SSC MAINS (MATHS)-6 (SOLUTION)

1. (A) $987=3 \times 7 \times 47$

So, the required number must be divisible by each.
Hence, answer is 553681
2. (D) LCM of $252,308 \& 198$ is 2772 .

So, A, B and C will again meet at the starting point after 46 minutes 12 seconds.
3. (D) $6 \times 999+\left[\frac{1+2+3+4+5+6}{7}\right]$
$=6 \times 999+\frac{21}{7}=5997$
4. (B) Let required number of bottles be x.
$\frac{4}{5} x-\frac{3}{4} x=(6-4)$
$\frac{x}{20}=2$
5. (D)

In $\triangle \mathrm{OBR}, \mathrm{OB}=\sqrt{17^{2}-8^{2}}$

$$
\begin{aligned}
& =\sqrt{225} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

In Δ OBP,

$$
\begin{aligned}
\mathrm{BP} & =\sqrt{25^{2}-15^{2}} \\
& =\sqrt{625-225} \\
& =\sqrt{400} \\
& =20 \mathrm{~cm}
\end{aligned}
$$

Line $\mathrm{PS}=\mathrm{PB}+\mathrm{BS}=20+20=40 \mathrm{~cm}$
6. (B)

$\angle \mathrm{PAQ}=48^{\circ}$ [Given]
$\triangle \mathrm{APQ}$ is an isoseles triangle.
So, $\angle \mathrm{APQ} \& \angle \mathrm{AQP}$ are equal.

$$
\begin{aligned}
\angle \mathrm{APQ} & =\frac{180^{\circ}-48^{\circ}}{2} \\
& =\frac{132}{2} \\
& =66^{\circ}
\end{aligned}
$$

7. (C) Let the number be x.

ATQ,
$x^{2}-25=(x-25)^{2}$
$x^{2}-25=x^{2}+625-50 x$

$$
50 x=625+25
$$

$$
50 x=650
$$

$$
x=\frac{650}{50}=13
$$

8. (C) Mr. X

Cost price $=100 \%-10 \%=90 \%$
After sales tax $=90 \times \frac{108.5}{100} \%$

$$
=97.65 \%
$$

Mr. Y
Cost price $=100 \%+8.5 \%$

$$
=108.5 \%
$$

After sales tax $=108.5 \% \times \frac{90}{100}$

$$
=97.65 \%
$$

9. (B)
$A=S\left(1+\frac{2 r}{100}\right)^{3}$

$$
=\mathrm{S}\left(1+\frac{r}{50}\right)^{3}
$$

10. (A) Story books : other books $\Rightarrow 7: 2 \Rightarrow 9$
$7 \xrightarrow{\times 216} 1512$
$9 \xrightarrow{\times 216} 1944$
other book $=2 \times 216$

$$
=432
$$

ATQ, 4 \qquad 432
Total books $=(15+4) \times 108$

$$
=2052
$$

Required books $=2052-1944$

$$
=108
$$

11. (B)

$$
\begin{aligned}
& h=\sqrt{(a)^{2}-\left(\frac{b}{2}\right)^{2}} \\
& h=\sqrt{a^{2}-\frac{b^{2}}{2}}
\end{aligned}
$$

$$
\Rightarrow \text { Leight }=\sqrt{\frac{4 a^{2}-b^{2}}{4}}
$$

Area of triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times b \times \sqrt{\frac{4 a^{2}-b^{2}}{4}} \\
& =\frac{b}{2} \times \frac{1}{2} \sqrt{4 a^{2}-b^{2}} \\
& =\frac{b}{4} \sqrt{4 a^{2}-b^{2}}
\end{aligned}
$$

12. (B) Total value $=6 x$

ATQ,

$$
\begin{aligned}
3 y+3 z & =6 x \\
3(y+z) & =6 x \\
y+z & =2 x
\end{aligned}
$$

