SSC MAINS (MATHS) MOCK TEST-12 (SOLUTION)

1. (B) Required ratio $=(\sqrt{2})^{2}:(1)^{2}=2: 1$
2. (A) $(64)^{2}-(36)^{2}=20 \mathrm{~K}$
$(64+36)(64-36)=20 \mathrm{~K}$
$20 \mathrm{~K}=28 \times 100$
$\mathrm{K}=140$
3. (D) $\angle \mathrm{ACB}=88^{\circ}$ (\because exterier angle $)$ $\angle \mathrm{BAC}=180^{\circ}-\left(88^{\circ}+54^{\circ}\right)=38^{\circ}$
$\angle \mathrm{BOC}=2 \times 38^{\circ}=76^{\circ}$
4. (A) Total profit earned $=₹ 60000$

Profit remain after reinvesting 40% profit
$=₹\left(60000 \times \frac{60}{100}\right)$
= ₹ 36000
ATQ,
Amount spent on advertisement
$=₹ 36000 \times\left(1-\frac{30}{100}-\frac{20}{100}\right)$
$=₹ 18000$
5. (B) $N P=208 \times \frac{1}{4} \times \frac{1}{4} \times 4$
$=₹ 52 / \mathrm{kg}$
6. (D) Total population of town $=8000$

Ratio of male and female = $1: 1$
Population of females $=\frac{1}{2} \times 8000$

$$
=4000
$$

Population of males $=\frac{1}{2} \times 8000$

$$
=4000
$$

If 75% of population is females then
Number of females $=\frac{75}{100} \times 8000$

$$
=6000
$$

Number of males to be added to females
$=4000-(6000-4000)$
$=2000$
7. (B) 100

SP

$\mathrm{SP}=\frac{500}{3} \times \frac{90}{100}=150$
Profit \% = 50\%
8. (C) Selling price of merchant $=₹ 56100$

Loss = 15\%
Cost price of merchant
$=₹\left(56100 \times \frac{100}{85}\right)$
= ₹ 66000
Selling price of wholesale dealer
$=$ cost price of merchant $=₹ 66000$
Cost price of wholesale dealer
$=$ selling price of manufacturer
$=₹\left(66000 \times \frac{100}{120}\right)$
= ₹ 55000
Cost price of manufacturer
$=₹\left(55000 \times \frac{100}{110}\right)$
$=₹ 50,000$
9. (C) $\frac{1}{x}+\frac{1}{x+5}=\frac{1}{x-4}$
$\frac{x+5+x}{x(x+5)}=\frac{1}{(x-4)}$
$(2 x+5)(x-4)=x^{2}+5 x$
$2 x^{2}-8 x+5 x-20=x^{2}+5 x$
$x^{2}-8 x-20=0$
$x^{2}-10 x+2 x-20=0$
$x(x-10)+2(x-10)=0$
$(x-10)(x+2)=0$
$x=10$
Time taken by Ist pipe $=(x+5)$ hrs.

$$
=10+5=15 \mathrm{hrs} .
$$

10. (A) Sum after 2 years if compounded annually = ₹ 4624
Sum after 3 years if compounded annually
= ₹ 4913
So, initiall sum $=₹\left[4624 \times\left(\frac{4624}{4913}\right)^{2}\right]$
= ₹ 4096
11. (C) It must be multiple of 3.
12. (A) α and β are roots of equation $a x^{2}+b x+c=0$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

So, $\alpha+\beta=-\frac{b}{a}$
$\alpha \beta=\frac{c}{a}$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\left(-\frac{b}{a}\right)^{2}-2 \times \frac{c}{a}$
$=\frac{b^{2}}{a^{2}}-\frac{2 a c}{a^{2}}$
$=\frac{b^{2}-2 a c}{a^{2}}$
13. (D)

$\Delta \mathrm{BRC} \sim \triangle \mathrm{BPA}$
$\frac{x}{y}=\frac{B C}{A B}$
$\triangle \mathrm{ARC} \sim \triangle \mathrm{AQB}$
$\frac{y}{z}=\frac{A C}{A B}$
$\frac{y}{x}+\frac{y}{z}=\frac{B C}{A B}+\frac{A C}{A B}$
$y\left(\frac{z+x}{x z}\right)=\frac{B C+A C}{A B}=\frac{A B}{A B}$
$y=\frac{x Z}{x+z}$
$y x+y z=x z$
14. (D) $\angle \mathrm{ACB}=\angle \mathrm{PAB}=80^{\circ}$
$\angle \mathrm{ACQ}=180^{\circ}-80^{\circ}=100^{\circ}$
$\angle \mathrm{CAQ}=\angle \mathrm{ABC}=30^{\circ}$
$\angle \mathrm{AQC}=180^{\circ}(\angle \mathrm{ACQ}+\angle \mathrm{CAQ})$
$=180^{\circ}-\left(100^{\circ}+30^{\circ}\right)=50^{\circ}$
15. (B) Let the obstruction remained for A minutes only.
\therefore Part of cistern filled in A minutes + Part of cistern filled in 3 minutes $=$ cistern filled.
$\left[\left(\frac{7}{8} \times \frac{A}{12}\right)+\left(\frac{5}{6} \times \frac{A}{16}\right)+\left(\frac{3}{12}+\frac{3}{16}\right)\right]=1$
$\frac{12 A}{96}+\frac{7}{16}=1$
$A=4.5$ minutes
16. (B) $\sin ^{6} \mathrm{~A}+\cos ^{6} \mathrm{~A}+3 \sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~A}$

