## SSC MAINS (MATHS) MOCK TEST-10 (SOLUTION)

1. (B)

$x$ and $y$ together can finish the job
$=\frac{8}{3} \times 60=160$ minutes
2. (A) $\frac{\mathrm{M}_{1} \mathrm{D}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2}}{\mathrm{~W}_{2}}$
$\frac{200 \times 50}{\frac{1}{4}}=\frac{(200+x) \times(150-50)}{\frac{3}{4}}$
$200 \times 50 \times 4 \times 3=(200+x) \times 100 \times 4$

$$
\begin{aligned}
200+x & =300 \\
x & =100
\end{aligned}
$$

Extra workers needed $=100$
3. (A) $x$ can copy 80 pages in 20 hrs
$x$ can copy 20 pages in $\frac{20}{80} \times 20=5 \mathrm{hrs}$ $x$ and $y$ can copy 135 pages in 27 hrs So, $x$ and $y$ can copy 20 pages in
$\frac{27}{135} \times 20=4 \mathrm{hrs}$
$\begin{array}{cc}x+y & 4 \sum_{\text {sum } \longrightarrow 1}^{20} \\ x & 5 \\ 4\end{array}$
So, $y$ can copy 20 pages in $\frac{20}{1}=20 \mathrm{hrs}$.
4. (B) ATQ,
$x$ can complete the job $=6 \times 4=24$ days
$y$ can complete the job $=12 \times \frac{4}{3}$
$=16$ days
$\begin{array}{ll}x & 24 \\ y & 16 \sum_{\text {sum } \rightarrow 5}^{4}\end{array}{ }^{2}$
So, time taken by $x$ and $y$ to complete the
job $=\frac{48}{5}=9 \frac{3}{5}$ days
5. (B) ATQ,

Amount paid by Mr. $x$
$=10-8.5-\frac{10 \times 8.5}{100}$
= 0.65\%
Amount paid by Mr. $y$
$=-8.5+10-\frac{10 \times 8.5}{100}=0.65 \%$
6. (D) Percentage profit
$=25-10-\frac{25 \times 10}{100}=12.5 \%$
7. (D) Total reduction
$=20+10-\frac{20 \times 10}{100}=28 \%$
8. (A) Total marked price $=₹ 120000$

ATQ,
Total cost price $=120000 \times \frac{3}{4}-7500$
= ₹ 82500
So, cost of each window
$=₹ \frac{82500}{25}=₹ 3300$
9. (C) $\mathrm{A}: \mathrm{B}=\frac{1}{2}: \frac{1}{3}=3: 2$
$B: C=\frac{1}{5}: \frac{1}{3}=3: 5$
A: B:C=9:6:10
So,
$(A+B):(B+C)=(9+6):(6+10)$ = $15: 16$
10. (D) $\mathbf{A}$

## B

For first 8 months $200 \times 8: 100 \times 8$
For next 2 months $200 \times 2: 50 \times 2$
For last 2 months $150 \times 2: 50 \times 2$

$$
2300: 1000
$$

Ratio of profit of A and $\mathrm{B}=23: 10$
11. (D) Let each bus has 100 seats

After leaving, seats needed to be occupied
$=3 \times 100 \times \frac{4}{5} \times \frac{3}{4}=180$
Required fraction $=\frac{180}{200}=\frac{9}{10}$
12. (A)

A $\begin{gathered}\text { A }: \quad \text { B : } \quad \mathbf{C} \\ \text { For first } 6 \text { months } 300 \times 6: 500 \times 6: 0 \times 6\end{gathered}$
For last 6 months $\underline{300 \times 6: 500 \times 6: 500 \times 6}$

$$
3600: 6000: 3000
$$

So,
Ratio of profit of A, B and C
$=3600: 6000: 3000=6: 10: 5$
13. (A) Initially, ratio of story books and other books $=7: 2$
Story books = 1512
So, other books $=\frac{2}{7} \times 1512=432$
Finally, ratio of story books and other books = 15:4

Other books $=432$
So, total story books $=432 \times \frac{15}{4}=1620$
The number of story books collected $=1620-1512=108$
14. (A) Ratio of numbers $=7: 9$

Product of numbers $=1575$
So, greater number $=9 \times \sqrt{\frac{1575}{7 \times 9}}=9 \times 5$ $=45$
15. (C) ATQ,

The weight of $12^{\text {th }}$ person
$=95+33+\frac{33}{11}=131 \mathrm{~kg}$
16. (A) Largest 3-digit number formed by 0, 2 and $4=420$
Smallest 3-digit number form by 0, 2 and $4=204$
Average of numbers $=\frac{420+204}{2}=312$
17. (A) Average of six numbers $=3.95$