13. (C) Right circular cylinders
$r_{1}: r_{2}=2: 3$
$h_{1}: \lambda_{2}=5: 3$
Valume of right circular cylinder $=\pi r^{2} h$
$\Rightarrow \mathrm{V} \propto r^{2} h(\because z$ is constant $)$
$\therefore \mathrm{V}_{1}: \mathrm{V}_{2}=2^{2} \times 5: 3^{2} \times 3$
= $20: 27$
14. (D) $5[0.1+0.11+0.111+$ \qquad $+n]$
$\Rightarrow \frac{5}{9}[0.9+0.99+0.999+$ \qquad $+n]$
$\Rightarrow \frac{5}{9}\left[\{1-0.1\}+\left\{1-(0.1)^{2}\right\}+\left\{1-(0.1)^{3}\right\}+\ldots .+n\right]$
$\Rightarrow \frac{5}{9}\left[n-\left\{0.1+(0.1)^{2}+(0.1)^{3}+\ldots . .+n\right\}\right]$
$\Rightarrow \frac{5}{9}\left[n-\frac{0.1\left(1-0.1^{n}\right)}{1-0.1}\right]$
$\Rightarrow \frac{5}{9}\left[n-\frac{1}{9}\left\{1-0.1^{n}\right\}\right]$
$\Rightarrow \frac{5}{9}\left[n-\frac{1}{9}\left\{1-\frac{1}{10^{n}}\right\}\right]$
15. (C) Payment of 12 months $=₹ 9000+1$ Turban
\Rightarrow Payment of 9 months $=\frac{9}{12}$
(₹ $9000+1$ Turbon) (i)

Received payment = ₹ 6500+1 Turban... (ii)
From equation (i) \& (ii)
$\frac{3}{4}(₹ 9000+1$ Turbon $)=₹ 6500+1$ Turban
$\Rightarrow 27000+3$ Turbon $=26000+4$ Turban
$\Rightarrow(4-3)$ Turban $=(27-26) 1000$
$\Rightarrow 1$ Turban $=₹ 1000$
16. (D) Let the number be x
$\frac{x+a}{y+a}=\frac{p}{q}($ where $\mathrm{P} \neq \mathrm{q})$
$q x+a q=p y+a p$
$a(q-p)=p y-a p$

$$
a=\frac{p y-q x}{q-p}
$$

17. (C) Let total number of other workers be a, then agricultural worker be 11a.

ATQ,

$$
\begin{aligned}
\frac{11 a \times s+a \times T}{12 a} & =\frac{a(11 S+T)}{12 a} \\
& =\frac{11 \mathrm{~S}+\mathrm{T}}{12}
\end{aligned}
$$

18. (A) Let the number of subject be x.

ATQ, $(80+2) x-(80-3) x=25$

$$
x=5
$$

Total marks aimed $=80 \times 5=400$
19. (B)

50 Paise : 25 Paise : 10 Paise

Number	2	$:$	3	$:$	5
Value	1	$:$	0.75	$:$	0.50

Total value $=(1+0.75+0.50)=2.25$ unit
2.25 units $=90$
$\Rightarrow 1$ unit $=\frac{90}{2525} \times 100=40$ coins
\therefore Number of 25 paise coins $=3$ units
$=3 \times 40$
$=120$ coins
20. (C) $\mathrm{P}=\frac{4 x y}{x+y}$
$\Rightarrow \mathrm{P}=\frac{2 x \times 2 y}{x+y}$
$\Rightarrow \frac{\mathrm{P}}{2 x}=\frac{2 y}{x+y}$
Applying componendo \& dividendo
$\frac{\mathrm{P}+2 x}{\mathrm{P}-2 x}=\frac{2 y+x+y}{2 y-x-y}$
$\Rightarrow \frac{\mathrm{P}+2 x}{\mathrm{P}-2 x}=\frac{3 y+x}{y-x}$
Similarly,
$\mathrm{P}=\frac{4 x y}{x+y}$
$\Rightarrow \frac{P}{2 y}=\frac{2 x}{x+y}$
$\Rightarrow \frac{P+2 y}{P-2 y}=\frac{2 x+x+y}{2 x-x-y}$
$\Rightarrow \frac{\mathrm{P}+2 y}{\mathrm{P}-2 y}=\frac{3 x+2 y}{x-y}$
Now, putting the value from equation (i) $\&$ (ii)
$\Rightarrow \frac{\mathrm{P}+2 x}{\mathrm{P}-2 x}+\frac{\mathrm{P}+2 y}{\mathrm{P}-2 y}=\frac{3 y+x}{y-x}+\frac{3 x+y}{x-y}$
$=\frac{3 y+x}{y-x}-\frac{3 x+y}{y-x}$
$=\frac{3 y+x-3 x-y}{y-x}$
$=\frac{-2 x+2 y}{y-x}=\frac{2(y-x)}{(y-x)}$
$=2$
21. (D)

