SSC MAINS (MATH) - 09 (SOLUTION)

1. (A) If $a+b+c=0$, then
$a^{3}+b^{3}+c^{3}=3 a b c$
As, $22+(-15)+(-7)=0$

$$
\begin{aligned}
\therefore 22^{3}+(-15)^{3}+(-7)^{3} & =3 \times 22 \times-15 \times-7 \\
& =6930
\end{aligned}
$$

2. (C) Required change $=\frac{10^{2}}{100} \%$ decrease

$$
=1 \% \text { decrease }
$$

3. (D) Let cost of 100 m cloths be ₹ 100 .

$$
\begin{aligned}
\mathrm{CP} \text { of } 80 \mathrm{~m} & =\frac{100}{120} \times 800 \\
& =₹ \frac{400}{6} \\
\text { SP of } 80 \mathrm{~m} & =₹ 80 \\
\text { Profit } & =80-\frac{400}{6} \\
& =₹\left(\frac{80}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Profit percentage } & =\frac{\frac{80}{6}}{\frac{400}{6}} \times 100 \\
& =20 \%
\end{aligned}
$$

4. (D) $\frac{1 \frac{7}{9} \text { of } \frac{27}{64}}{\frac{11}{12} \times 9 \frac{9}{11}} \div \frac{4 \frac{4}{9} \text { of } \frac{21}{160}}{2 \frac{5}{6} \div 2 \frac{2}{15}}$

$$
=\frac{\frac{16}{9} \text { of } \frac{27}{64}}{\frac{11}{12} \times \frac{108}{11}} \times \frac{\frac{17}{6} \div \frac{32}{15}}{\frac{32}{7} \times \frac{21}{160}}
$$

$$
=\frac{\frac{3}{4}}{\frac{9}{1}} \times \frac{\frac{17}{6} \times \frac{15}{32}}{\frac{3}{5}}=\frac{3}{4 \times 9} \times \frac{5}{3} \times \frac{17}{2} \times \frac{5}{32}
$$

$$
=\frac{425}{2304}
$$

5. (D)

In $\triangle \mathrm{ABC}$
Let $\angle \mathrm{A}=x$
$\angle \mathrm{B}=z$
$\angle \mathrm{C}=y$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\therefore x+y+z=180^{\circ}$
\therefore Sum of the interior angles $=180^{\circ}$
6. (B)

$A+B=\frac{15 \times 4 \times 5}{5+4}$ minutes
$=\frac{15 \times 4 \times 5}{9}$ minutes
$=\frac{100}{3}$ minutes

Required time $=\frac{100}{3-2}$ minutes $=100$ minutes
7. (A) Let exterior angle $=x$
\therefore Interior angle $=2 x^{\circ}$

$$
2 x+x=180
$$

$$
\therefore x=60^{\circ}
$$

Let the number of sides $=n$

$$
\begin{array}{ll}
& \text { Exterior angle }=\frac{360^{\circ}}{n} \\
\Rightarrow & 60^{\circ}=\frac{360^{\circ}}{n} \\
\Rightarrow & n=6
\end{array}
$$

8. (D) $\frac{x^{2} \times x}{y z \times x}+\frac{y^{2} \times y}{z x \times y}+\frac{z^{2} \times z}{x y \times z}$

$$
\begin{aligned}
& \Rightarrow \frac{x^{3} \times y^{3}+z^{3}}{x y z} \\
& \Rightarrow \frac{3 x y z}{x y z} \\
& \Rightarrow 3
\end{aligned}
$$

9. (D) LCM of $3,5,8$ is 120

	Acid	Water	Total	
I	[2	:	1	$=3] \times 40$
II	[3	:	2	$=5] \times 24$
II	[5	: 3		

Taking LCM of 3,5 and 8 and multiplying according to get the same quantity of all three mixtures.

	A	W
I	80	40
II	72	48
III	75	45
	$\underline{227}$	133

$\therefore \frac{\mathrm{W}}{\mathrm{A}}=\frac{133}{227}$
10. (C) Let the number of student be $2 x, 3 x$, and $5 x$.
ATQ,

$$
\begin{aligned}
\Rightarrow & & \frac{2 x+20}{3 x+20} & =\frac{4}{5} \\
\Rightarrow & & 2 x & =20 \\
\Rightarrow & & x & =10
\end{aligned}
$$

Total number of students $=10 x$

$$
\begin{aligned}
& =10 \times 10 \\
& =100
\end{aligned}
$$

11. (C) Ratio of 50 paise, 25 paise and 10 paise coins = $1: 2: 3$
\therefore Ratio of values of 50 paise, 25 paise and 10 paise

$$
=50 \times 1: 25 \times 2: 10 \times 3=50: 50: 30
$$

$=5: 5: 3$
$\therefore 5 x+5 x+3 x=6.50$
$13 x=6.50$

$$
x=\frac{6.50}{13}=0.50
$$

\therefore Value of 10 paise coins $=3 \times 0.5$
$=₹ 1.50=150$ paise
\therefore Number of 10 paise coins $=\frac{150}{10}=15$
12. (B)

$A B=2 C D$
$\mathrm{AB}|\mid \mathrm{CD}$
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\angle \mathrm{AOB}=\angle \mathrm{COD}-$ (Vertically opp. $\angle \mathrm{s}$)
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior $\angle \mathrm{s}$)
$\therefore \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$

$$
\begin{aligned}
\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})} & =\frac{(\mathrm{AB})^{2}}{(\mathrm{CD})^{2}}=\frac{(2 \mathrm{CD})^{2}}{\mathrm{CD}^{2}} \\
& =\frac{4 \mathrm{CD}^{2}}{\mathrm{CD}^{2}}=\frac{4}{1}
\end{aligned}
$$

13. (B) Let the monthly salary $=₹ x$

Money spent on food $=\frac{40}{100} \times x=\frac{2 x}{5}$
Remaining $=x-\frac{2 x}{5}=\frac{3 x}{5}$
Money spent on transport $=\frac{1}{3} \times \frac{3 x}{5}$
$=\frac{x}{5}$
Remaining amount $=\frac{3 x}{5}-\frac{x}{5}=\frac{2 x}{5}$
ATQ,

$$
\begin{aligned}
\frac{1}{2} \times \frac{2 x}{5} & =4500 \\
x & =\frac{4500 \times 5 \times 2}{2}=₹ 22500
\end{aligned}
$$