$$
\begin{aligned}
= & \left(\sin ^{2} \mathrm{~A}\right)^{3}+\left(\cos ^{2} \mathrm{~A}\right)^{3}+3 \sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~A} \\
& \left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right) \\
= & \left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)^{3} \\
= & (1)^{3}=1
\end{aligned}
$$

17. (A)

$$
\begin{aligned}
& \begin{array}{ll}
100 & 100+x \% \\
100 \quad 100-x
\end{array} \\
& \begin{array}{l}
10,000 \quad 10000-x^{2} \\
\left\lvert\, \frac{1}{10,000-x^{2}} \quad \underset{10,000-x^{2}}{\longrightarrow} 1\right. \\
\frac{10,000}{10,000-x^{2}}
\end{array}
\end{aligned}
$$

18. (D) Let the mixture of two containers be added together in the ratio of $x: y$
$\left(\frac{\frac{2}{3} x+\frac{4}{5} y}{x+y}\right) \times 100=70$
$\frac{10 x+12 y}{15(x+y)} \times 10=7$
$100 x+120 y=105 x+105 y$
$5 x=15 y$
$x: y=3: 1$
19. (B) Arithmetic $=10 \times \frac{70}{100}=7$

Algebra $=30 \times \frac{40}{100}=12$
Geometry $=35 \times \frac{60}{100}=21$

$$
\text { Total }=40
$$

Required no $=75 \times \frac{60}{100}=45-40=5$
20.(D)

Spirit Water
Jar A $2: 3)_{\times 6 \times 3}=36: 54$
Jar B $3: 7)_{\times 3 \times 4}=36: 84$
Jar C $4: 11)_{\times 2 \times 5}=\frac{40: 110}{112: 248}$
$14: 31$
Ratio of spirit and water in mixture $=14: 31$
21.(C) $(\mathrm{P}+2)^{2}=P^{2}+2 P+4$
22. (A)
23. (A) $x+y=4$ and $x-y=3$

Square both sider
$x^{2}+y^{2}+2 x y=4^{2}$
$x^{2}+y^{2}+2 x y=16$
$x^{2}+y^{2}-2 x y=9$
Subtracting equations (ii) from (i)
then $4 x y=7$

$$
x y=\frac{7}{4}
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

On adding (i) and (ii) we have $x^{2}+y^{2}=\frac{25}{2}$
ATQ, $16 \times\left(\frac{25}{2}\right) \times \frac{7}{4}$
$=14 \times 25=350$
24. (B) $\sqrt{\frac{100\left[(0.003)^{2}+(0.021)^{2}+(0.0065)^{2}\right]}{(0.003)^{2}+(0.021)^{2}+(0.0065)^{2}}}$
$=\sqrt{100}=10$
25. (C) CD \| AB, BD is transversal
$\therefore \quad \angle \mathrm{CDB}=\angle \mathrm{DBA}=45^{\circ}$
$\mathrm{AD} \| \mathrm{BC}$

$$
\begin{aligned}
\angle \mathrm{DAB}+\angle \mathrm{ABC} & =180^{\circ} \\
\angle \mathrm{ABC} & =180^{\circ}-75^{\circ}=105^{\circ} \\
\angle \mathrm{CBD} & =105^{\circ}-45^{\circ}=60^{\circ}
\end{aligned}
$$

26. (D) Average age of A, B and $\mathrm{C}=4$ years
$\mathrm{A}+\mathrm{B}+\mathrm{C}=12$
By Hit and Trial method
Ratio of age $=3: 4: 5$
Ratio of square of ages $=9: 16: 25$
Ratio of chocolates = 9:16:25
Respective chocolates of A, B and C
$=9,16,25$
27. (C) $\angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}$
$\angle \mathrm{PQR}+95^{\circ}=180^{\circ}$
$\angle \mathrm{PQR}=85^{\circ}$
Now, $\mathrm{RY} \| \mathrm{PQ}$ and RQ is the transversal.
$\angle \mathrm{QRY}=\angle \mathrm{PQR}=85^{\circ}$
[Alternate Interior Angles]
$\angle \mathrm{QRX}=85^{\circ}+20^{\circ}=105^{\circ}$
$\angle \mathrm{SRQ}=180-105^{\circ}=75^{\circ}$
Now, $\angle \mathrm{QPS}+\angle \mathrm{QRS}=180^{\circ}$
$\angle \mathrm{QPS}+75^{\circ}=180^{\circ}$
$\angle \mathrm{QPS}=105^{\circ}$
28. (C) Age of mother when Deepak was born
$=36$ years
Age of Priya when Deepak was born $=4$ years
Age of father when Priya was born $=38$ years
Age of father when Deepak was born
$=(38+4)=42$ years
Difference of ages of the parents
$=(42-36)$ years
$=6$ years
29. (B) If $x=y=z=1$ then