Campus

K D Campus Pvt. Ltd

$\left.\begin{array}{lcl}\text { Mixture A } & \text { Milk } & : \text { Water } \\ \text { Mixture } \mathrm{B} & 9 & : 11\end{array}\right\} \begin{aligned} & \text { Mixed in ratio } \\ & 3: 2\end{aligned}$
Milk in mixture $A=\frac{4}{5}=\frac{4}{5 \rightarrow(4+1)}$
Milk in mixture $B=\frac{9}{20}$
By alligation,

$\therefore \frac{\frac{4}{5}-x}{x-\frac{9}{20}}=\frac{2}{3}$
$\Rightarrow 3 \times\left(\frac{4}{5}-x\right)=2 \times\left(x-\frac{9}{20}\right)$
$\Rightarrow \frac{12}{5}-3 x=2 x-\frac{9}{10}$
$\Rightarrow 5 x=\frac{12}{5}+\frac{9}{10}$
$\Rightarrow 5 x=\frac{24+9}{10}$
$\Rightarrow x=\frac{33}{50} \Rightarrow$ Milk in new mixture
\therefore water $=(50-33)=17$
\therefore Ratio of milk : water in new mixture
$=33: 17$
22. (D) Let the total number of votes $=100$

Number of votes that cast their vote
$=(100-8)$
$=92$
Number of votes that went to winner $=48$
\therefore Number of votes that went to looser

```
                        = (92-48) = 44
```

ATQ,
$(48-44)$ unit $=1100$ votes
$\Rightarrow 4$ unit $=1100$
1 unit $=\frac{1100}{4}$ votes
\therefore Total number of votes $=\frac{1100}{4} \times 100$

$$
\begin{aligned}
& =100 \text { unit } \\
& =27500
\end{aligned}
$$

23. (B) Total number of students $=100 \%$

Percent of Girls $=70 \%$
\therefore Percent of Boys $=30 \%(100-70)$
$30 \%=510$ Boys
$\Rightarrow 1 \%=17$ Boys
Total number of students $=100 \%$
$=100 \times 17$
$=1700$
24. (B) $\frac{(m+n) x-(a-b)}{(m-n) x-(a+b)}=\frac{(m+n) x+a+c}{(m-n) x+a-c}$
$\Rightarrow \frac{m x+n x-a+b}{m x-n x-a-b}=\frac{m x+n x+a+c}{m x-n x+a-c}$
$\Rightarrow \frac{(m x-a)+(n x+b)}{(m x-a)-(n x+b)}=\frac{(m x+a)+(n x+c)}{(m x+a)-(n x+c)}$
$\Rightarrow \frac{m x-a}{n x+b}=\frac{m x+a}{n x+c}$ [by componendo and
dividendo]
$\Rightarrow(\mathrm{m} x-a)(\mathrm{n} x+\mathrm{c})=(\mathrm{m} x+a)(\mathrm{n} x+b)$
$\Rightarrow m n x^{2}+c m x-a n x-a c=m n x^{2}+m b x+$
$a n x+a b$
$\Rightarrow c m x-a n x-m b x-a n x=a b+a c$
$\Rightarrow x(c m-2 a n-m b)=a(b+c)$
$\Rightarrow x=\frac{a(b+c)}{c m-2 a n-b m}$
25. (C) $\frac{5 x-7 y+10}{1}=\frac{3 x+2 y+1}{8}=\frac{11 x+4 y-10}{9}$