Average of first two numbers $=3.4$
Average of next two numbers $=3.85$
The average of remaining numbers
$=\frac{3.95 \times 6-3.4 \times 2-3.85 \times 2}{2}=4.6$
18. (A) Let eight even numbers are
$a, a+2, a+4, a+6, a+8, a+10, a+12$ and $a+14$
So,

$$
\begin{aligned}
& a+(a+2)+(a+4) \\
& +(a+6)+(a+8) \\
& +(a+10)+(a+12) \\
& \frac{+(a+14)}{8}=93 \\
& a+7=93 \\
& a=86 \\
& \text { So, the largest number }=86+14=100
\end{aligned}
$$

19. (C) $\frac{3 a+4 b}{2}>50$
$3 a+4 b>100$
$3(2 b)+4 b>100$
$10 b>100$
$b>10$
So, $a=2 b>20$
So, least value of $a$ is 21
20. (C) Required average $=\frac{3^{30}+3^{60}+3^{90}}{3}$

$$
=\quad 3^{29}+3^{59}+3^{89}
$$

21. (C) Let C. P. of watch $=₹ 100$


So, actual cost price $=100 \times \frac{30}{12}=₹ 250$
22. (A) Let cost price $=₹ 100$

Loss = 20\%
$50 \%$ of selling price $=₹ 80$
So, actual selling price $=₹(80 \times 2)$

$$
\text { = ₹ } 160
$$

Percentage gain $=\frac{160-100}{100} \times 100$
$=60 \%$
23. (D) Selling price of mixed tea $=₹ 320 / \mathrm{kg}$

Cost price of mixed tea $=320 \times \frac{5}{6}$
$=₹ \frac{800}{3}$


Required ratio $=\frac{40}{3}: \frac{260}{3}=2: 13$
24. (C) Selling price ${ }_{1}=$ ₹ $P$

Profit = 12\%
Cost price $=₹\left(\frac{100}{112} \times \mathrm{P}\right)$
Selling price ${ }_{2}=₹ \mathrm{Q}$
Loss = 4\%
Cost price $=₹\left(\frac{100}{96} \times Q\right)$
ATQ,
Cost price $=$ Cost price
$\frac{100}{96} \times \mathrm{Q}=\frac{100}{112} \times \mathrm{P}$
$\mathrm{Q}: \mathrm{P}=96: 112=6: 7$
25. (D) Selling price of $B=$ Cost price of $C=₹ P$ Loss of B = 25\%
Selling price of $A=$ Cost price of $B$
$=₹\left(\mathrm{P} \times \frac{100}{75}\right)$
Profit of $A=20 \%$
Cost price of A
$=₹\left(\mathrm{P} \times \frac{100}{75} \times \frac{100}{120}\right)=₹ \frac{10}{9} \mathrm{P}$
26. (A) Cost price $=₹ 25$

Selling price $=₹ 30$
Profit percent $=\frac{30-25}{25} \times 100=20 \%$
27. (C) Let population of country $=x$

Population of country after increase in
population $=x \times \frac{120}{100} \times \frac{120}{100} \times \frac{120}{100}$
$=1.728 x$
Percentage increase
$=\frac{1.728 x-x}{x} \times 100=72.8 \%$
28. (A) The number of days the same amount of juice would last is $=35 \times \frac{100}{140}=25$ days
29. (C) Price of book after discount $=₹ 270$

If discount is between $20 \%$ and $25 \%$ then maximum possible original price
$=270 \times \frac{100}{75}=₹ 360$
30. (C) Ratio of cost price and selling price
= $10: 11$
Profit percent $=\frac{11-10}{10} \times 100=10 \%$
31. (D) Let time taken upstream $=2 x$

Then time taken downstream $=x$
Ratio of speed of downstream and upstream =2:1
So, ratio of speed of boat in still water and
of current is $=\frac{2+1}{2}: \frac{2-1}{2}=3: 1$
32. (D) $\mathrm{P}_{1}(\uparrow$


Time taken by both pipes to fill the tank
$=\frac{16}{3}=5 \frac{1}{3}$ hours
33. (A) Average speed of farmer $=\frac{61}{9} \mathrm{~km} / \mathrm{hr}$


Ratio of time with speed of $4 \mathrm{~km} / \mathrm{hr}$ and 9
$\mathrm{km} / \mathrm{hr}=\frac{20}{9}: \frac{25}{9}=4: 5$
So, distance travelled on foot $=4 \times 4=16$ kms
34. (C) ATQ,

Upstream speed $=\frac{36}{6}=6 \mathrm{kms} / \mathrm{hr}$
Downstream speed $=\frac{48}{6}=8 \mathrm{kms} / \mathrm{hr}$
The speed of current $=\frac{8-6}{2}=1 \mathrm{~km} / \mathrm{hr}$
35. (C) Let principal = P