Put value:
$=(3)^{3}-(1)^{3}-(1)^{3}-(1)^{3}$
$=27-3=24=24 x y z$
30. (C) Let number of candidates who applied $=x$

Eligible candidates $=\frac{80}{100} x$
Candidates of other category $=\frac{20}{100} \times \frac{80}{100} x$

$$
=\frac{16}{100} x
$$

ATQ,
$\frac{16}{100} x=8000$
$x=50000$
Total number of candidates who applied for the exam $=50000$
31. (C) Distance covered in 1 Litre petrol with $50 \mathrm{~km} / \mathrm{h}$ speed $=19.5 \mathrm{~km}$
Hence, this distance will cover with $70 \mathrm{~km} / \mathrm{h}$ speed in 1.3 litres.
then distance covered in 1 litre with $70 \mathrm{~km} / \mathrm{h}$ Speed
$=\frac{19.5}{1.3}=15 \mathrm{~km}$
then distance covered in 10 litres diesel with $70 \mathrm{~km} / \mathrm{h}$. Speed $=10 \times 15$
$=150 \mathrm{~km}$
32. (D) Monthly savings of the person $=₹ 3645$

ATQ,
Monthly savings of the person
$=100 \times \frac{(100-40)}{100} \times \frac{(100-20)}{100} \times \frac{\left(100-37 \frac{1}{2}\right)}{100}$
$\times \frac{(100-10)}{100} \times \frac{(100-10)}{100} \times \frac{(100-40)}{100}$
= 14.58%
Monthly salary $=₹\left(3645 \times \frac{100}{14.58}\right)$

$$
\text { = ₹ } 25000
$$

33. (A) Let marked price $=100$

ATQ,
$100 \times \frac{70}{100} \times \frac{85}{100}=476$
$59.5=476$
MP $=476 \times \frac{100}{59.5}$
$=₹ 800$
34. (B) $\frac{x-a^{2}}{b^{2}+c^{2}}+\frac{x-b^{2}}{c^{2}+a^{2}}+\frac{x-c^{2}}{a^{2}+b^{2}}=3$
$\frac{x-a^{2}}{b^{2}+c^{2}}-1+\frac{x-b^{2}}{c^{2}+a^{2}}-1+\frac{x-c^{2}}{a^{2}+b^{2}}-1=0$
$\frac{x^{2}-a^{2}-b^{2}-c^{2}}{b^{2}+c^{2}}+\frac{x^{2}-a^{2}-b^{2}-c^{2}}{c^{2}+a^{2}}$
$+\frac{x^{2}-a^{2}-b^{2}-c^{2}}{a^{2}+b^{2}}=0$
$\left(x-a^{2}-b^{2}-c^{2}\right)\left[\frac{1}{b^{2}+c^{2}}+\frac{1}{c^{2}+a^{2}}+\frac{1}{a^{2}+b^{2}}\right]=0$
So, $\quad x-a^{2}-b^{2}-c^{2}=0$
$x=a^{2}+b^{2}+c^{2}$
35. (B) The weight of the boxes are $\mathrm{I}^{\text {st }}$ box $\rightarrow 200 \mathrm{Kg}$ Weight of III ${ }^{\text {rd }}$ box $\rightarrow 250 \mathrm{Kg}$
$2^{\text {nd }}$ box $\rightarrow 300 \mathrm{Kg}$
$4^{\text {th }}$ box $\rightarrow 350 \mathrm{Kg}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$5^{\text {th }}$ box $\rightarrow 500 \mathrm{Kg}$
Hence difference between the havier 4 and the lighter 4 is 300.
So difference in the averages is 75 kg .
36. (A) Given $\left(x+\frac{1}{x}\right)^{2}=3 \Rightarrow x+\frac{1}{x}=\sqrt{3}$

So, $x^{6}+1=0$
Now,
$x^{206}+x^{200}+x^{90}+x^{84}+x^{18}+x^{12}+x^{6}+1$
$=x^{200}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{12}\left(x^{6}+1\right)+x^{6}+1$
$=0\left[\because x^{6}+1=0\right]$
37. (B) $\mathrm{H}=$ Height of pyramid
$h=$ Slant height
Height of pyromid $=\sqrt{h^{2}-\left(\frac{10 \sqrt{3}}{2 \sqrt{3}}\right)^{2}}$
$H=\sqrt{(13)^{2}-\left(\frac{10 \sqrt{3}}{2 \sqrt{3}}\right)^{2}}$
$\mathrm{H}=12 \mathrm{~cm}$
Volume of Pyramid $=\frac{1}{3} \times$ Area of base \times Height
$=\frac{1}{3} \times \frac{\sqrt{3}}{4} \times(10 \sqrt{3})^{2} \times 12$
$=300 \sqrt{3} \mathrm{~cm}^{3}$
38. (C) Marked price $=6580 \times \frac{100}{(100-30)}=₹ 9400$
39. (B) $x+\frac{1}{x}=1$
$x^{3}=-1$
$x^{17}+\frac{1}{x^{17}} \Rightarrow \frac{x^{18}}{x}+\frac{x}{x^{18}}$
$\Rightarrow \frac{(-1)^{6}}{x}+\frac{x}{(-1)^{6}}$ $\Rightarrow x+\frac{1}{x}=1$
40. (A)

