrm{P}<\mathrm{T}$
Sequence : $\mathrm{Q}<\mathrm{R}<\mathrm{U}<\mathrm{P}<\mathrm{T}<\mathrm{S}$ or $\mathrm{R}<\mathrm{Q}$
$<\mathrm{U}<\mathrm{P}<\mathrm{T}<\mathrm{S}$
Weight : $\mathrm{P}<\mathrm{Q}, \mathrm{P}<\mathrm{R}, \mathrm{Q}<\mathrm{S}, \mathrm{S}<\mathrm{U}$
So, $\mathrm{P}<\mathrm{Q}<\mathrm{S}<\mathrm{U}, \mathrm{P}<\mathrm{R}$
Thus the sequence

$$
\begin{gathered}
\mathrm{P}<\mathrm{R}<\mathrm{Q}<\mathrm{S}<\mathrm{U} \\
\text { or } \\
\mathrm{P}<\mathrm{Q}<\mathrm{R}<\mathrm{S}<\mathrm{U} \\
\text { or } \\
\mathrm{P}<\mathrm{Q}<\mathrm{S}<\mathrm{R}<\mathrm{U}
\end{gathered}
$$

29. (3)
30. (1) Decending order of height

S $>\mathrm{T}>\mathrm{P}>\mathrm{U}>\mathrm{Q}>\mathrm{R}$
or
S $>\mathrm{T}>\mathrm{P}>\mathrm{U}>\mathrm{R}>\mathrm{Q}$
31. (4)
32. (5)
33. (3)
34. (2) Clearly, Amit's brother's birthday is on day common to both above the group i.e. 17 th february.
35. (2)

MATHS

36. (1) ? $\approx \frac{4 \times 3}{12} \times 952-129$
$=952-129=823$
37. (2) $? \approx \frac{8450 \times 105}{100}-5006 \times \frac{3}{700}+10$
$=8872.5-21.5+10=8861 \approx 8860$
38. (2) $10^{3} \times 100^{3}+10^{9} \approx 10^{?}+10^{?}$
$\Rightarrow 10^{9}+10^{9}=10^{?}+10^{?}$
\Rightarrow ? $=9,9$
39. (4) ? $\approx 21+3.7 \times 3$
$=21+11.1=32.1 \approx 32$
40. (1) $23+9-$? $=23 \Rightarrow$? $=9$
41. (5) Total investment by Lucky and Bipin in organisation $S=₹ 30,000$
$\mathrm{R}=16 \%$
$\mathrm{T}=1$ year
When interest compound half-yearly
$\mathrm{R}=8 \%$ and $\mathrm{T}=2$ half-yearly
C.I $=\left[30000 \times \frac{108}{100} \times \frac{108}{100}-30000\right]$
= ₹ 4992
42. (1) Investment by lucky in organisation R
$=16000 \times \frac{40}{100}=₹ 6400$
= C.I after 2 years
$=\left[6400 \times \frac{112}{100} \times \frac{112}{100}-6400\right]$
= ₹ 1628.16
Investment by Bipin in organisation
$R=16000-6400=₹ 9600$
\therefore C.I after 2 years
$=\left[9600 \times \frac{112}{100} \times \frac{112}{100}-9600\right]$
$=₹ 2442.24$
\therefore Required difference
$=2442.24-1628.16=₹ 814.08$
43. (*) Required average
$=\frac{1}{6}=\left[42000 \times \frac{54}{100}+36000 \times \frac{60}{100}\right.$
$+16000 \times \frac{40}{100}+30000 \times \frac{30}{100}+32000 \times$
$\left.\frac{42}{100}+48000 \times \frac{64}{100}\right]$
$=\frac{1}{6}[22680+21600+6400+9000+$
$13440+30720]$
$=\frac{103840}{6}=₹ 17306.66 \approx 17307$
44. (2) Investment of Bipin in organisation U
$=48000 \times \frac{36}{100}=₹ 17280$
Simple interest earned after first two
years $=\frac{17280 \times 7 \times 2}{100}=₹ 2419.20$
Compound interest earned after third and fourth year
$=\left[17280 \times \frac{110}{100} \times \frac{110}{100}-17280\right]$
= ₹ 3628.80
\therefore Total interest earned
$=2419.20+3628.80=₹ 6,048$
45. (1) Amount invested by Lucky in organisation $\mathrm{Q}=36000 \times \frac{60}{100}$
= ₹ 21600
C.I - S.I $=\mathrm{P}\left(\frac{R}{100}\right)^{2}$
$\Rightarrow 699.84$