ATQ,
$\mathrm{P}\left(1+\frac{10}{100}\right)^{2}-\mathrm{P}\left(1+\frac{10}{100}\right)=132$
$\mathrm{P}\left(\frac{121}{100}-\frac{11}{10}\right)=132$
$\mathrm{P}=\frac{132 \times 100}{11}=₹ 1200$
36. (B) ATQ,
$\frac{\mathrm{P} \times 5 \times 1}{100}=365$
$\mathrm{P}=₹ 7300$
So, principal $=₹ 7300$
37. (C) Amount $=\mathrm{S}\left(1+\frac{2 r}{100}\right)^{3}=\mathrm{S}\left(1+\frac{r}{50}\right)^{3}$
38. (A) ATQ,
$P\left(1+\frac{10}{100}\right)^{2}=2420$
$P=₹ 2000$
39. (A)


The whole surface area
$=$ Area of base + curved surface area of cylinder + curved surface of cone
$=\pi r^{2}+2 \pi r h+\pi r l$
$=\pi(3)^{2}+2 \pi(3) \times 4+\pi \times 3 \times \sqrt{3^{2}+4^{2}}$
$=9 \pi+24 \pi+15 \pi=48 \pi$
40. (A)

$\mathrm{AC}=\sqrt{6^{2}-3^{2}}=3 \sqrt{3}$
In $\triangle \mathrm{ABC}$ and $\Delta \mathrm{CDE}$
$\angle \mathrm{E}=\angle \mathrm{A}$
$\angle \mathrm{C}=\angle \mathrm{C}$
$\Delta \mathrm{ABC} \sqcup \Delta \mathrm{EDC}$
$\frac{\mathrm{DE}}{\mathrm{CD}}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\mathrm{CD}=\frac{1 \times 6}{3}=2$
$\mathrm{CF}=\mathrm{CD}+\mathrm{DF}=2+1=3$
$\mathrm{FG}=\frac{3 \times 3}{3 \sqrt{3}}=\sqrt{3}$
Required volume $=\frac{1}{3} \times \pi \times(\sqrt{3})^{2} \times 3-$
$\frac{4}{3} \pi(1)^{3}=\frac{9 \pi}{3}-\frac{4 \pi}{3}=\frac{5 \pi}{3}$
41. (A) Area of triangle
$=\frac{1}{2} \times$ inradius $\times$ sum of length of sides
$=\frac{1}{2} \times 6 \times 50=150$ sq. cm
42. (C)

$\frac{\mathrm{AB}}{\mathrm{AC}}=\sin 15^{\circ}$
$\mathrm{AB}=\frac{\sqrt{3}-1}{2 \sqrt{2}} \times 1=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
$B C=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} \times\left(\frac{\sqrt{3}-1}{2 \sqrt{2}} \times 100\right) \times\left(\frac{\sqrt{3}+1}{2 \sqrt{2}} \times 100\right) \mathrm{cm}^{2}$
$=\frac{1}{2} \times \frac{3-1}{8} \times 10000=1250$ sq. cm .
43. (C) Height of glass $=\binom{\begin{gathered}\text { Number of drops } \\ \times \text { volume of drops }\end{gathered}}{\frac{1}{3} \times$ Base area }
$\Rightarrow h=\frac{32000 \times \frac{4}{3} \times \pi \times\left(\frac{1}{20}\right)^{3}}{\frac{1}{3} \times \pi \times\left(\frac{h}{2}\right)^{2}}$
$\Rightarrow h^{3}=64$
$\therefore h=4 \mathrm{~cm}$
44. (C) ATQ,

Height $=4 \times$ circumference
$h=4 c$
Volume of cylinder $=\pi r^{2} h$
$=\frac{(2 \pi r)^{2}}{4 \pi} \times h$
$=\frac{c^{2}}{4 \pi} \times 4 c=\frac{c^{3}}{\pi}$
45. (B)
46. (C) ATQ,

Area of isosceles triangle
$=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$ sq. units
47. (C) External diameter $=728 \mathrm{~m}$

Internal diameter $=700 \mathrm{~m}$
So, breadth of road

External diameter
$=\frac{\begin{array}{c}\text { internal diameter }\end{array}}{2}$
$=\frac{728-700}{2}=14 \mathrm{~m}$
48. (B) Radius of circle $=84 \mathrm{~cm}$

Perimeter of square $=$ Circumference of
circle $=2 \pi r=2 \times \frac{22}{7} \times 84=528 \mathrm{cms}$
Length of the side of square $=\frac{528}{4}$
$=132 \mathrm{~cm}$
49. (A) Increase in area $=5+5+\frac{5 \times 5}{100}=10.25 \%$
50. (D)