10 days work of Monika $=3 \times 10=30$ units Required days $=\frac{60-30}{3+2}$ days

$$
\begin{aligned}
& =\frac{30}{5} \text { days } \\
& =6 \text { days }
\end{aligned}
$$

41. (B) ATQ, $\frac{M}{3}-\frac{M}{4}=7$
$\mathrm{M}=84$ feet

$$
=84 \times 30 \mathrm{~cm}
$$

$$
=2520 \mathrm{~cm}
$$

42. (D)

$\mathrm{AB}|\mid \mathrm{CF}$
$\angle \mathrm{DFE}=110^{\circ}$
$\angle \mathrm{CDE}=110^{\circ}+20^{\circ}$
(sum of two interior angles equal to exterior angle)
$x=130^{\circ}$
43. (B)

$\Delta \alpha \beta \phi \cong \Delta \psi \beta \gamma$
$\frac{\alpha \beta}{\beta \phi}=\frac{\beta \psi}{\beta \gamma}=\frac{\alpha \beta}{\gamma \psi}$
$\beta \phi \times \phi \psi=\psi \phi \times \phi \gamma$
$\alpha \beta \times \beta \gamma=\psi \phi \times \beta \psi$
$\beta \alpha \times \beta \gamma=\beta \phi \times \beta \psi$
put value of $\beta \phi \times \beta \psi+\psi \phi \times \phi \psi=\beta \psi$
$(\beta \phi+\psi \phi)$
$=(\beta \psi)^{2}$
44. (C) $\angle \mathrm{CAD}=\frac{180^{\circ}}{\text { Number of sides }}=\frac{180^{\circ}}{5}=36^{\circ}$
45. (B) $\mathrm{SI}=\frac{12000 \times 3 \times r}{100}=360 \mathrm{r}$

Remaining principal 12000-6500
$=5500$
Again SI $=\frac{5500 \times r \times 2}{100}=110 r$
$5500+110 r+360 r=9260$
$470 r=9260-5500$
$r=8 \%$
46. (A) $\frac{1}{1-x}-\frac{1}{1+x}-\frac{2 x}{1+x^{2}}-\frac{4 x^{3}}{1+x^{4}}-\frac{8 x^{7}}{1+x^{8}}-\frac{16 x^{15}}{1-x^{16}}$

$$
=\frac{1+x-1+x}{1-x^{2}}-\frac{2 x}{1+x^{2}}-\frac{4 x^{3}}{1+x^{4}}-\frac{8 x^{7}}{1+x^{8}}-\frac{16 x^{15}}{1-x^{16}}
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=\frac{2 x}{1-x^{2}}-\frac{2 x}{1+x^{2}}-\frac{4 x^{3}}{1+x^{4}}-\frac{8 x^{7}}{1+x^{8}}-\frac{16 x^{15}}{1-x^{16}}$
$=\frac{4 x^{3}}{1-x^{4}}-\frac{4 x^{3}}{1+x^{4}}-\frac{8 x^{7}}{1+x^{8}}-\frac{16 x^{15}}{1-x^{16}}$
Similarly it becomes
$=\frac{16 x^{15}}{1-x^{16}}-\frac{16 x^{15}}{1-x^{16}}=0$
47. (D) $\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]+\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]+\ldots . .+\left[\frac{1}{9^{2}}-\frac{1}{10^{2}}\right]$
$=\frac{1}{1}-\frac{1}{10^{2}}=\frac{99}{100}$
48. (D) $x+\frac{4}{x}=4$
$x^{2}+4=4 x$
$x^{2}-4 x+4=0$
$(x-2)^{2}=0$
$x=2$
$x^{2}+\frac{1}{x^{3}}=(2)^{2}+\frac{1}{(2)^{3}}=4 \frac{1}{8}$
49. (A) Diagonal of inner most square is 2 cm .

