

Campus
By Campus Pyt. Ltd
2007, OUTRAM LINES, 1ST FLOR, OPPOSITE MURHENEE NAGAR POLICE STATION, DELHI-110009
Area of triangle
$$= \frac{1}{2} \times base \times height$$

 $= \frac{1}{2} \times b \times \sqrt{\frac{4a^2 - b^2}{4}}$
 $= \frac{b}{2} \times \frac{1}{2} \sqrt{4a^2 - b^2}$
 $= \frac{b}{2} \times \frac{1}{2} \sqrt{4a^2 - b^2}$
 $= \frac{b}{4} \sqrt{4a^2 - b^2}$
 $= \frac{b}{2} \times \frac{1}{2} \sqrt{3a^2 - b^2}$
 $= \frac{118. (A) Let the number of subject be x.
ATO, (80/2)A(=160 - 3) × 2 = 25.
Total marks aimed $= 80 \times 5 = 400$
 $10. (B) \frac{NHEREE (NO, 160 - 3) \times 2 = 25.$
 $NUMBEr of 25 paise circles $= 3 \times ab = \frac{1}{2} \div 0.350^{-1}$
 $10. (B) \frac{NHEREE (NO, 160 - 3) \times 2 = 25.$
 $Number of 25 paise circles $= 3 \times ab = \frac{3 \times ab}{2} = \frac{3 \times ab}{2}$
 $20. (C) P = \frac{4xy}{x+y}$
 $20. (C) P = \frac{2x + 2y}{x+y}$
 $20. (C) P = \frac{2x}{2} - \frac{2y}{2} \times xy$
 $p = \frac{2x + 2y}{2x - xy}$
 $p = \frac{2y}{2x - 2y} = \frac{3x + 2y}{3x - x}$
 (B)
Now, putting the value from equation ([] & ([0])$
 $p = 1 \text{ turbing of other workers be a
 $\frac{2y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y}{y - x}$
 $\frac{3y + x - 3x - y$$$$

Ph: 09555108888, 09555208888

14