14. (B) $80 \%=\frac{4}{5}$

Let x gm of gold is added.

$$
\begin{gathered}
\therefore \frac{40+x}{50+x} \times 100=95 \\
\Rightarrow 800 \times 20 x=950+19 x \\
x=150 \mathrm{gm}
\end{gathered}
$$

15. (B) $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$

$$
\begin{aligned}
& =\frac{\tan \theta}{1-\frac{1}{\tan }}+\frac{\cot \theta}{1-\tan \theta} \\
& =\frac{\tan ^{2} \theta}{\tan \theta-1}+\frac{1}{\tan \theta(1-\tan \theta)}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& =\frac{1-\tan ^{3} \theta}{\tan \theta(1-\tan \theta)} \\
& =\frac{(1-\tan \theta)\left(1+\tan ^{2} \theta+\tan \theta\right)}{\tan \theta(1-\tan \theta)} \\
& =\frac{1}{\tan \theta}+\tan \theta+1 \\
& =1+\tan \theta+\cot \theta
\end{aligned}
$$

16. (B) Ratio of interior angles of a pentagon
= $2: 3: 3: 5: 5$
Let the angles be $2 x, 3 x, 3 x, 5 x, 5 x$.
Sum of angles of a pentagon $=540^{\circ}$
$\Rightarrow 2 x+3 x+3 x+5 x+5 x=540^{\circ}$
$\Rightarrow 18 x=540^{\circ}$
$\Rightarrow \quad x=30^{\circ}$
\therefore Shortest angle $=2 \times 30^{\circ}=60^{\circ}$
17. (D) Diameter of spherical drop $=0.1 \mathrm{~cm}$
\therefore Radius $=0.05 \mathrm{~cm}$
Let Diameter of the rim of conical glass $=\mathrm{d} \mathrm{cm}$
\therefore Radius $=\frac{\mathrm{d}}{2} \mathrm{~cm}$
Height of conical glass = Diameter
$=\mathrm{d} \mathrm{cm}$
ATQ,
$32000 \times \frac{4}{3} \times \pi \times(0.05)^{3}$
$=\frac{1}{3} \times \pi \times\left(\frac{\mathrm{d}^{3}}{2}\right)^{2} \mathrm{~d}$
$\Rightarrow 8 \times 4 \times 4 \times 1000(0.05)^{3}=\frac{\mathrm{d}^{3}}{4}$
$\Rightarrow d^{3}=8 \times 4 \times 4 \times 4 \times 1000(0.05)^{3}$
$\Rightarrow d=2 \times 4 \times 10 \times 0.05$
$=4 \mathrm{~cm}$
18. (B) ATQ,
$2 \times 3+3 \times 4$
$\Rightarrow 3 \times 2+2 \times 3+3 \times 3+2 \times 4$
$\Rightarrow 6+6+9+8$
$\Rightarrow 29$
19. (A) Volume of rectangular block
$=21 \times 77 \times 24 \mathrm{~cm}^{2}$
Let the radius of sphere $=r \mathrm{~cm}$.
ATQ,
$21 \times 77 \times 24=\frac{4}{3} \pi r^{3}$
$\Rightarrow \frac{21 \times 77 \times 24 \times 3 \times 7}{4 \times 22}=r^{3}$
$\Rightarrow \quad r=21 \mathrm{~cm}$
20. (D) $x-y=2, x y=24$
$x^{2}+y^{2}=(x-y)^{2}+2 x y$

$$
\begin{aligned}
& =2^{2}+2 \times 24 \\
& =4+48=52
\end{aligned}
$$

21. (B) $x^{3}-27=x^{3}-3^{3}=(x-3)\left(x^{2}+9+3 x\right)$

As HCF is a quadratic polynomial.
$\therefore x^{2}+a+3 x$ is the HCF.

$$
\begin{gathered}
x ^ { 2 } + 3 x + 9 \longdiv { x ^ { 3 } + 4 x ^ { 2 } + 1 2 x + \mathrm { K } (x + 1 } \\
\frac{x^{3}+3 x^{2}+9 x}{x^{2}+3 x+\mathrm{K}} \\
\frac{x^{2}+3 x+9}{\mathrm{~K}-9}
\end{gathered}
$$

Remainder must be O .

$$
\begin{aligned}
& \therefore K-9=0 \\
& 9 \Rightarrow K=9
\end{aligned}
$$

22. (A)

In $\triangle \mathrm{OAB}, \mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
$\therefore \angle \mathrm{AOB}=60^{\circ}$

$$
\angle \mathrm{AMB}=\frac{60}{2}=30^{\circ}
$$

$$
\angle \mathrm{ANB}+\angle \mathrm{AMB}=180^{\circ}
$$

So, $\angle \mathrm{ANB}=180^{\circ}-30^{\circ}$

$$
=150^{\circ}
$$

23. (A) $\left(x^{b+c}\right)^{b-c}\left(x^{c+a}\right)^{c-a}\left(x^{a+b}\right)^{a-b}$
$=x^{b^{2}-c^{2}} \quad x^{c^{2}-a^{2}} x^{c^{2}-b^{2}}$
$=x^{b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}}$
$x^{0}=1$
24. (C) $\sqrt{\left(x^{2}+y^{2}+z\right)(x+y-3 z)} \div \sqrt[3]{x y^{2} z^{2}}$
$x=1, y=-3, z=-1$
So,$=\frac{\sqrt{\left(1^{2}+(-3)^{2}+(-1)\right)(1+(-3)-3(-1))}}{\sqrt[3]{1 \times(-3)^{3} \times(-1)^{2}}}$

$$
=\sqrt{\frac{9 \times 1}{\sqrt[3]{-27}}}=\frac{3}{-3}=-1
$$

25. (D) $x-a$ is factor of $x^{3}-3 x^{2}-3 x+9$

Put $x=a$

$$
\begin{aligned}
& a^{3}-3 a^{2}-3 a+9=0 \\
& \Rightarrow a^{2}(a-3)-3(a-3)=0 \\
& \Rightarrow\left(a^{2}-3\right)(a-3)=0 \\
& \Rightarrow a^{2}-3=0, a-3=0 \\
& \Rightarrow a^{2}=3, a=3 \\
& \Rightarrow a=\sqrt{3},-\sqrt{3}, a=0
\end{aligned}
$$