After that diagonal will increase by 2 ,
So, diagonal of seventh square will be 14,
Area of seventh square will be 14 ,
Area of seventh square $=\frac{14^{2}}{2}=98 \mathrm{~cm}^{2}$
Area of eight square $=\frac{16^{2}}{2}=128 \mathrm{~cm}^{2}$
Difference $=30$ square unit
$\frac{1}{3} \times 3 \times \frac{5}{7}+\frac{1}{2} \times 2 \times \frac{4}{5}+\frac{1}{7} \times 1 \times \frac{4}{5}$
50. (C) $\frac{1}{3} \times 3 \times \frac{2}{7}+\frac{1}{2} \times 2 \times \frac{1}{5}+\frac{1}{7} \times 1 \times \frac{1}{5}$
$=\frac{\frac{5}{7}+\frac{4}{5}+\frac{4}{35}}{\frac{2}{7}+\frac{1}{5}+\frac{1}{35}}$
$=\frac{25+28+4}{10+7+1}$
$=\frac{57}{18}$
$\%=\frac{18}{75} \times 100 \%=24 \%$
51. (D) $\tan \alpha=1, \tan \beta=\sqrt{3}$
$\sin \alpha=\frac{\tan \alpha}{\sqrt{1+\tan ^{2} \alpha}}=\frac{1}{\sqrt{2}}$
$\cos \alpha=\frac{1}{1+\tan ^{2} \alpha}=\frac{1}{\sqrt{2}}$
$\tan \beta=\sqrt{3}, \sin \beta=\frac{\sqrt{3}}{\sqrt{1+3}}=\frac{\sqrt{3}}{2}$
$\cos \beta=\frac{1}{\sqrt{1+3}}=\frac{1}{2}$
$\therefore \cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta$
$=\frac{1}{\sqrt{2}} \cdot \frac{1}{2}-\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}$
$=\frac{1-\sqrt{3}}{2 \sqrt{2}}$
52. (C)

$B=\frac{60}{4-3}=60 \mathrm{hrs}$
53. (A)
$\frac{\frac{m}{\frac{m-n}{n}}-\frac{m}{m+n}}{\frac{n}{m-n}-\frac{n}{m+n}}+\frac{\frac{m+n}{m-n}-\frac{m-n}{m+n}}{\frac{m+n}{m-n}-\frac{m-n}{m+n}} \times \frac{m^{2}}{m^{2}+n^{2}}$
$=\frac{m(m+n)-m(m-n)}{n(m+n)-n(m-n)}+$
$\frac{(m+n)^{2}+(m-n)^{2}}{(m+n)^{2}-(m-n)^{2}} \times \frac{m^{2}}{m^{2}+n^{2}}$
$\frac{2 m n}{2 n^{2}}+\frac{2\left(m^{2}+n^{2}\right)}{4 m n} \times \frac{m^{2}}{\left(m^{2}+n^{2}\right)}$
$=\frac{m}{n}+\frac{m}{2 n}=\frac{2 m+m}{2 n}=\frac{3 m}{2 n}$
54. (C)

$C=\frac{60}{6+4-5}=12 \mathrm{hrs}$
55. (C)

Campus

KD Campus Pvt．Ltd

2007，OUTRAM LINES，1ST FLOOR，OPPOSITE MUKHERJEE NAGAR POLICE STATION，DELHI－110009
$\tan \angle \mathrm{EFF}_{1}=\frac{\mathrm{F}_{1} \mathrm{E}}{\mathrm{FE}}$
$\tan \angle \mathrm{EFF}_{1}=\frac{2}{1}=\tan \angle \mathrm{EFF}_{2}$
$\tan \angle \mathrm{~F}_{1} \mathrm{FF}_{2}=\frac{2 \times 2}{1-2 \times 2}=-\frac{4}{3}$

56．（C）$\frac{40}{S_{B}}=\sqrt{\frac{\frac{1}{2}}{2}}=\frac{1}{2}$
$S_{B}=80 \mathrm{~km} / \mathrm{hrs}$

57．（A）

Let $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{P} \mathrm{cm}$
$\angle \mathrm{BAC}=\angle \mathrm{ACB}=\angle \mathrm{ABC}=60^{\circ}$
Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4} \times(\text { side })^{2}=\frac{\sqrt{3}}{4}(2 \mathrm{P})^{2}$
$=\sqrt{3} \mathrm{P}^{2} \mathrm{~cm}^{2}$
Area of three sectors $=3 \times \frac{60}{360} \times \pi \mathrm{P}^{2}$

$$
=\frac{\pi \mathrm{P}^{2}}{2} \mathrm{~cm}^{2}
$$

\therefore Area of shaded portion $=\sqrt{3} P^{2}-\frac{\pi}{2} P^{2}$
$=\left(\frac{2 \sqrt{3}-\pi}{2}\right) P^{2} \mathrm{~cm}^{2}$
58．（C）Speed $=\frac{45 \times 40}{30}=60 \mathrm{~km} / \mathrm{hr}$
59．（B） $\mathrm{CP}_{1} \times \frac{119}{100}=\mathrm{CP}_{2} \times \frac{85}{100}$
$\mathrm{CP}_{1}: \mathrm{CP}_{2}=5: 7$
C．$P_{1}=\frac{5}{12} \times 4800=2000$
C． $\mathrm{P}_{2}=2800$
then selling price of second Article SP_{2}
$=\frac{85}{100} \times 2800=2380$
60．（C） $\begin{aligned} 4 \mathrm{~km} / \mathrm{hr} & +15 \Rightarrow+60 \\ 6 \mathrm{~km} / \mathrm{hr} & -10 \Rightarrow-60\end{aligned}$

| $6 \mathrm{~km} / \mathrm{hr} \quad-10$ | $\Rightarrow-60$ |
| :--- | :--- | :--- |
| 2 | $\Rightarrow 120$ |