$S=\frac{20+30+40}{2}=45 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}$
$=\sqrt{45(45-20)(45-30)(45-40)}$
$=\sqrt{45 \times 25 \times 15 \times 5}$
$=75 \sqrt{15} \mathrm{~cm}^{2}$
Area of $\sqcup \mathrm{ABCD}=2 \times$ Area of $\triangle \mathrm{ABC}$
$=2 \times 75 \sqrt{15}$
$=150 \sqrt{15} \mathrm{~cm}^{2}$
51. (D) Let side of square $=a \mathrm{~cm}$

Area of square $=\pi a^{2} \mathrm{~cm}^{2}$
Area of new square
$=\pi\left(a \times \frac{150}{100}\right)^{2}=\frac{9}{4} \pi a^{2}$
Required ratio $=\frac{9}{4} \pi a^{2}: \pi a^{2}=9: 4$
52. (A) Area of circle $=324 \pi \mathrm{sq} \mathrm{cm}$

Length of longest chord
$=$ Diameter $=2 \times \frac{\sqrt{324 \pi}}{\pi}=36 \mathrm{~cm}$
53. (A) Let length of longer diagonal $=x$ ATQ,
$\frac{1}{2} \times\left(\frac{1}{2} \times x\right) \times x=256$
$x=\sqrt{256 \times 2 \times 2}=32 \mathrm{~cm}$
Length of larger diagonal $=32 \mathrm{~cm}$
54. (D) $m=\sqrt{5+\sqrt{5+\sqrt{5+\ldots \ldots \ldots . \infty}}}$
$m^{2}=5+\sqrt{5+\sqrt{5+\sqrt{5+\ldots \ldots \ldots \ldots}}}$

$$
\begin{align*}
& m^{2}=5+m \\
& m^{2}-m=5 \quad \ldots(\mathrm{i}) \\
& n=\sqrt{5-\sqrt{5-\sqrt{5-\ldots \ldots \infty}}} \\
& n^{2}=5-\sqrt{5-\sqrt{5-\sqrt{5-\ldots \infty}}} \\
& n^{2}=5-n \\
& n^{2}+n=5  \tag{ii}\\
& m^{2}-m=n^{2}+n \\
& m^{2}-n^{2}-m-n=0 \\
& (m+n)(m-n)-1(m+n)=0 \\
& (m+n)(m-n-1)=0 \\
& \text { So, } m-n-1=0
\end{align*}
$$

55. (C) $\frac{3-5 x}{2 x}+\frac{3-5 y}{2 y}+\frac{3-5 z}{2 z}=0$
$\frac{3-5 x}{2 x}+\frac{5}{2}+\frac{3-5 y}{2 y}+\frac{5}{2}+\frac{3-5 z}{2 z}+\frac{5}{2}$
$=\frac{5}{2}+\frac{5}{2}+\frac{5}{2}$
$\frac{3-5 x+5 x}{2 x}+\frac{3-5 y+5 y}{2 y}+\frac{3-5 z+5 z}{2 z}=\frac{15}{2}$
$\frac{3}{2 x}+\frac{3}{2 y}+\frac{3}{2 z}=\frac{15}{2}$
$\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=\frac{15}{2} \times \frac{2}{3} \times 2=10$
56. (A) ATQ,

Related speed of Anita and Romita $=\frac{42}{6}=$
$7 \mathrm{~km} / \mathrm{hr}$
Speed of Anita $=4 \mathrm{~km} / \mathrm{hr}$
Speed of Romita $=(7-4)=3 \mathrm{~km} / \mathrm{hr}$
57. (C) Side of square $=\frac{1}{2}(x+1)$

Diagonal of square $=\frac{3-x}{\sqrt{2}}$
$\frac{3-x}{\sqrt{2}}=\sqrt{2}\left[\frac{1}{2}(x+1)\right]$
$3-x=x+1$
$x=1$ unit
Side of square $=1$ unit
58. (A) $2 \mathrm{~S}=a+b+c$

Let $a=1, b=2$ and $c=3$
$s=\frac{1+2+3}{2}=3$
$s(s-c)(s-a)(s-b)$
$=3 \times(3-3)+(3-1)(3-2)$
$=2$
(A) $a b=1 \times 2=2(\checkmark)$
(B) $a b c=1 \times 2 \times 3=6 \quad(\times)$
(C) $0(\times)$
(D) $\frac{a+b+c}{2}=\frac{1+2+3}{2}=3(x$
59. (D) ATQ,
$p^{3}+m^{3}+3 p m(p+m)=(p+m)^{3}$
$72+3 p m(6)=(6)^{3}=216$
$18 p m=144 \Rightarrow p m=8$
60. (D) ATQ,
$x^{m} \times m^{n}=1$
$x^{m+n}=x^{0}$
$m+n=0$
$m=-n$
61. (C)