\therefore a can have three values.
26. (D) Volume of pyramid

$$
\begin{aligned}
& =\frac{1}{3} \text { Area of base } \times \text { height } \\
& =\frac{1}{3} \times \frac{\sqrt{1152}}{\sqrt{2}} \times 6 \\
& =\frac{1}{3} \times 576 \times 6 \\
& =576 \times 2 \\
& =1152 \mathrm{~m}^{3}
\end{aligned}
$$

27. (C)

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \text { ar. }(11 \mathrm{gm} \mathrm{ABCD}) \\
& \begin{aligned}
\therefore \operatorname{ar}(11 \mathrm{gm} \mathrm{ABCD}) & =2 \times 12 \\
& =24 \mathrm{~cm}^{2}
\end{aligned} \\
& \begin{aligned}
\operatorname{ar}(\triangle \mathrm{APQ})= & \frac{3}{8} \text { ar. }
\end{aligned} \\
& (11 \mathrm{gm} \mathrm{ABCD}) \\
& =
\end{aligned}
$$

28. (C) $x=a \sec \alpha \cos \beta$

$$
\Rightarrow \frac{x}{a}=\sec \frac{x}{a} \cos \beta
$$

Similarly, $\frac{y}{b}=\sec \alpha \sin \beta$

$$
\frac{z}{c}=\tan \alpha \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}
$$

$=(\sec \alpha \cos \beta)+(\sec \alpha \sin \beta)^{2}-\tan ^{2} \alpha$
$=\frac{\sin ^{2} \beta}{\cos ^{2} \alpha}+\frac{\sin ^{2} \beta}{\cos ^{2} \alpha}-\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}$
$=\frac{\cos ^{2} \beta+\cos ^{2} \beta-\sin ^{2} \alpha}{\cos ^{2} \alpha}$
$=\frac{1-\cos ^{2} \alpha}{\cos ^{2} \alpha}=\frac{\cos ^{2} \alpha}{\cos ^{2} \alpha}=1$
29. (A)

A square base right pyramid is given. Let side of base $=x \mathrm{~m}$ Slant height $=4 \mathrm{~m}$
\therefore Total slant surface $=4 \times \frac{1}{2} \times x \times 4$

$$
=8 x \mathrm{~m}^{2}
$$

$\therefore 8 x=12$
$x=\frac{12}{8}=1.5$
$\therefore \frac{\text { Total slant surface }}{\text { Area of base }}=\frac{12}{1.5 \times 1.5}=\frac{16}{3}$
30. (A) $\frac{a+b}{\sqrt{a b}}=\frac{4}{1}$
$\Rightarrow \frac{a+b}{2 \sqrt{a b}}=\frac{2}{1}$
Applying Componendo and Dividendo
$\Rightarrow \frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{2+1}{2-1}$
$\Rightarrow \quad \frac{(\sqrt{a}+\sqrt{b})^{2}}{(a-b)^{2}}=\frac{3}{1}$
$\Rightarrow \quad \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{3}}{1}$
$\Rightarrow \sqrt{a}+\sqrt{b}=\sqrt{3} \times \sqrt{a}-\sqrt{3} \times \sqrt{b}$
$\Rightarrow(\sqrt{3}+1) \sqrt{b}=(\sqrt{3}-1) \sqrt{a}$
$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{\sqrt{a}}{\sqrt{b}}$
$\Rightarrow \frac{a}{b}=\frac{(\sqrt{3}+1)^{2}}{(\sqrt{3}-1)^{2}}=\frac{3+1+2 \sqrt{3}}{3+1-2 \sqrt{3}}$
$\Rightarrow \frac{a}{b}=\frac{4+2 \sqrt{3}}{4-2 \sqrt{3}}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
31. (A)

In $\triangle \mathrm{ABC}$,
P and R are mid points of $A B$ an $A C$.
$\therefore \mathrm{PR}=\frac{1}{2} \mathrm{BC}$ \qquad
Similarly, $\mathrm{QR}=\frac{1}{2} \mathrm{AB} \ldots$ (ii)

$$
\begin{equation*}
\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{BC}=\mathrm{CA} \ldots$. (iv)
From (i), (ii), (iii), (iv) $P R=P Q=Q R$ $\therefore \triangle \mathrm{PQR}$ is equilateral Δ.
32. (D) Let A be $6 a$, and B be a.

Required percentage

$$
\begin{aligned}
& =\frac{6 a-a}{6 a} \times 100 \\
& =\frac{5}{6} \times 100 \\
& =\frac{250}{3} \\
& =83 \frac{1}{3} \%
\end{aligned}
$$

33. (B) $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
& =\frac{1}{\cos \theta}+\frac{\sin ^{3} \theta}{\cos ^{3} \theta} \times \frac{1}{\cos \theta}=\frac{\cos ^{2} \theta+\cos ^{2} \theta}{\cos ^{3} \theta} \\
& =\frac{1}{\cos ^{3} \theta}=\sec ^{3} \theta=\left(\sqrt{1+\tan ^{2} \theta}\right)^{3} \\
& =\left(\sqrt{1+1-\mathrm{e}^{2}}\right)^{3}=\left(2-\mathrm{e}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

34. (C)

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDA}$
$\angle 5=\angle 6=90^{\circ}$
$\angle 1=\angle 1$ (common)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DBA}$
Similarly, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DAC}$
From (i) and (ii)
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \sim \triangle \mathrm{DBA}$
35. (C) CP of House $=\frac{1}{80} \times 100$

$$
\begin{aligned}
& =\frac{5}{4} \text { lakhs } \\
\text { CP of Shop } & =\frac{1}{120} \times 100 \\
& =\frac{5}{6} \text { lakhs }
\end{aligned}
$$