$\mathrm{T}=\frac{120}{2}=60 \mathrm{~min}$
$\mathrm{D}=4\left(1+\frac{15}{60}\right) \mathrm{km}$
$=4 \times \frac{5}{4}=5 \mathrm{~km}$
61．（C）Area of circle $=9 p$
$P \mathrm{pr}^{2}=9 \mathrm{p}$ 巨 $\mathrm{r}=3$
So，d＝height＝ 6
Now in triangle ADB，
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} \mathrm{E}(2 x)^{2}=6^{2}+x^{2}$
巨 $4 x^{2}=36+x^{2}$ у $3 x^{2}=36$
巨 $x^{2}=12$ 巨 $x=\sqrt{12}$ 巨 $x=2 \sqrt{3}$ units
$\backslash \mathrm{DB}=2 \sqrt{3}$ 巨 $\mathrm{CD}=2 \mathrm{DB}=4 \sqrt{3}$
So，the base of equilateral triangle $=4 \sqrt{3}$
\backslash Area of equilateral $\mathrm{DABC}=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times 4 \sqrt{3} \times 6=12 \sqrt{3}$ sq．units
62．（B）Required time $=\frac{60 \times \frac{1}{2}}{15}=2 \mathrm{hr}$
Distance $=75 \times 2=150 \mathrm{~km}$

63．（A）

In $\triangle \mathrm{OAB}$
$\cos 40^{\circ}=\frac{A B}{O B}$
$\cos 40^{\circ}=\frac{r}{\phi}$
$\therefore r=\phi \cos 40^{\circ}$
$\because 40^{\circ} \beta=\phi \cos 40^{\circ}$
64．（B）

Required time $=\frac{1}{5} \times 60=12 \mathrm{~min}$
65．（B）

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\mathrm{AD}=h$
Let $\mathrm{CD}=x$
$\mathrm{BC}=1$
$\angle \mathrm{XAB}=30^{\circ}=\angle \mathrm{ABD}$ asnd
$\angle \mathrm{XAC}=45^{\circ}=\angle \mathrm{ACD}$
In $\mathrm{DAB}, \tan 30^{\circ}=\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{h}{x+1}$
$\frac{1}{\sqrt{3}}=\frac{h}{x+1}$
$x=\sqrt{3} h-1$
Again $\triangle \mathrm{ACD}$
$\tan 45^{\circ}=\frac{\mathrm{AD}}{\mathrm{CD}}=\frac{h}{x}$
$\Rightarrow 1=\frac{h}{x}$
$\Rightarrow h=x$
\therefore From (i)
$(\sqrt{3}-1) h=1$
$\frac{1}{\sqrt{3}-1}=\frac{1}{0.732}=1.366 \mathrm{Km}$
66. (A)
67. (C) $\mathrm{PQ}=(\mathrm{PS}-\mathrm{SQ})=(\mathrm{PS}-\mathrm{PT})$ and ST
$=(\mathrm{PS}-\mathrm{PT}) \Rightarrow \mathrm{PQ}=\mathrm{ST}$
In $\triangle P Q R$ and $\triangle \mathrm{STU}$, we know
$\mathrm{PQ}=\mathrm{ST}$ (proved)
$R Q=T U$ (given)
$\angle \mathrm{PQR}=\angle \mathrm{UTS}$
$\therefore \triangle \mathrm{PQR} \cong \triangle \mathrm{STU}$
68. (D) $\mathrm{B}: \mathrm{A}=1: 2$

A: $\mathrm{C}=1: 3$
B:A:C = 1:2:6
$\mathrm{A}: \mathrm{B}: \mathrm{C}=2: 1: 6$
69. (D) $\because 5 a 7+815=13 b 2$
$\therefore 815=13 b 2-5 a 7$
We get $a=1, b=3$
then $(a+b)^{3}=(3+1)^{3}=64$
70. (A) $\mathrm{CP}=\frac{63}{12} \times \frac{100}{105} \times 50=₹ 250$

Loss $=\frac{2.5}{250} \times 100 \%=1 \%$
71. (A) Difference $=15$
$23^{\text {rd }}$ term $\left(t_{23}\right)=a+(n-1) d$
$=15+(23-1) 15=345$
$=27^{\text {th }}$ term $\left(t_{27}\right)=a+(n-1) d$
$=15+(27-1) 15=405$
then $27^{\text {th }} \times 23^{\text {th }}=139725$
72. (A) Volume $=3 \sqrt{8 \times 2} \times 8$
$=3 \times 4 \times 8=96 \mathrm{~cm}^{3}$
73. (B) $\frac{18}{x+y}+\frac{12}{x-y}=3$
$\frac{24}{x+y}+\frac{36}{x-y}=\frac{13}{2}$