Area of $\triangle \mathrm{ABC}=$ Area of $\Delta \mathrm{OAC}$
$=\frac{1}{2} \times 3 \times 4=6$ sq. units
62. (D) $\frac{2 p}{p^{2}-2 p+1}=\frac{1}{4}$
$\frac{p^{2}-2 p+1}{2 p}=\frac{4}{1}$
$p-2+\frac{1}{p}=8$
$p+\frac{1}{p}=10$
63. (C) ATQ,
$\mathrm{K}^{2}=2 \mathrm{~K}-1$
$(\mathrm{K}-1)^{2}=0$
$K=1$
64. (D)


In $\triangle \mathrm{ADE}$ and $\Delta \mathrm{ABC}$
$\angle \mathrm{A}=\angle \mathrm{A}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
So,
$\triangle \mathrm{ADE} \sqcup \triangle \mathrm{ABC}$
$\frac{\mathrm{AD}}{\mathrm{DE}}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\frac{\mathrm{AD}}{\mathrm{DE}}=\frac{\mathrm{AD}+\mathrm{DB}}{\mathrm{BC}}$
$\frac{\mathrm{DE}}{\mathrm{BC}}=\frac{5}{5+4}=\frac{5}{9}=5: 9$
65. (D)


In $\Delta$ TRO
$\mathrm{RT}=\frac{16}{2}=8 \mathrm{~cm}$
$\mathrm{OR}=17 \mathrm{~cm}$
$\mathrm{OT}=\sqrt{17^{2}-8^{2}}=15 \mathrm{~cm}$
In $\Delta$ TSO
OT $=15 \mathrm{~cm}$
$\mathrm{OS}=25 \mathrm{~cm}$
$\mathrm{TS}=\sqrt{25^{2}-15^{2}}=20 \mathrm{~cm}$
So, length of PS $=2 \times 20=40 \mathrm{~cm}$
66. (A)

$\angle \mathrm{CBA}=180^{\circ}-\angle \mathrm{ACB}-\angle \mathrm{CAB}$
$=180^{\circ}-90^{\circ}-34^{\circ}=56^{\circ}$
67. (A) In equilateral triangle

Inradius : outer radius $=1: 2$
68. (B)


ATQ,
$\sqrt{a^{2}+b^{2}}=10$
$\frac{1}{2} a b=20$
$a b=40$
$(a+b)^{2}=a^{2}+b^{2}+2 a b$
$=(10)^{2}+2(40)=180$
69. (B) Perimeter of triangle $=24 \mathrm{cms}$

Circumference of in-circle $=44 \mathrm{cms}$
Inradius $=\frac{44}{2 \pi}=\frac{44 \times 7}{2 \times 22}=7 \mathrm{cms}$
Area of triangle $=\frac{1}{2} \times$ radius $\times$ perimeter of triangle
$=\frac{1}{2} \times 7 \times 24=84 \mathrm{~cm}^{2}$
70. (C)


Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times a b \sin \theta$
$=\frac{1}{2} \times 10 \times 10 \times \sin 45^{\circ}=25 \sqrt{2}$ sq. cm
71. (C)


In $\sqcup \mathrm{APQO}$
$\angle \mathrm{O}+\angle \mathrm{APO}+\angle \mathrm{OQA}+\angle \mathrm{A}$

$$
=360^{\circ}
$$

$\angle \mathrm{O}=360^{\circ}-90^{\circ}-90^{\circ}-48^{\circ}=132^{\circ}$
So,
$\angle \mathrm{OPQ}=\frac{180^{\circ}-132^{\circ}}{2}=24^{\circ}$
So, $\angle \mathrm{APQ}=90^{\circ}-24^{\circ}=66^{\circ}$
72. (C)