$$
\text { Total } \mathrm{CP}=\frac{5}{4}+\frac{6}{5}
$$

$$
=5\left(\frac{6+4}{24}\right)
$$

$$
=5 \times \frac{5}{12}
$$

$$
\text { Total SP = } 1 \text { lakh + } 1 \text { lakh }
$$

$$
=2 \text { lakhs }
$$

$$
\text { Loss }=\frac{25}{12}-2
$$

$$
=\frac{25-24}{12} \text { lakhs }
$$

$$
=\frac{1}{12} \text { lakhs }
$$

36. (A) $3 \sin ^{2} \alpha+7 \cos ^{2} \alpha=4$
$\Rightarrow 3 \sin ^{2} \alpha+3 \cos ^{2} \alpha+4 \cos ^{2} \alpha=4$
$\Rightarrow 3+4 \cos ^{2} \alpha=4$
$\Rightarrow \quad 4 \cos ^{2} \alpha=1$
$\Rightarrow \quad \cos ^{2} \alpha=\frac{1}{2}$
$\therefore \quad \alpha=60^{\circ}$
$\therefore \quad \tan \alpha=\tan 60^{\circ}=\sqrt{3}$
37. (A) Ratio of expenses $=18 \times 4: 25 \times 2: 28 \times 5$

$$
: 21 \times 3
$$

So, rent of pasture $=325 \times 5$

$$
=₹ 1625
$$

38. (D) Doremon : Nobita

8 Jumps : 6 Jumps
Length of 7 jumps : Length of 5 Jumps Let 1 Jump of Doremon $=1 \mathrm{~m}$.
\therefore Length of 1 Jump of Doremon $=\frac{5}{7} \mathrm{~m}$ Doremon : Nobita
$8 \times \frac{5}{7}: 6 \times 1$

$$
40: 42
$$

\therefore Ratio of speed $=20: 21$
39. (D) Let the height of DE be a metres and distance between both houses (BC) is x metres.

$\tan \phi=\frac{h}{x}$
$\tan \theta=\frac{a}{x}[\because \mathrm{BC}=\mathrm{AD}]$
Required height $=a+h$

$$
\begin{aligned}
& =x \tan \theta+x \tan \phi \\
& =x(\tan \theta+\tan \phi) \\
& =\frac{\mathrm{h}}{\tan \phi}(\tan \theta+\tan \phi) \\
& =\mathrm{h}(\tan \theta \cot \phi+1)
\end{aligned}
$$

40. (A) Let the speed of faster train $=x \mathrm{~m} / \mathrm{s}$ Let the speed of slower train $=y \mathrm{~m} / \mathrm{s}$ When running in same direction Relative speed $=(x-y) \mathrm{m} / \mathrm{s}$

$$
\begin{align*}
& \therefore \quad \frac{100+80}{x-y}=18 \\
& \Rightarrow x-y=10 \ldots . \tag{i}
\end{align*}
$$

When running in opp. direction-

Relative speed $=(x-y) \mathrm{m} / \mathrm{s}$
$\therefore \frac{100+80}{x+y}=9$
$x+y=20$ \qquad
From (i) and (ii)

$$
\begin{align*}
2 x & =30=x=15 \tag{ii}\\
y & =5
\end{align*}
$$

41. (B) $6(8 \mathrm{M}+12 \mathrm{~W})=10(4 \mathrm{M}+9 \mathrm{~W})$

$$
\begin{array}{llrl}
\Rightarrow & 24 \mathrm{M}+36 \mathrm{~W} & =20 \mathrm{M}+45 \mathrm{~W} \\
\Rightarrow & & 4 \mathrm{M} & =9 \mathrm{~W} \\
\Rightarrow & & M: W & =9: 4
\end{array}
$$

Let the required days.

$$
\begin{aligned}
& (20 \mathrm{M}+15 \mathrm{~W}) \mathrm{D}=6(8 \mathrm{M}+12 \mathrm{~W}) \\
& (20 \times 9+15 \times 4) \mathrm{D}=6(8 \times 9+12 \times 4)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D} & =\frac{6(72+48)}{(180+60)} \\
\mathrm{D} & =\frac{6 \times 120}{240} \\
& =3 \text { days }
\end{aligned}
$$

42. (D) Ratio of investment $=5: 7$ Let their investment be x. ATQ,

$$
\left[\left(\frac{x}{2} \times \frac{70}{100}\right)+\left(\frac{x \times 30}{100} \times \frac{7}{12}\right)\right]
$$

$$
-\left[\left(\frac{x}{2} \times \frac{70}{100}\right)+\left(\frac{x \times 30}{100} \times \frac{5}{12}\right)\right]=90
$$

$$
\Rightarrow\left[\frac{7 x}{20}+\frac{7 x}{40}\right]-\left[\frac{7 x}{20}+\frac{x}{8}\right]=90
$$

$$
\Rightarrow\left[7 x\left(\frac{2+1}{40}\right)\right]-\left[\frac{14 x+5 x}{40}\right]=90
$$

$$
\Rightarrow \frac{21 x}{40}-\frac{19 x}{40}=90
$$

$$
\Rightarrow \quad \frac{21 x-19 x}{40}=90
$$

$$
\Rightarrow 2 x=90 \times 40
$$

$$
\Rightarrow \quad x=₹ 1800
$$

43. (D) Required loss percentage $=16 \frac{2}{3} \%$
44. (A) In a triangle, any side is greater than the difference of other two sides and it is also less than the sum of other two sides.

$$
\therefore(15-8)<x<(15+8)
$$

$$
7<x<23
$$

45. (A) $\left(a^{2}-b^{2}\right) \sin \theta+2 \cos \theta=a^{2}+b^{2}$

$$
\Rightarrow\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right) \sin \theta+\left(\frac{2}{a^{2}+b^{2}}\right)
$$

$=\cos \theta=1$
As, $\sin ^{2} \theta+\cos ^{2} \theta=1$
By comparing, $\sin \theta=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$,
$\cos \theta=\frac{2}{a^{2}+b^{2}}$
$\therefore \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{a^{2}-b^{2}}{a^{2}+b^{2}}}{\frac{2}{a^{2}+b^{2}}}=\frac{a^{2}-b^{2}}{2}$
46. (C) $x+\frac{1}{2 x}=2$
or $2 x+2 \times \frac{1}{2 x}=2 \times 2$
$\Rightarrow 2 x+\frac{1}{x}=4$
$\Rightarrow 8 x^{3}+\frac{1}{x^{3}}=4^{3}-3 \times 2 x \times \frac{1}{x} \times 4$

$$
\begin{aligned}
& =64-24 \\
& =40
\end{aligned}
$$

47. (B)