$$
\begin{gather*}
\quad \Rightarrow 8(5 x-7 y+10)=1(3 x+2 y+1) \\
\Rightarrow 37 x-58 y=-79 \ldots . \text { (i) } \tag{i}\\
9(5 x-7 y+10)=11 x+4 y-10 \\
\quad \Rightarrow 34 x-67 y=-100 \ldots . \text { (ii) } \tag{ii}
\end{gather*}
$$

from equation (i) and (ii)

$$
x=1, y=2
$$

$x+y=1+2$

$$
=3
$$

26. (C) Let B's money used for x months

ATQ, $\frac{\frac{1}{4} \times 15}{\frac{3}{4} \times x}=\frac{1}{2}$
$\Rightarrow \frac{5}{x}=\frac{1}{2}$
$\Rightarrow x=10$ months
27. (*)

and $\mathrm{AC}=\mathrm{CM}=\mathrm{MD}=\mathrm{BD}=\frac{a}{2}$
Now $\mathrm{OC}=\mathrm{OP}+\mathrm{PC}=\mathrm{OP}+\mathrm{CM}$

$$
=r+\frac{a}{2}
$$

$\therefore \Delta \mathrm{OCD}$ is an isoceles triangle and M is mid point of CD.

Campus

K D Campus Pvt. Ltd

$$
\angle \mathrm{OMC}=90^{\circ}
$$

In $\triangle \mathrm{OMC}, \mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{CM}^{2}$

$$
\begin{aligned}
\left(r+\frac{a}{2}\right)^{2} & =(a-r)^{2}+\left(\frac{a}{2}\right)^{2} \\
r & =\frac{a}{3}
\end{aligned}
$$

28. (A)

$\angle \mathrm{CAD}=20^{\circ}=\angle \mathrm{ADC}$
then, $\theta=20^{\circ}+20^{\circ}$
[exterior angle property of triangle]
$=40^{\circ}$
29. (A)

$\Delta \mathrm{ABC} \sqcup \triangle \mathrm{BDA}$

$$
\begin{aligned}
\therefore & \frac{B A}{B D}=\frac{B C}{B A} \\
B C^{2}= & A C^{2}+A B^{2} \\
= & 4 A B B^{2}+A B^{2} \\
= & 5 \mathrm{AB}^{2}
\end{aligned}
$$

\therefore From (i) $\mathrm{BC}=\frac{\mathrm{BA}^{2}}{\mathrm{BD}}$
$\Rightarrow \mathrm{BC}=\frac{\mathrm{BC}^{2}}{5 \mathrm{BD}}$
or, $\mathrm{BD}=\frac{\mathrm{BC}}{5}\left[\because \mathrm{AB}^{2}=\frac{\mathrm{BC}^{2}}{5}\right]$
30. (B)

$\Rightarrow \angle \mathrm{B}=\angle \mathrm{D} \& \angle \mathrm{E}=\angle \mathrm{C}$
$\therefore \triangle \mathrm{ADE} \sqcup \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow x(x-1)=(x-2)(x+2)$
$\Rightarrow x^{2}-x=x^{2}-4$
$\Rightarrow x=4$
31. (C) In $\triangle B R C$ and $\triangle P A B$
$\angle \mathrm{RCB}=\angle \mathrm{PAB}$
$\angle \mathrm{RBC}=\angle \mathrm{PBA}$
$\therefore \triangle \mathrm{BRC} \sqcup \triangle \mathrm{PAB}$
$\therefore \frac{\mathrm{RC}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \frac{y}{x}=\frac{\mathrm{BC}}{\mathrm{AB}}$
Similarly in $\triangle \mathrm{ARC}$ and $\triangle \mathrm{ABQ}$
$\Delta \mathrm{ARC} \sqcup \triangle \mathrm{ABQ}$
$\therefore \quad \frac{\mathrm{RC}}{\mathrm{QB}}=\frac{\mathrm{AC}}{\mathrm{AB}}$
$\Rightarrow \frac{y}{z}=\frac{\mathrm{AB}-\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \frac{y}{z}=1-\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \frac{y}{z}=1-\frac{y}{x}$
$\Rightarrow \frac{y}{z}=\frac{x-y}{z}$
or, $x y+y z=x z$
32.(D) Money given to wife $=\frac{1}{2}$