In rectangle ABCD ,
$\mathrm{AB}=4 \mathrm{~m}$
$\mathrm{BC}=3 \mathrm{~m}$
So, length of diagonal AC
$=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}=\sqrt{4^{2}+3^{2}}=5 \mathrm{~m}$
73. (A) Side of triangle $=3: 1 \frac{1}{4}: 3 \frac{1}{4}$
$=3: \frac{5}{4}: \frac{13}{4}=12: 5: 13$
$(12)^{2}+(5)^{2}=144+25$
$=169=(13)^{2}$
So triangle is a right-angled triangle.
74. (A) $2 \sin ^{2} \theta=3 \cos \theta$
$\Rightarrow 2\left(1-\cos ^{2} \theta\right)=3 \cos \theta$
$\Rightarrow 2-2 \cos ^{2} \theta=3 \cos \theta$
$\Rightarrow 2 \cos ^{2} \theta+3 \cos \theta-2=0$
$\Rightarrow 2 \cos ^{2} \theta+4 \cos \theta-\cos \theta-2=0$
$\Rightarrow 2 \cos \theta(\cos \theta+2)-1(\cos \theta+2)=0$
$\Rightarrow(2 \cos \theta-1)(\cos \theta+2)=0$
Either
$\Rightarrow 2 \cos \theta-1=0$ or $\cos \theta+2=0$
$\Rightarrow \cos \theta+2$ never be zero.
So
$\Rightarrow 2 \cos \theta-1=0$
$\Rightarrow \cos \theta=\frac{1}{2}=\cos 60^{\circ}$
$\therefore \theta=60^{\circ}$
75. (D) $a, b$ and $c$ are the sides of the triangle
$a^{2}+b^{2}+c^{2}=a b+b c+c a$ (given)
$2 a^{2}+2 b^{2}+2 c^{2}=2 a b+2 b c+2 c a$
$a^{2}+b^{2}-2 a b+b^{2}+c^{2}-2 b c+c^{2}+a^{2}-2 c a=0$
$(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
So,
$a=b=c$
All angles of the triangle are equal i.e. $\frac{180^{\circ}}{3}$
$=60^{\circ}$
$\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=3 \sin ^{2} 60^{\circ}$
$=3 \times \frac{3}{4}=\frac{9}{4}$
76. (C) $a \sin \theta+b \cos \theta=c$
squaring both sides,
$a \sin ^{2} \theta+b \cos ^{2} \theta+2 a b \sin \theta$
$\cos \theta=c^{2}$
$a^{2}+b^{2}=a^{2}+b^{2}$
Subtracting equation (ii) from (i)
$a^{2}-a^{2} \sin ^{2} \theta+b^{2}-b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta$
$=a^{2}+b^{2}-c^{2}$
$\Rightarrow a^{2}\left(1-\sin ^{2} \theta\right)+b^{2}\left(1-\cos ^{2} \theta\right)-2 a b \sin \theta$ $\cos \theta=a^{2}+b^{2}-c^{2}$
$\Rightarrow a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta$
$=a^{2}+b^{2}-c^{2}$
$\Rightarrow(a \cos \theta-b \sin \theta)^{2}=a^{2}+b^{2}-c^{2}$
$\therefore a \cos \theta-b \sin \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
77. (C) $\sin \theta+\cos \theta=\sqrt{2} \sin \left(90^{\circ}-\theta\right)$

$$
\begin{aligned}
& \Rightarrow \sin \theta+\cos \theta=\sqrt{2} \cos \theta \\
& \Rightarrow \sin \theta=\sqrt{2} \cos \theta-\cos \theta \\
& \Rightarrow \cos \theta(\sqrt{2}-1)=\sin \theta \\
& \Rightarrow \frac{\cos \theta}{\sin \theta}=\frac{1}{\sqrt{2}-1} \\
& \Rightarrow \cot \theta=\frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} \\
& \Rightarrow \cot \theta=\frac{\sqrt{2}+1}{2-1} \\
& \therefore \cot \theta=\sqrt{2}+1
\end{aligned}
$$

78. (A) $3\left(\sec ^{2} \theta+\tan ^{2} \theta\right)=5$
$3\left(\tan ^{2} \theta+1+\tan ^{2} \theta\right)=5$
$6 \tan ^{2} \theta+3=5$
$6 \tan ^{2} \theta=5-3=2$
$\tan ^{2} \theta=\frac{2}{6}=\frac{1}{3}$
$\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}$
$=\frac{3-1}{3+1}=\frac{2}{4}=\frac{1}{2}$
79. (C) $x \cos ^{2} 30^{\circ} \sin 60^{\circ}=\frac{\tan ^{2} 45^{\circ} \cdot \sec 60^{\circ}}{\operatorname{cosec} 60^{\circ}}$

$$
\begin{aligned}
& \Rightarrow x \times\left(\frac{\sqrt{3}}{2}\right)^{2}\left(\frac{\sqrt{3}}{2}\right)=\frac{(1)^{2} \times(2)}{\frac{2}{\sqrt{3}}} \\
& \Rightarrow x \times \frac{3 \sqrt{3}}{8}=\sqrt{3} \\
& \therefore x=\frac{8}{3}=2 \frac{2}{3}
\end{aligned}
$$

80. (B) $\tan \alpha=2$ (given)

$$
\frac{\operatorname{cosec}^{2} \alpha-\sec ^{2} \alpha}{\operatorname{cosec}^{2} \alpha+\sec ^{2} \alpha}
$$

$$
=\frac{\frac{1}{\sin ^{2} \alpha}-\frac{1}{\cos ^{2} \alpha}}{\frac{1}{\sin ^{2} \alpha}+\frac{1}{\cos ^{2} \alpha}}
$$

$$
=\frac{\frac{1}{\sin ^{2} \alpha}\left[1-\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}\right]}{\frac{1}{\sin ^{2} \alpha}\left[1+\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}\right]}
$$

$$
=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{1-4}{1+4}=-\frac{3}{5}
$$