$\Delta \mathrm{ABC}$ is equilateral Δ.
$\angle B A C=60^{\circ}$
$\angle \mathrm{OAM}=\frac{60^{\circ}}{2}=30^{\circ}$
$\mathrm{AC}=\sqrt{3}$ unit
$\mathrm{AM}=\frac{\mathrm{AC}}{2}=\frac{\sqrt{3}}{2}$ unit
In $\triangle \mathrm{OAM}, \tan \angle \mathrm{OAM}=\frac{\mathrm{OM}}{\mathrm{AM}} \Rightarrow \tan 30^{\circ}$

$$
=\frac{\mathrm{OM}}{\frac{\sqrt{3}}{2}}
$$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{2 \mathrm{OM}}{\sqrt{3}}$

$$
\Rightarrow \mathrm{OM}=\frac{1}{2} \text { units }
$$

48. (A) CP of first cooler $=\frac{2970}{110} \times 100$
= ₹2700

CP of second cooler $=\frac{2970}{90} \times 100$

$$
\text { = ₹ } 3300
$$

Total CP = ₹ 6000
Total SP = ₹ 5940

$$
\begin{aligned}
\text { Loss } & =\frac{60}{6000} \times 100 \\
& =1 \%
\end{aligned}
$$

49. (C) Speed of train $=45 \mathrm{~km} /$ hour

$$
\begin{aligned}
& =\frac{45 \times 1000}{3600} \\
& =\frac{25}{2} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Time $=4$ hours $=4 \times 3600=14400 \mathrm{sec}$ Distance between poles $=50 \mathrm{~m}$
\therefore Distance covered by train
$=\frac{25}{2} \times 14400$
\therefore Number of poles crossed
$=\frac{\frac{25}{2} \times 14400}{50}+1$
$=\frac{25 \times 14400}{2 \times 50}+1$
$=3600+1=3601$
50. (A) Let his CP $=100 \%$

$$
\text { then, } \mathrm{SP}=100 \times \frac{120}{100}=120
$$

ATQ,

$$
50 \%=60
$$

$$
25 \%=\frac{120}{4} \times \frac{80}{100}=24
$$

$$
25 \%=\frac{120}{4} \times \frac{60}{100}=18
$$

$$
\text { Total SP }=60+24+18
$$

$$
=102
$$

So, his gain $=2 \%$
51. (A)

$$
\begin{aligned}
& a^{2}+b^{2}=(a+b)\left(a^{2}+b^{2}-a b\right) \\
& \Rightarrow \frac{(0.73)^{3}+(0.27)^{3}}{(0.73)^{2}+(0.27)^{2}-(0.73) \times(0.27)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \frac{\left[(0.73+0.27)+(0.73)^{2}+(0.27)^{2}-(0.73)(.27)\right]}{(0.73)^{2}+(0.27)^{2}-(0.73) \times(0.27)} \\
& \Rightarrow[0.73+0.27] \\
& \Rightarrow 1
\end{aligned}
$$

52. (B) Total decrease $=11 \times 2$

$$
=22 \text { months }
$$

or 1 year 10 months
Total age of the new player
$=(17+20)$ years -1 year 10 months
$=35$ years 2 months
Required average $=17$ years 7 months
53. (D)

$\mathrm{M}: \mathrm{W}: \mathrm{C}=6: 3: 2$
Let x part of work be completed.

$$
\begin{gathered}
\Rightarrow \frac{(3 W+3 C) \times 1}{x}=\frac{3 \times 6}{1} \\
x=\frac{3 \times 5}{3 \times 6} \\
x=\frac{5}{6}
\end{gathered}
$$

54. (A)

Let the difference be x.

$$
\tan 30^{\circ}=\frac{50}{x+y}
$$

$$
\begin{align*}
\frac{1}{\sqrt{3}} & =\frac{50}{x+y} \\
x+y= & 50 \sqrt{3} . \\
\tan 60^{\circ} & =\frac{50^{\circ}}{y} \\
\frac{\sqrt{3}}{1} & =\frac{50}{y} \\
y & =\frac{50}{\sqrt{3}} . \tag{ii}
\end{align*}
$$

\qquad
then,

$$
x,=50 \sqrt{3}-\frac{50}{\sqrt{3}}
$$

55. (B)

$$
\sqrt{\frac{\operatorname{coec}^{2} \theta-\cot ^{2} \theta}{\cos ^{2} \theta-1}}
$$

$$
\Rightarrow \sqrt{\frac{\frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}}}
$$

$$
\Rightarrow \sqrt{\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta} \div \frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}}
$$

$$
\Rightarrow \sqrt{1 \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta}}
$$

$$
\Rightarrow \cot \theta
$$

$$
\Rightarrow \frac{\sqrt{7}}{3}
$$

56. (D)

Let the height of helicopter be $x \mathrm{~m}$ From the top of house.

$$
\tan 30^{\circ}=\frac{10}{x}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{10}{y} \\
y & =10 \sqrt{3} \mathrm{~m} \\
\tan 60^{\circ} & =\frac{x+10}{y} \\
\Rightarrow \frac{\sqrt{3}}{1} & =\frac{x+10}{y}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{3} \times 10 \sqrt{3}=x+10 \\
& \Rightarrow \quad x=20 \mathrm{~m}
\end{aligned}
$$

$$
\text { Required height }=10+20
$$

$$
=30 \mathrm{~m}
$$

57. (D) $\frac{(6.25)^{\frac{1}{2}} \times(0.0144)^{\frac{1}{2}}+1}{(0.027)^{\frac{1}{3}} \times(81)^{\frac{1}{4}}}$

$$
\Rightarrow \frac{2.5 \times 0.12+1}{.3 \times 3}
$$

$$
\Rightarrow \frac{.300+1}{.9}
$$

$$
\Rightarrow \frac{1.3}{.9}
$$

$$
\Rightarrow 1 . \overline{4}
$$

58. (B) Neha's saving $=100 \%-80 \%$

$$
\begin{gathered}
=20 \% \\
1500 \\
L^{2} \\
\hline
\end{gathered}
$$

her salary $\Rightarrow 100 \% \times 75$

$$
\text { = ₹ } 7500
$$

59. (A)

$\begin{array}{rl}\angle \mathrm{CAB} & =\angle B C D \\ \angle \mathrm{DAB} & =\angle \mathrm{CDB}\end{array}$ Angles in alternate segments] $]$

$$
\begin{aligned}
\angle \mathrm{CAD} & =\angle \mathrm{CAB}+\angle \mathrm{DAB} \\
& =\angle \mathrm{BCD}+\angle \mathrm{CDB}
\end{aligned}
$$