Campus
 KD Campus

$=\frac{21600}{10000} \times R^{2}$
$\Rightarrow \frac{69984}{216}=\mathrm{R}^{2}$
$\Rightarrow R^{2}=324 \%$
$\Rightarrow R=18 \%$
46. (1) The pattern is :
$5531-5506=25=5^{2}$
$5555-5506=49=7^{2}$
$5506-5425=81=9^{2}$
$5425-5304=121=11^{2}$
$5304-5135=169=13^{2}$
$5135-4910=225=15^{2}$
$4910-4621=289=17^{2}$
Clearly, 5531 is wrong which should be substituted by 5555.
47. (2) The pattern is:
$6+1=7$
$7+2=9$
$9+4=13$
$13+8=21 \neq 26$
$21+16=37$
$37+32=69$
48. (4) The pattern is:
$1 \times 1+2=3$
$3 \times 2+4=10$
$10 \times 3+6=36$
$36 \times 4+8=152$
$152 \times 5+10=770 \neq \mathbf{7 6 0}$
$770 \times 6+12=4632$
49. (3) The pattern is :
$4+1^{3}=5$
$5+2^{3}=13$
$13+3^{3}=40$
$40+4^{3}=104 \neq 105$
$104+5^{3}=229$
$229+6^{3}=445$
50. (1) The pattern is:
$157.5 \div 3.5=45$
$45 \div 3=15$
$15 \div 2.5=6$
$6 \div 2=3$
$3 \div 1.5=2$
$2 \div 1=2 \neq 1$
51. (3) As CI is half yearly,
$\mathrm{R}=4 \%, \mathrm{~T}=2$ half yearly
\therefore First Amount
$=1500 \times\left(1+\frac{4}{100}\right)^{2}=1500 \times\left(\frac{26}{25}\right)^{2}$
$=₹ 1622.40$
Second Amount $=1500 \times\left(1+\frac{4}{100}\right)$
$=1500 \times \frac{26}{25}=₹ 1560$
\therefore Total Amount $=$ First Amount + Second Amount = ₹3182.40
52. (5) Let P's Imcome be ₹ x.

Q's income $=₹(x+15000$
R's income
$=x+15000+17000=₹(x+32000)$
\therefore Total investment $=3 x+47000=200000$
$\therefore \quad x=₹ 51000$
Ratio of P : Q : R
$=51000: 66000: 83000=51: 66: 83$
Share of R in profit

$$
=\frac{83}{200} \times 80800=₹ 33532
$$

53. (1) Area covered by blue tiles
$=(20+20) \times 2+2 \times(6+6)=80+24$
104 sq. metre
Area of the floor $=20 \times 10=200$ sq. metre
\therefore Remaining area $=200-104=96$ sq. metre
Area covered by black tiles
$=\frac{1}{3} \times 96=32$ sq. metre
\therefore Area covered by white tiles $=96-32$
$=64$ sq. metre
\therefore The number of required white tiles
$=\frac{64}{2 \times 2}=16$
54. (5) Required no of ways
$={ }^{8} C_{5} \times{ }^{8} C_{3}+{ }^{8} C_{4} \times{ }^{8} C_{4}+{ }^{8} C_{3} \times{ }^{8} C_{5}$
$=56 \times 56+70 \times 70+56 \times 56$
$=3136+4900+3136=11172$
55. (2) Speed of first man is 3 kmph
$=3 \times \frac{5}{18}=\frac{5}{6} \mathrm{~m} / \mathrm{s}$
And second man is 6 kmph
$=6 \times \frac{5}{18}=\frac{5}{3} \mathrm{~m} / \mathrm{s}$
Let the speed of the train be $x \mathrm{~m} / \mathrm{s}$.
Then, the relative speed are $\left(x-\frac{5}{6}\right) \mathrm{m} / \mathrm{s}$
and $\left(x-\frac{5}{6}\right) \mathrm{m} / \mathrm{s}$
Now, length of the train $=$ relative speed \times time taken to pass a man
So, $\left(x-\frac{5}{6}\right) \times 6=\left(x-\frac{5}{3}\right) \times 9$
or, $6 x-5=9 x-15$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