Money given to his 3 sons equally
$=\frac{2}{3}$ of reamaing $\frac{1}{2}$
$\Rightarrow \frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$
Rest of the money given to his 4 daughters
$=1-\left(\frac{1}{2}+\frac{1}{3}\right)$
$=\frac{1}{6}$
Each daughter gets = ₹ 20000
$\therefore 4$ daughter $=4 \times 20,000=80,000=\frac{1}{6}$ part of total money
$\Rightarrow \therefore$ Total money $=4,80,000$
Money given to 3 sons $=\frac{1}{3} \times 4,80,000$

$$
=1,60,000
$$

\therefore Each son gets equally $=\frac{1,60,000}{3}$

$$
=53333.33
$$

33. (B) Average marks of 16 children $=76$

$$
\begin{aligned}
\Rightarrow \text { Total marks of } 16 \text { children } & =75 \times 10 \\
& =750 \\
\Rightarrow \text { Total marks of } 6 \text { children } & =1216-750 \\
& =466
\end{aligned}
$$

\Rightarrow Average marks of 6 children $=\frac{466}{6}$

$$
=77 \frac{2}{3}
$$

34. (D) Let his heighest run be x and lowest be y. ATQ, $x-y=172$
sum of all runs $=40 \times 50=2000$ runs
After excluding two innings $=48 \times 38$
$=(50-2)(40-2)$
$=2000+4-180$
\therefore Total runs in all innings
$=2000+4-180+x+y$
$\Rightarrow 2000+4-180+x+y$
$\Rightarrow x+y=176$
$x+y=176$
$x-y=172$
Adding, $2 x=176+172$
$\Rightarrow x=\frac{348}{2}=174$
\therefore Highest score $=174$
35. (B) Fraction $/$ Ratio $=2: 3=2 x: 3 x$

Now, 6 is subtracted from numerator
$(2 x-6): 3 x=\frac{2}{3}$ of $\frac{2}{3}$
$\Rightarrow \frac{2 x-6}{3 x}=\frac{4}{9}$
$\Rightarrow 18 x-54=12 x$
$\Rightarrow 6 x=54 \Rightarrow x=9$
\therefore Numerator $=2 \times 9=18$
36. (D) Let the numbers be a, b, c and d
respectively then we have,
$a+3=b-3=3 c=\frac{d}{3}-$ (i)
and $a+b+c+d=64-$ (ii)
From equation (i) we get,
$b=a+6$
$c=\frac{a+3}{3}$
$d=3 a+9$
Now putting the value of equation (ii) in equation 9 (i)
$a+a+6+\frac{a+3}{3}+3 a+9=64$
$\Rightarrow 3 a+3 a+18+a+3+9 a+27=192$
$\Rightarrow 16=192-48 \Rightarrow 16 a=144$
$\Rightarrow a=9$
Then $b=15, C=4$ and $d=36$
So difference between smallest and largest
$=36-4=32$
37. (A) Let the three numbers be a, b and c respectively then we have,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$

$$
\begin{aligned}
& =138+2 \times 131 \\
& =138+262 \\
& =400
\end{aligned}
$$

$\Rightarrow a+b+c=\sqrt{400}=20$
So the sum of the respective numbers $=20$
38. (D) Let the required sum be x.

$$
\begin{aligned}
& x \times \frac{96}{100}-10000 \times \frac{1}{100}=31100 \\
& \Rightarrow x \times \frac{96}{100}=31100+100 \\
& \Rightarrow x=\frac{31200}{96} \times 100 \\
& =32500
\end{aligned}
$$