So, $\angle \mathrm{CAD}+\angle \mathrm{CBD}=180^{\circ}$
60. (D)

$$
\begin{aligned}
& \angle \mathrm{DAB}+\angle \mathrm{CBA}=180^{\circ} \\
& \text { then } \begin{aligned}
\angle \mathrm{AOB} & =180-\frac{180}{2} \\
& =90^{\circ}
\end{aligned}
\end{aligned}
$$

61. (B) Let the number of boys be x.

$$
\begin{array}{rlrl}
& x+\frac{120}{100} x & =66 \\
& \Rightarrow & x+\frac{6}{5} x & =66 \\
& \Rightarrow & 11 x & =66 \times 5 \\
\Rightarrow & & x & =30
\end{array}
$$

\therefore Number of girls $=66-30$

$$
=36
$$

$$
\text { Required ratio }=30:(36+4)
$$

$$
\begin{aligned}
& =30: 40 \\
& =3: 4
\end{aligned}
$$

62. (C) $\frac{x}{a}=(b-c)$

$$
\begin{aligned}
& \frac{y}{b}=(c-a) \\
& \frac{z}{c}=(a-b)
\end{aligned}
$$

Again,
$b-c+c-a+a-b=0$

$$
\begin{aligned}
& \therefore\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}+\left(\frac{z}{c}\right)^{3}=0 \\
& \Rightarrow(b-c)^{3}+(c-a)^{3}+(a-b)^{3}=0 \\
& \Rightarrow 3(b-c)(c-a)(a-b)=0 \\
& \Rightarrow \frac{3 x y z}{a b c}
\end{aligned}
$$

63. (A) If A covers the distance of 1 km in x seconds, B covers the distance of 1 km in $(x+25)$ seconds. If A covers the distance of 1 km , then in the same time C covers only 725 metres.
If B covers 1 km in $(x+25)$ seconds, then C covers 1 km in $(x+55)$ seconds.
Thus in x seconds, C covers the distance of 725 m .
$\therefore \frac{x}{725} \times 1000$
$=x+55 \Rightarrow x=145$
\therefore A covers the distance of 1 km in 2 minutes 25 seconds.
64. (C) $\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{4}}$

$$
+\frac{1}{\sqrt{6}+\sqrt{5}}+\frac{1}{\sqrt{7}+\sqrt{6}}+\frac{1}{\sqrt{8}+\sqrt{7}}+
$$

$$
\frac{1}{\sqrt{9}+\sqrt{8}}
$$

Rationalizing the terms -

$$
\begin{aligned}
= & \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
+ & \frac{1}{\sqrt{4}+\sqrt{3}} \times \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{4}} \times \\
& \frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}-\sqrt{4}}+\frac{1}{\sqrt{6}+\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{7}+\sqrt{6}} \\
\times & \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}+\frac{1}{\sqrt{8}+\sqrt{7}} \times \frac{\sqrt{8}-\sqrt{7}}{\sqrt{8}-\sqrt{7}}+ \\
& \frac{1}{\sqrt{9}+\sqrt{8}} \times \frac{\sqrt{9}-\sqrt{8}}{\sqrt{9}-\sqrt{8}} \\
= & \frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{5}-\sqrt{4}}{5-4}+\frac{\sqrt{6}-\sqrt{5}}{6-5}+\frac{\sqrt{7}-\sqrt{6}}{7-6}+ \\
& \frac{\sqrt{8}-\sqrt{7}}{8-7}+\frac{\sqrt{9}-\sqrt{8}}{9-8} \\
& =\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}- \\
& \sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+\sqrt{8}-\sqrt{7} \\
& +\sqrt{9}-\sqrt{8} \\
& =\sqrt{9}-1=3-1=2
\end{aligned}
$$

65. (A)

In $\triangle \mathrm{AEC}$,
$\angle \mathrm{A}+\angle \mathrm{E}+\angle \mathrm{C}=180^{\circ} \ldots \ldots .$. (i)
In $\triangle \mathrm{BFD}$,
$\angle \mathrm{B}+\angle \mathrm{F}+\angle \mathrm{D}=180^{\circ}$ \qquad
Adding (i) and (ii)
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}$
$=360^{\circ}$
66. (C)

$\angle \mathrm{ABC}=\angle \mathrm{ACB}=50^{\circ}$
$\angle \mathrm{BAC}=\angle \mathrm{BDC}$ [angle on some chord]
$\angle B D C=80^{\circ}$
67. (C) $x^{2}+y^{2}+z^{2}$
$=r^{2} \sin ^{2} \theta \cdot \cos ^{2} \phi+r^{2} \sin ^{2} \theta \cdot \sin ^{2} \phi+r^{2} \cos ^{2} \theta$
$=r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+r \cos ^{2} \theta$
$=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=r^{2}$
68. (B) Four years ago let the age of A and B be $2 x$ and $3 x$ years.

ATQ,

$$
\begin{array}{r}
\frac{2 x+8}{3 x+8}=\frac{5}{7} \\
x=16
\end{array}
$$

Let their present age $=32$ years $\& 48$ years
69. (B) $2=x+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}$

$$
\begin{aligned}
& \Rightarrow 2=x+\frac{1}{1+\frac{4}{13}} \\
& \Rightarrow 2=x+\frac{13}{17} \\
& \Rightarrow x=\frac{21}{17}
\end{aligned}
$$

70. (A)

Let the height of the tree be h and BP be $x \mathrm{~m}$.

$$
\begin{align*}
\tan 45^{\circ} & =\frac{\mathrm{h}}{\mathrm{QB}} \\
1 & =\frac{\mathrm{h}}{\mathrm{QB}} \\
100-x & =h \ldots \tag{i}
\end{align*}
$$

$$
\tan 30^{\circ}=\frac{\mathrm{h}}{\mathrm{x}}
$$

$$
\frac{1}{\sqrt{3}}=\frac{h}{x}
$$

$$
x=\sqrt{3} h
$$

$$
\text { or } 100-\sqrt{3} h=h
$$

$$
h(\sqrt{3}+1)=100
$$

$$
h=\frac{100}{\sqrt{3}+1}
$$

or $50(\sqrt{3}-1) \mathrm{m}$
71. (B) $L C M$ of number $=\frac{4107}{37}$

$$
=111
$$

So, numbers are 111 and 37 .
72. (D) Let the third number be 100%
then the first number $=20 \%$, \& second

$$
=50 \%
$$

Required percent $=\frac{20}{50} \times 100$

$$
=40 \%
$$

73. (D) Side of field $=10 \mathrm{~m}$

Require cost $=10 \times 10 \times 20$

$$
=2000
$$

74. (B) Let number of boys $=x$

Let number of girls $=y$
ATQ -
$\overline{x^{2}-y^{2}}=28$
$(x-y)(x+y)=28$
And $y+2=x$

$$
\begin{align*}
& \Rightarrow y+2=2 \ldots \ldots \ldots \text { (ii } \\
& \text { Put } x-y=2 \text { in } \ldots \ldots . \text { (i) } \\
& 2(x+y)=28 \\
& x+y=14 \ldots \ldots . . \text { (ii } \tag{i}
\end{align*}
$$