or, $3 x=10$
$\therefore x=\frac{10}{3} \mathrm{~m} / \mathrm{s}$
\therefore Speed of the train $=\frac{10}{3} \times \frac{18}{5}=12 \mathrm{kmph}$
And length of the train $=\left(\frac{10}{3}-\frac{5}{6}\right) \times 6=15 \mathrm{~m}$
(56-60) :
56. (1) No of boys play Kabaddi $=18000 \times \frac{12}{100} \times$

$$
\frac{85}{100}=1836
$$

No of girls play Carrom $=18000 \times \frac{5}{100} \times \frac{2}{100}$ $=18$
\therefore Required ratio $=1836: 18=102: 1$
57. (2) No of boys play in

Carrom $=18000 \times \frac{5}{100} \times \frac{98}{100}=882$
Tennis $=18000 \times \frac{15}{100} \times \frac{90}{100}=2430$
Cricket $=18000 \times \frac{13}{100} \times \frac{80}{100}=1872$
Football $=18000 \times \frac{20}{100} \times \frac{70}{100}=2520$
Chess $=18000 \times \frac{35}{100} \times \frac{70}{100}=4410$
\therefore Required answer is Carrom.
58. (5) Total no. of boys play Cricket and Carrom together $=882+1872=2754$
Total no of girls play Chess and Tennis together $=18000 \times \frac{35}{100} \times \frac{30}{100}+18000$

$$
\times \frac{15}{100} \times \frac{10}{100}
$$

$=1890+270=2160$
\therefore Required $\%=\left(\frac{2754}{2160} \times 100\right) \%=127.5 \%$
59. (2) Total no. of players play Chess
$=18000 \times \frac{35}{100}=6300$
No. of girls play Chess $=1890$
\therefore Required $\%=\left[\frac{6300-1890}{1890} \times 100\right] \%$
$=\left(\frac{4410}{1890} \times 100\right) \%=233.33 \% \approx 233 \%$
more
60. (5) No. of boys play Football in the year 2017
$=18000 \times \frac{20}{100} \times \frac{70}{100} \times \frac{120}{100}$
$=3024$
and no. of girls play Kabaddi in the year 2017
$=18000 \times \frac{12}{100} \times \frac{15}{100} \times \frac{125}{100}=405$
\therefore Required total $=3024+405=3429$
61. (3) Work done by L in first three days $=\frac{3}{15}$
$=\frac{1}{5}$ of the work
Work done by N and P in 7 days
$=7 \times\left[\frac{1}{25}+\frac{1}{35}\right]=\frac{12}{25}$ of the work
Total work completed in first 10 days
$=\frac{1}{5}+\frac{12}{25}=\frac{17}{25}$ of the work
The remaing work $=1-\frac{17}{25}=\frac{8}{25}$
The work that is to be completed by M
$=\frac{1}{2} \times \frac{8}{25}=\frac{4}{25}$
Time taken by M to complete $\frac{4}{25}$ of the work $=\frac{\frac{4}{\frac{25}{1}}}{\frac{10}{20}}=\frac{80}{25}=3 \frac{1}{5}$ days
The work that is to be completed by D

$$
=\frac{\frac{4}{25}}{\frac{1}{30}}=\frac{24}{5}=4 \frac{4}{5} \text { days }
$$

Hence, the total time taken to complete the work $=3+7+3 \frac{1}{5}+4 \frac{4}{5}=18$ days
62. (1) let t hrs after starting of the first train they will meet