81. (C) $\sin \left(\theta+30^{\circ}\right)=\frac{3}{\sqrt{12}}=\frac{3}{2 \sqrt{3}}$

$$
\begin{aligned}
& \Rightarrow \sin \left(\theta+30^{\circ}\right)=\frac{\sqrt{3}}{2}=\sin 60^{\circ} \\
& \Rightarrow \theta+30^{\circ}=60^{\circ} \\
& \Rightarrow \theta=30^{\circ} \\
& \therefore \cos ^{2} \theta=\cos ^{2} 30^{\circ} \\
& =\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4}
\end{aligned}
$$

82. (A)

$\frac{\mathrm{QR}}{\mathrm{PR}}=\cos 30^{\circ}$
$\Rightarrow \mathrm{QR}=\frac{\sqrt{3}}{2} \times 20$
$=10 \sqrt{3} \mathrm{~cm}$
and $\frac{P Q}{P R}=\sin 30^{\circ}$
$\therefore \mathrm{PQ}=\frac{1}{2} \times 20=10 \mathrm{~cm}$
Area of $\Delta \mathrm{PQR}=\frac{1}{2} \times \mathrm{PQ} \times \mathrm{QR}$
$=\frac{1}{2} \times 10 \times 10 \sqrt{3}=50 \sqrt{3} \mathrm{~cm}^{2}$
83. (A) $4 \cos ^{2} \theta-4 \sqrt{3} \cos \theta+3=0$
$\Rightarrow(2 \cos \theta)^{2}-2 \times 2 \cos \theta \times \sqrt{3}+(-\sqrt{3})^{2}=0$
$\Rightarrow(2 \cos \theta-\sqrt{3})^{2}=0$
$\Rightarrow 2 \cos \theta-\sqrt{3}=0$
$\Rightarrow 2 \cos \theta=\sqrt{3}$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \cos \theta=\cos 30^{\circ}$
$\therefore \theta=30^{\circ}$
84. (A) $\frac{x+y}{x-y}=\frac{y\left(\frac{x}{y}+1\right)}{y\left(\frac{x}{y}-1\right)}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1} \quad\left[\because \frac{x}{y}=\frac{3}{2}\right]$

$$
=\frac{\left(\frac{3}{2}+1\right)}{\left(\frac{3}{2}-1\right)}=\frac{\frac{5}{2}}{\frac{1}{2}}=\frac{5}{2} \times \frac{2}{1}=\frac{5}{1}=5: 1
$$

85. (D) $50 \%$ of $x=30 \%$ of $y$

$$
\begin{aligned}
& \Rightarrow \frac{50}{100} x=\frac{30}{100} y \\
& \Rightarrow \frac{x}{y}=\frac{30}{100} \times \frac{100}{50} \\
& \Rightarrow \frac{x}{y}=\frac{3}{5} \\
& \therefore x: y=3: 5
\end{aligned}
$$

86. (A) $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots .+\frac{1}{\sqrt{8}+\sqrt{9}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\ldots \ldots \ldots+\frac{1}{\sqrt{9}+\sqrt{8}} \\
& =\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}
\end{aligned}
$$

$$
+\ldots .+\frac{1}{\sqrt{9}+\sqrt{8}} \times \frac{\sqrt{9}-\sqrt{8}}{\sqrt{9}-\sqrt{8}}
$$

$$
=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\ldots \ldots+\frac{\sqrt{9}-\sqrt{8}}{9-8}
$$

$$
=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\ldots+\sqrt{9}-\sqrt{8}
$$

$$
=\sqrt{9}-1=3-1=2
$$

87. (B) Let number $=x$

ATQ,
$(x-25)^{2}=x^{2}-25$
$\Rightarrow x^{2}-50 x+625=x^{2}-25$
$\Rightarrow 50 x=625+25$
$\Rightarrow 50 x=650$
$\therefore x=13$
88. (A) Total armies $=36562$