Down stream distance : $\begin{aligned} & 18 \\ & 24\end{aligned}>12\left\{\begin{array}{l}x=\begin{array}{l}\text { speed } \\ \text { of boat }\end{array}\end{array}\right.$
upstream distance : $\left.\begin{array}{l}12 \\ 36\end{array}\right\rangle_{8}\left\{\begin{array}{l}y=\begin{array}{l}\text { speed } \\ \text { of current }\end{array} \\ \hline\end{array}\right.$
$\because x+y=12$
and $x-y=8$
satisfies above equations,
therefore $y=\frac{12-8}{2}=2 \mathrm{~km} / \mathrm{h}$
$=2 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}$
Speed of current $\Rightarrow 2 \times \frac{5}{18}=\frac{5}{9} \mathrm{~m} / \mathrm{s}$
74. (B) Required area $=\frac{42 \times 14-3 \pi \times 7 \times 7}{2}$
$=\frac{588-462}{2}=\frac{126}{2}=63 \mathrm{~cm}^{2}$
75. (B) $\tan ^{2} \alpha=1-\beta^{2}$
$\therefore \sec \alpha+\tan ^{3} \alpha \cdot \operatorname{cosec} \alpha$
$\Rightarrow \sec \alpha+\tan ^{2} \alpha \cdot \tan \alpha \cdot \operatorname{cosec} \alpha$
$\Rightarrow \sec \alpha+\tan ^{2} \alpha \cdot \sec \alpha$
$\Rightarrow \sec \alpha\left(1+\tan ^{2} \alpha\right)$
$=\sqrt{1+\tan ^{2} \alpha}\left(1+\tan ^{2} \alpha\right)$
$\Rightarrow\left(1+\tan ^{2} \alpha\right)^{3 / 2}=\left(1+1-\beta^{2}\right)^{\frac{3}{2}}$
$\Rightarrow\left(2-\beta^{2}\right)^{\frac{3}{2}}$
76. (C) $\mathrm{AB}: \mathrm{AC}=5: 7$
$\mathrm{BD}=\frac{5}{12} \times 20=\frac{25}{3} \mathrm{~cm}$
77. (B)

Camel (I) Camel (II)
CP 100x 100y
Profit $1 \quad 10 x \quad 20 y$
Profit $2 \quad \underline{20 x} 10 y$

78. (B) $28.49=\frac{1}{3} \pi\left(28^{2}+21^{2}+28 \times 21\right) h$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$h=15 \mathrm{~cm}$
79. (C) $36 \times 8=288$
$13 \times 8=\frac{+104}{392}$ $+32$ 424 $\underline{-56}$ (died) 368 $+24$ 392 -48 (died)
Sum 344
required answer $=\frac{344}{8}=43$ years
80. (C) $b h=540 \times 2=1080$
$(b+p)^{2}=b^{2}+h^{2}+2 b h$
$=(51)^{2}+2 \times 1080$
$=4761$
$b+p=69 \mathrm{~cm}$
Perimeter $=69+51=120 \mathrm{~cm}$
81. (B) $\because A+2 A=3 A$
$\because \cot (A+2 A)=\cot 3 A$
or $\frac{\cot A \cot 2 A-1}{\cot 2 A+\cot A}=\cot 3 A$
$\Rightarrow \cot \mathrm{A} \cot 2 \mathrm{~A}-1=\cot 3 \mathrm{~A} \cot 2 \mathrm{~A}+(\cot 3 \mathrm{~A}$ $\cot \mathrm{A}$)
$\Rightarrow \cot \mathrm{A} \cot 2 \mathrm{~A}-1=\cot 3 \mathrm{~A} \cot 2 \mathrm{~A}+\cot$
$3 \mathrm{~A} \cot \cot \mathrm{~A} \cot 2 \mathrm{~A}-\cot 3 \mathrm{~A} \cot 2 \mathrm{~A}-\cot$
$3 \mathrm{~A} \cot \mathrm{~A}=1$
82. (B) $\mathrm{B}: \mathrm{C}=6: 5$
$\mathrm{C}: \mathrm{A}=4: 5$
B : C : A = $24: 20: 25$
A: $\mathrm{C}=25: 20$
83. (A) $\left(3^{123}-3^{122}-3^{121}\right)\left(2^{121}-2^{120}-2^{119}\right)\left(\left(2^{3}-3\right) \cdot 2\right)$
$\Rightarrow 3^{121}\left(3^{2}-3^{1}-1\right)_{2}^{119}\left(2^{2}-2-1\right)\left(\left(2^{3}-3\right) \cdot 2\right)$
$=3^{121} \times \underline{5 \times 2}^{119} \times \underline{5 \times 2}$
$=2$
\because It makes 2 zero
84. (C) $x^{2}+\frac{1}{x^{2}}=3+2=5$
85. (D) Let principal $=₹ x$