KD Campus

So $750=60 t+90(t-2)$
$t=\frac{930}{150}=6 \mathrm{hr} 12 \mathrm{~min}$
So they will meet at $=7 \mathrm{hr}+6 \mathrm{hr} 12 \mathrm{~min}$ $=13 \mathrm{hr} 12 \mathrm{~min}$ i.e. 1.12 PM
63. (4) Let $E=$ the event of getting the sum 7 . and,
$\mathrm{F}=$ the event of getting at least one 2.
Then, $E=\{(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)\}$
and,
$F=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)$, $(2,1),(2,3),(2,4),(2,5),(2,6)\}$

Then, $\mathrm{E} \cap \mathrm{F}=\{(2,5),(5,2)\}$
Now, we have to find $P(F / E)$
$\mathrm{P}(\mathrm{F} / \mathrm{E})=\frac{P(E \cap F)}{P(S)}=\frac{2}{6}=\frac{1}{3}$
64. (4) After selling at ₹ $15 / \mathrm{kg}$, Sunil earns a profit of 66.66%
Hence, cost price of sweets is ₹ $9 / \mathrm{kg}$.
Now, ratio of flour and sugar is $5: 3$.
Hence,
1 kg of sweet is made up of $\frac{5}{8} \mathrm{~kg}$ of flour and

$$
\frac{3}{8} \mathrm{~kg} \text { of sugar. }
$$

Let price of 1 kg of flour $=3 k$
Hence, profit of 1 kg of sugar $=7 k$
Hence price of 1 kg of sweets is
$=\left\{\left[\left(\frac{3}{8}\right) \times 7 k\right]+\left[\left(\frac{5}{8}\right) \times 3 k\right]\right\}=9$
Hence, $k=2$
Hence, cost price of sugar $=7 k=7 \times 2=₹ 14 / \mathrm{kg}$
65. (4) The price of the item is ₹ P.

And $\mathrm{SP}=₹ \mathrm{Q}$
Given, $\mathrm{Q}=₹ 1.2 \mathrm{P}$
If the cost price of the item is 15% less
Then, $\mathrm{CP}=8.08 \times \mathrm{P}=₹ 0.85 \mathrm{P}$
According to the question,
$0.85 \mathrm{P} \times \frac{130}{100}=1.2 \mathrm{P}-76$
or, $11.05 \mathrm{P}=12 \mathrm{P}-76$
or, $0.95 \mathrm{P}=760$
$\therefore \mathrm{P}=\frac{760}{0.95}=₹ 800$
\therefore Cost price of the item ₹ 800 .
(66-70) :
66. (5) $63 x^{2}-194 x+143=0$
$\Rightarrow 63 x^{2}-117 x-77 x+143=0$
$\Rightarrow 9 x(7 x-13)-11(7 x-13)=0$
$\Rightarrow(9 x-11)(17 x-13)=0$
$\Rightarrow x=\frac{11}{9}, \frac{13}{7}$
II. $99 y^{2}-255 y+150=0$
$\Rightarrow 99 y^{2}-90 y-165 y+150=0$
$\Rightarrow 9 y(11 y-10)-15(11 y-10)=0$
$\Rightarrow(9 y-15)(11 y-10)=0$
$\Rightarrow y=\frac{15}{9}, \frac{10}{11}$
67. (1) I. $12 x^{2}-32 x-240=0$
$\Rightarrow 12 x^{2}-72 x+40 x-240=0$
$\Rightarrow 12 x(x-6)+40(x-6)=0$
$\Rightarrow(12 x+40)(x-6)=0$
$\Rightarrow \quad x=\frac{-40}{12}, 6$ or $-\frac{10}{3}, 6$
II. $15 y^{2}-216 y+777=0$
$\Rightarrow 15 y^{2}-105 y-111 y+777=0$
$\Rightarrow 15 y(y-7)-111(y-7)=0$
$\Rightarrow(15 y-111)(y-7)=0$
$\Rightarrow y=\frac{115}{15}, 7$
clearly, $x>y$
68. (5) I. $x^{2}-13 x+36=0$
$\Rightarrow x^{2}-9 x-4 x+36=0$
$\Rightarrow x(x-9)-4(x-9)=0$
$\Rightarrow(x-4)(x-9)=0$
$\Rightarrow x=4,9$
II. $y^{2}-30 y+24=0$
$\Rightarrow y^{2}-7 y-23 y+161=0$
$\Rightarrow \mathrm{y}(y-7)-23(y-7)=0$
$\Rightarrow(y-23)(y-7)=0$
$\Rightarrow \quad y=23,7$
69. (3) $11 x^{2}-38 x-24=0$
$\Rightarrow 11 x^{2}-44 x+6 x-24=0$
$\Rightarrow 11 x(x-4)+6(x-4)=0$
$\Rightarrow(11 x+6)(x-4)=0$
$\Rightarrow x=\frac{-6}{11}, 4$
II. $y^{2}-y-30=0$
$\Rightarrow y^{2}-6 y+5 y-30=0$
$\Rightarrow y(y-6)+5(y-6)=0$
$\Rightarrow(y+5)(y-6)=0$
$\Rightarrow y=-5,6$
70. (1) I. $15 x-9 y=20$
II. $24 x+12 y=48$