From equation (ii) and (iii)

$$
\begin{aligned}
2 x & =16 \Rightarrow x=8 \\
y & =6
\end{aligned}
$$

\therefore Total number of boys and girls $=8+6$ = 14
75. (C) $\sqrt{a+b+c}$

$$
\begin{aligned}
=\sqrt{3+4+9} & =\sqrt{16} \\
& = \pm 4
\end{aligned}
$$

76. (C) In 1 hour the $\overline{\text { inlet }}$ of 2 cm diameter can fill $\frac{1}{9}$ of the tank.
\therefore In 1 hour the inlet of 3 cm diameter can fill $\frac{1}{9} \times \frac{(3)^{2}}{(2)^{2}}=\frac{1}{4}$ of the tank.
\therefore In 1 hour the inlet of 4 cm
diameter can fill $\frac{1}{9} \times \frac{(4)^{2}}{(2)^{2}}$
$=\frac{4}{9}$ of the tank.
\therefore In 1 hour the three inlets together
will fill $\frac{1}{9}+\frac{1}{4}+\frac{1}{9}=\frac{4+9+16}{36}$
$=\frac{29}{36}$ of the tank.
Hence, the whole tank will get filled in $\frac{36}{29}$ $=1 \frac{7}{29}$ hours.
77. (B) $20 \%=\frac{1}{5}$

Let $x \mathrm{Ltr}$ of Pure Glycerine is added.

$$
\begin{aligned}
\therefore & \frac{40+x}{50+x} \times 100=95 \\
\Rightarrow 800 \times 20 x & =950+19 x \\
x & =150 \mathrm{Ltr}
\end{aligned}
$$

78. (B) Let the side of square in semi-circle be a cm^{2}.

$\mathrm{OM}^{2}+\mathrm{MN}^{2}=\mathrm{ON}^{2}$
$\Rightarrow a^{2}+\left(\frac{a}{2}\right)^{2}=r^{2}$
$\Rightarrow a^{2}=\frac{4 r^{2}}{5}$

Area of inscribed square in semi-circle $=\frac{4 r^{2}}{5}$
\Rightarrow So, area of inscribed square in a circle
$=\frac{1}{2} \times(2 r)^{2}=2 r^{2}$
\therefore Required ratio $=\frac{4 r^{2}}{5}: 2 r^{2}$

$$
=2: 5
$$

79. (D)
$\left.\begin{array}{lccl} & \text { Zinc } & \text { Tin } & \text { Total } \\ \text { A } & (5 & 2 & = \\ 7\end{array}\right) \times 1$
\therefore Ratio of Zinc and Tin in new all a y = $1: 1$
80. (D) Let Perimeter of base $6 a$.

$$
\begin{aligned}
& \begin{aligned}
132 \sqrt{3} & =6 a+10 \sqrt{3}+2 \times 6 \times \frac{\sqrt{3}}{4} a^{2} \\
132 & =60 a+3 a^{2} \\
a^{2} & +20 a-44= \\
a & =2 \\
\text { Volume } & =6 \times \frac{\sqrt{3}}{4} \times 2 \times 2 \times 10 \sqrt{3} \\
& =180 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

81. (C) Let the initial investments of A and B be $3 x$ and $5 x$.

$$
\mathrm{A}: \mathrm{B}: \mathrm{C}=3 x \times 12):(5 x \times 12):(5 x \times 6)
$$

$$
\begin{aligned}
& =36 x: 50 x: 30 x \\
& =6: 10: 15
\end{aligned}
$$

82. (D) $\mathrm{M}: \mathrm{F}=2: 1$
$\mathrm{M}: \mathrm{C}=2: 1$
Let x female can do it completely.
ATQ,
$(x \mathrm{~F}) 7=6(3 \mathrm{M}+4 \mathrm{~F}+6 \mathrm{C})$
$\Rightarrow 7 x \times 4=6(3 \times 2+4 \times 4+6 \times 1)$
$\Rightarrow x=\frac{6 \times 28}{7 \times 4}$ days

$$
=6 \text { days }
$$

83. (C) $\sin ^{3} \theta \cdot \cos ^{3} \theta$

$$
\Rightarrow \frac{8 \sin ^{3} \theta \cdot \cos ^{3} \theta}{8}
$$

$$
\begin{aligned}
& =\frac{(2 \sin \theta \cdot \cos \theta)^{3}}{8} \\
& \Rightarrow \text { minimum value }=-\frac{1}{8}
\end{aligned}
$$

84. (A)

$\cot \mathrm{B}+\cot \mathrm{C}$

$$
\begin{aligned}
\frac{\mathrm{BD}}{4}+\frac{\mathrm{CD}}{4} & =\frac{\mathrm{BD}+\mathrm{CD}}{4} \\
& =\frac{12}{3} \\
& =3 \mathrm{~cm}
\end{aligned}
$$

85. (C) If $x=2+2^{\frac{1}{3}}-2^{\frac{2}{3}}$

$$
\begin{aligned}
x^{3}-6 x^{2}+18 x & =2^{3}-2^{2}+2+3 \times 4 \\
& =8-4+2+12 \\
& =22-4 \\
& =18
\end{aligned}
$$

86. (D) ATQ,
$800=\frac{1}{3} \times 40 \times 40 \times h$
$\Rightarrow \frac{2400}{1600}=h$

$$
h=1.5 \mathrm{~cm}
$$

87. (A) 16 in not a factor of 136 , it follows that there does not exist any pair of numbers with HCF 16 and LCM 136.
88. (D) Ram \& Mohan $=3 x: 2 x$
$\Rightarrow \quad \frac{3 x \times 5+\frac{3 x}{2} \times 7}{2 x \times 12}$
$\Rightarrow \frac{30 x+21 x}{2 \times 24 x}$
$\Rightarrow \frac{51 x}{48 x}$
Ram's share $=$

$$
\begin{aligned}
& \frac{51}{99} \times 1650 \\
= & ₹ 850
\end{aligned}
$$

89. (A) Let the number of keepers be x.