ATQ,
$36562=(191)^{2}+81$
So, remaining armies $=81$
89. (D) $\left(\frac{2+\sqrt{3}}{2}\right)^{2}=\left(1+\frac{\sqrt{3}}{2}\right)^{2}$
$=\frac{1}{4}+\left(\frac{\sqrt{3}}{2}\right)^{2}+2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$
$=\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right)^{2} \sqrt{\frac{2+\sqrt{3}}{2}}=\frac{1}{2}(\sqrt{3}+1)$
90. (A) $\sqrt{72+\sqrt{72+\sqrt{72+\ldots \ldots .}}}=x$
$\Rightarrow x^{2}=72+\sqrt{72+\sqrt{72+\ldots \ldots .}}$
$\Rightarrow x^{2}=72+x$
$\Rightarrow x^{2}-x-72=0$
$\Rightarrow x^{2}-9 x+8 x-72=0$
$\Rightarrow x(x-9)+8(x-9)=0$
$\Rightarrow(x+8)(x-9)=0$
$\Rightarrow x=-8$ or 9
So, $\sqrt{72+\sqrt{72+\sqrt{72+\ldots \ldots .}}}=9$
91. (D) Total heads $=180$

Total legs $=420$
If all heads are of cows, then legs should be $=180 \times 4=720$
If all heads are of hens, then legs should be $=180 \times 2=360$


So, number of cows $=\frac{1}{1+5} \times 180=30$
92. (D) $n(n+1)(n+2)$ is always divisible by 6 .
93. (C) $(11111)^{2}=123454321$
94. (D) Time exceed by A only $=8$ hours

Time exceed by B only $=4 \frac{1}{2}$ hours
So, time required to finish the work together by $A$ and $B=\sqrt{8 \times 4 \frac{1}{2}}$ hrs
$=\sqrt{36} \mathrm{hrs}=6 \mathrm{hrs}$
95. (D) Person earns ₹ 2000 for 50 hours

Regular wages per hour $=₹ \frac{2000}{50}=₹ 40$
Additional wages per hour $=₹ 40 \times \frac{3}{2}=₹ 60$
Total earning $=₹ 2300$
So, Additional earning $=₹(2300-2000)$

$$
\text { = ₹ } 300
$$

96. (C) Required ratio $=100: 70=10: 7$
97. (D) Average mark in the second term

$$
=\frac{80+80+75+65+60}{5}=72
$$

98. (B) Number of students travelling by public

$$
\text { bus }=\frac{54^{\circ}}{360^{\circ}} \times 800=120
$$

99. (D) Students who use institute's bus

$$
=\frac{216^{\circ}}{360^{\circ}} \times 800=480
$$

Students do not use institute bus

$$
=(800-480)=320
$$

100.(A) Number of students who go to institute on

$$
\begin{aligned}
\text { foot } & =\frac{\left(360^{\circ}-216^{\circ}-18^{\circ}-54^{\circ}\right)}{360^{\circ}} \\
& =\frac{72^{\circ}}{360^{\circ}} \times 800=160
\end{aligned}
$$

| SSC MATMS (MATHS) MOCK TEST- 10 (ANSWER KEY |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | (B) | 21. | (C) | 41. | (A) | 61. | (C) | 81. | (C) |
| 2. | (A) | 22. | (A) | 42. | (C) | 62. | (D) |  | (A) |
| 3. | (A) | 23. | (D) | 43. | (C) | 63. | (C) | 83. | (A) |
| 4. | (B) | 24. | (C) | 44. | (C) | 64. | (D) | 84. | (A) |
| 5. | (B) | 25. | (D) | 45. | (B) | 65. | (D) | 85. | (D) |
| 6. | (D) | 26. | (A) | 46. | (C) | 66. | (A) | 86. | (A) |
| 7. | (D) | 27. | (C) | 47. | (C) | 67. | (A) | 87. | (B) |
| 8. | (A) | 28. | (A) | 48. | (B) | 68. | (B) | 88. | (A) |
| 9. | (C) | 29. | (C) | 49. | (A) | 69. | (B) | 89. | (D) |
| 10. | (D) | 30. | (C) | 50. | (D) | 70. | (C) | 90. | (A) |
| 11. | (D) | 31. | (D) | 51. | (D) | 71. | (C) | 91. | (D) |
| 12. | (A) | 32. | (D) | 52. | (A) | 72. | (C) | 92. | (D) |
| 13. | (A) | 33. | (A) | 53. | (A) | 73. | (A) |  | (C) |
| 14. | (A) | 34. | (C) | 54. | (D) | 74. | (A) |  | (D) |
| 15. | (C) | 35. | (C) | 55. | (C) | 75. | (D) | 95. | (D) |
| 16. | (A) | 36. | (B) | 56. | (A) | 76. | (C) | 96. | (C) |
|  | (A) | 37. | (C) | 57. | (C) |  | (C) |  | (D) |
| 18. | (A) | 38. | (A) | 58. | (A) | 78. |  |  |  |
| 19. | (C) | 39. | (A) | 59. | (D) | 79. | (C) |  |  |
| 20. | (C) | 40. | (A) | 60. | (D) | 80. | (B) | 100. | (A) |