Equation (i) $\times 4+$ equation (ii) $\times 3$

KD Campus

$60 x-36 y+72 x+36 y=80-144$
$\Rightarrow 132 x=-64$
$\Rightarrow x=\frac{-64}{132}=\frac{-16}{33}$
Put the value of x in equation (i),
$15 \times \frac{-16}{33}-9 y=20$
$\Rightarrow 9 y=\frac{-80}{11}-20$
$\Rightarrow 9 y=\frac{-300}{11}$
$\Rightarrow y=\frac{-300}{11 \times 9}=\frac{-100}{33}$
Clearly, $x>y$

ENGLISH LANGUAGE

81. (2) 'not only' will come after 'with'.
82. (1) 'other' will use after ' No '.
83. (3) 'for' replace with 'on'.
84. (5) No error.
85. (4) 'have' replace with 'has'.
86. (1) Remove 'about'.
87. (4) 'for' replace with 'to'.
88. (4) 'Look for' (search) replace with 'look after'.
89. (5) No error.
90. (3) 'rather than' replace with 'to'.

SBI PO PHASE-I - 88 (ANSWER KEY)

1. (3)
2. (1)
3. (4)
4. (2)
5. (5)
6. (5)
7. (4)
8. (1)
9. (3)
10. (1)
11. (5)
12. (2)
13. (3)
14. (1)
15. (5)
16. (4)
17. (4)
18. (2)
19. (5)
20. (4)
21. (1)
22. (1)
23. (1)
24. (3)
25. (1)
26. (1)
27. (2)
28. (3)
29. (3)
30. (1)
31. (4)
32. (5)
33. (3)
34. (2)
35. (2)
36. (1)
37. (2)
38. (2)
39. (4)
40. (1)
41. (5)
42. (1)
43. (*)
44. (2)
45. (1)
46. (1)
47. (2)
48. (4)
49. (3)
50. (1)
51. (3)
52. (5)
53. (1)
54. (5)
55. (2)
56. (1)
57. (2)
58. (5)
59. (2)
60. (5)
61. (3)
62. (1)
63. (4)
64. (4)
65. (4)
66. (5)
67. (1)
68. (5)
69. (5)
70. (1)
71. (4)
72. (5)
73. (2)
74. (3)
75. (1)
76. (1)
77. (2)
78. (3)
79. (2)
80. (3)
81. (2)
82. (1)
83. (3)
84. (5)
85. (4)
86. (1)
87. (4)
88. (4)
89. (5)
90. (3)
91. (2)
92. (1)
93. (3)
94. (3)
95. (5)
96. (3)
97. (4)
98. (3)
99. (2)
100. (1)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to $\mathbf{8 8 6 0 3 3 0 0 0 3}$