Total number of heads $=(50+45+8+x)$

$$
=103+x
$$

Total number of feet

$$
\begin{aligned}
& =(45+8) \times 4+(50+x) \times 2 \\
& =(312+2 x)
\end{aligned}
$$

ATQ, $(312+2 x)-(103+x)=24$
$\Rightarrow x=15$
90. (B) Let the CP of mobile phone be 100%. ATQ,
$\mathrm{P}=100 \times \frac{112}{100}$

$$
=112 \%
$$

$\mathrm{Q}=100 \times \frac{96}{100}$
= 96\%
$\mathrm{Q}: \mathrm{P}=96: 112$

$$
=6: 7
$$

91. (D) Let the amounts invested in 2014 in companies P and Q be Rs. $8 x$ and Rs. $9 x$ respectively.
Then, interest received after one year from Company P
$=₹(6 \%$ of $8 x)=₹ \frac{48}{100} x$
and interest after one year from Company Q
$=₹(4 \%$ of $9 x)=₹ \frac{36}{100} x$.
\therefore Required ratio $=\left(\frac{\frac{48}{100} x}{\frac{36}{100} x}\right)=\frac{4}{3}$,
92. (D) Let ₹ x lakhs be invested in Company P in 2012, then amount invested in
Company Q in $2012=₹(30-x)$ lakhs.
Total interest from the two Companies after 1 year
$=₹[(7.5 \%$ of $x)+(9 \%$ of $(30-x)]$ lakhs
$=₹\left[27-\left(\frac{1.5 x}{100}\right)\right]$ lakhs
$\therefore\left[27-\left(\frac{1.5 x}{100}\right)\right]=2.43 \Rightarrow x=18$.
i.e., amount invested in Company P = ₹ 18 lakhs.
93. (D) Difference $=₹[(10 \%$ of 4.75$)-(8 \%$ of 4.75)] lakhs.
$=₹(2 \%$ of 4.75$)$ lakhs $=₹ 0.095$ lakhs = ₹ 9500
94. (C) Amount received from Company P after one year (i.e., in 2010) on investing ₹ 12 lakhs in it = ₹ $[12+(8 \%$ of 12$)]$ lakhs = ₹ 12.96 lakhs.
Amount received from Company P after one year on investing ₹ 12.96 lakhs in the Appreciation received on investment during the period of two years.
$=₹(14.256-12)$ lakhs $=₹ 2.256$ lakhs = ₹ $2,25,600$
95. (B) Amount received from Company Q after one year on investment of ₹ 5 lakhs in the year $2008=₹[5+(6.5$ of 5) lakhs = ₹ 5.325 lakhs.

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Amount received from Company P after one year on investment of ₹ 5.325 lakhs in the year $2009=₹[15.325+(9 \%$ of 5.325)] lakhs = ₹ 5,80,425.
96.(D) Total sales of branches B1, B2 and B5 for both the years (in thousand numbers)
$=(80+105)+(95+110)+(75+96)$ $=560$.
97. (C) Required Percentage

$$
=\left[\frac{(70+80)}{(95+95)}=100\right] \%=\left(\frac{150}{205} \times 100\right) \%
$$

$=73.17 \%$
98. (B) Average sales of all the six branches (in thousand numbers) for the year

$$
\begin{aligned}
2013 & =\frac{1}{6} \times(80+75+95+85+75+70] \\
& =80
\end{aligned}
$$

99. (A) Required ratio $=\frac{(65+55)}{(85+95)}$

$$
=\frac{120}{180}=\frac{2}{3}
$$

100. (D) Average sales (in thousand numbers) of branches B1 B3 and B6 in 2013 $=\frac{1}{3} \times(80+95+70)=\left(\frac{245}{3}\right)$
Average sales (in thousand numbers) of branches B1, B2 and B3 in 2014

$$
=\frac{1}{3} \times(105+65+110)=\left(\frac{280}{3}\right)
$$

$$
\therefore \text { Required Percentage }=\left[\frac{\left(\frac{245}{3}\right)}{\left(\frac{280}{3}\right)} \times 100\right] \%
$$

$$
=\left(\frac{245}{280} \times 100\right) \%
$$

= 87.5\%

SSC MAINS-09 (ANSWER KEY)

1. (A)
2. (C)
3. (D)
4. (D)
5. (D)
6. (B)
7. (A)
8. (D)
9. (D)
10. (C)
11. (C)
12. (B)
13. (B)
14. (B)
15. (B)
16. (B)
17. (D)
18. (B)
19. (A)
20. (D)
21. (B)
22. (A)
23. (A)
24. (C)
25. (D)
26. (D)
27. (C)
28. (C)
29. (A)
30. (A)
31. (A)
32. (D)
33. (B)
34. (C)
35. (C)
36. (A)
37. (A)
38. (D)
39. (D)
40. (A)
41. (B)
42. (D)
43. (D)
44. (A)
45. (A)
46. (C)
47. (B)
48. (A)
49. (C)
50. (A)
51. (A)
52. (B)
53. (D)
54. (A)
55. (B)
56. (D)
57. (D)
58. (B)
59. (A)
60. (D)
61. (B)
62. (C)
63. (D)
64. (C)
65. (B)
66. (D)
67. (A)
68. (B)
69. (D)
70. (C)
71. (D)
72. (C)
73. (A)
74. (D)
75. (B)
76. (C)
77. (C)
78. (D)
79. (C)
80. (D)
81. (C)
82. (B)
83. (C)
84. (B)
85. (B)
86. (A)
87. (A)
88. (A)
89. (C)
90. (D)
91. (B)
92. (D)
93. (D) 87. (A)
94. (D) 88. (D)
95. (B)
96. (A)
97. (C)
98. (B)

Note : If your opinion differs regarding any answer please message the mock test and question no to 886030003

For any issues related to Result Processing, kindly contact us on 9313111777.