Then amount $=\frac{8 x}{5}$
Then simple interest $=\left(\frac{8 x}{5}-x\right)=\frac{3 x}{5}$ time $=5$ years
Then,
Rate $\%=\left(100 \times \frac{3 x}{5} \times \frac{1}{x} \times \frac{1}{5}\right) \%$
86. (B) It is triplet so,

Area $=\frac{4}{3} \times \frac{1}{2} \times 18 \times 7.5=90 \mathrm{~cm}^{2}$
87. (C) Total prime no. between 1 to $100=25$

Their sum $=1060$
Required sum $=\frac{1060}{25} \times \frac{2}{3}=28.26$
88. (B) $\mathrm{h}=9 \mathrm{~cm}=\frac{\sqrt{3}}{2} \mathrm{a}$

$$
\mathrm{a}=\frac{9 \times 2}{\sqrt{3}} \mathrm{~cm}=6 \sqrt{3} \mathrm{~cm}
$$

89. (C)
90. (D) $a=\sqrt{3+a}$
$a^{2}=3+a$
$a^{2}-a-3=0$
$a=\frac{1 \pm \sqrt{1+12}}{2}=\frac{1 \pm \sqrt{13}}{2}$
$a=\frac{1-\sqrt{13}}{2}<0$ (not possible)
or
$a=\frac{1+\sqrt{13}}{2}=\frac{1+3.6}{2}=\frac{4.6}{2}=2.3$
$\therefore 2<a<3$
91. (D) Unit place of $25^{6251}+36^{528}+73^{50}$

$$
=5+6+9=' 0 '
$$

92. (D) Required number $=Y$ in $2014+\mathrm{Y}$ in 2015

$$
\begin{aligned}
& =(25 \times 1000)+(15 \times 1000) \\
& =40 \times 1000 \\
& =40000
\end{aligned}
$$

93.(D) Required $\%=\frac{(X+Y+Z) \text { in } 2013}{(X+Y+Z) \text { in } 2014} \times 100$

$$
=\frac{55 \times 1000}{60 \times 1000} \times 100=91.67 \%
$$

94.(A) Required $\%=\frac{X \text { in } 2012}{(X+Y+Z) \text { in } 2012} \times 100$

$$
=\frac{10 \times 1000}{55 \times 1000} \times 100=18 \% \text { (approx) }
$$

95.(C) Required Average

$$
\begin{aligned}
& =\frac{(5+10+25+20+25+15) \times 1000}{6} \\
& =\frac{100000}{6}=16666 \frac{2}{3}
\end{aligned}
$$

96.(B) Respective Ratio $=(Z$ in 2011): $(Z$ in 2010 $)$

$$
\begin{aligned}
& =(15 \times 1000):(10 \times 1000) \\
& =3: 2
\end{aligned}
$$

97. (A) Percent rise/fail in number of students who left the school to the previous year in

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

2011
$=\frac{\text { Rise in no. of students left in } 2011}{\text { No. of students who left in } 2010} \times 100$
$=\frac{200}{250} \times 100=80 \%$ increase
Students left in $2012=\frac{50}{450} \times 100$
$=11 \frac{1}{9} \%$ decrease
Student left in 2013
$=\frac{50}{400} \times 100$
$=\frac{1}{8} \times 100=12 \frac{1}{2} \%$ decrease
Student left in 2014
$=\frac{100}{350} \times 100$
$=28 \frac{4}{7} \%$ increase
\therefore Maximum rise/fail was in year 2011 .
98. (B) Number of students in school in 2012
$=3000$
In 2013, strength of school $=3150$
In 2014, 400 students join and 450 left
\Rightarrow Net 50 students left in 2014
\therefore Strength of students in 2014
= 3150-50
$=3100$
In 2015,550 students join and 450 students left \Rightarrow Net 100 students join school in 2015
\therefore Strength of school in 2015
$=3100+100$
$=3200$
Percent of students studying in school in 2012 to that in 2015
$=\frac{3000}{3200} \times 100=93 \frac{3}{4} \%=93.75 \%$
99. (D) Least number of students who join the school = 300 (in 2011)
Maximum number of students left the school $=450($ in 2015 $)$
\therefore Required Ratio $=\frac{300}{450}=\frac{2}{3}=2: 3$
100. (B) Strength of school in $2011=2950$

Strength of school in $2012=3000$
Percent increase in strength of school from (2011 to 2012)
$=\frac{50}{2950} \times 100 \approx 1.7 \%$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC MAINS (MATHS) MOCK TEST-12 (ANSWER KEY)

1. (B)	$16 .(\mathrm{B})$	$31 .(\mathrm{C})$	$46 .(\mathrm{A})$	$61 .(\mathrm{D})$	$76 .(\mathrm{C})$
2. (A)	17. (A)	32. (D)	$47 .(\mathrm{D})$	62. (B)	97. (B)