39. (D) Spider climbed the height $=62 \frac{1}{2} \%=\frac{5}{8}$ in 1 hours
In next hours, it covered $=\frac{1}{8}$ of remaining height

Assume the height $=64$ units

In next hour, $\frac{1}{8} \times 24=3$ unit $\begin{array}{r}\text { Climbed }\end{array}$
64 units $\Rightarrow 192 \mathrm{~m}$
$\Rightarrow 1$ unit $=3 \mathrm{~m}$
\therefore Distance climbed in next hour $=3$ units $=9 \mathrm{~m}$
40. (D) Let the original price be x ATQ,
$x\left(\frac{100+r}{100}\right)\left(\frac{100+r}{100}\right)=1$
$\Rightarrow x(100+r)=10000$
$\Rightarrow x=\frac{10000}{10000-r^{2}}$
So the original price was $=\frac{10000}{10000-r^{2}}$
41. (A) CP of article $=(1920+1280) \times \frac{1}{2}$
$=3200 \times \frac{1}{2}=₹ 1600$
The SP for 25% profit $=1600 \times \frac{125}{100}$

$$
\text { = ₹ } 2000
$$

42. (C) Cost of 30 kg wheat at ₹ $11.50 / \mathrm{kg}$
$=11.5 \times 30$
= ₹ 345
Cost of 20 kg wheat at ₹ $14.25 / \mathrm{kg}$
$=14.25 \times 20$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
= ₹ 285
Total cost of $50 \mathrm{Kg}=₹(345+285)$

$$
\text { = ₹ } 630
$$

\Rightarrow Required price $=₹ \frac{630}{50} \times \frac{130}{100}=₹ 16.3$
43. (C)

Total cost price of 9 Kg groundnuts $=$ ₹ 270
Total SP = $33 \times 9=$ ₹ 297
Required profit percentage $=\frac{27}{270} \times 100$
= 10\%
44. (D) Let their investment be $3 x, 2 x \& 4 x$.
A
B
C
$3 x \times 36 \quad 2 x \times 36 \quad 4 x \times 36$
$+2,70,000 \times 24+2,70,000 \times 12$

Ratio of profit $=$
$(3 x \times 36):(72 x+2,70,000 \times 24):$
$(144 x+2,70,000 \times 12)$
$\frac{3 x \times 36}{72 x+2,70,000 \times 24}=\frac{3}{4}$ [Given]
$x=90,000$
Hence, A's initial investment $=3 x$
$=₹ 2,70,000$
B's initial investment $=2 x=₹ 1,80,000$
C's initial investment $=4 x=₹ 3,60,000$
45. (A) $\because a=\frac{x y}{x+y}, b=\frac{x z}{x+z}, C=\frac{y z}{y+z}$
$\therefore \frac{x+y}{x y}=\frac{1}{a}, \frac{x+z}{x z}=\frac{1}{b}, \frac{y+z}{y z}=\frac{1}{c}$
or, $\frac{1}{y}+\frac{1}{x}=\frac{1}{a}, \frac{1}{z}+\frac{1}{x}=\frac{1}{b}, \frac{1}{z}+\frac{1}{y}=\frac{1}{c}$
$\therefore \frac{1}{a}+\frac{1}{b}-\frac{1}{c}$
$=\left(\frac{1}{y}+\frac{1}{x}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)-\left(\frac{1}{z}+\frac{1}{y}\right)$
$\therefore \frac{2}{x}=\frac{b c+c a-a b}{a b c}$
or, $x=\frac{2 a b c}{b c+c a-a b}$
46. (C) One hour work of Jitendra and

Surendra $=\frac{32}{6}+\frac{40}{5}$

$$
\begin{aligned}
& =\frac{160+240}{30} \\
& =\frac{40}{3} \text { Pages }
\end{aligned}
$$

Required time $=\frac{110 \times 3}{40}$ hours

$$
=\frac{330}{40} \text { hours }
$$

= 8 hours 15 minutes
47. (A) 12 men complete a work in 4 days
$\therefore 1$ day work of a man $=\frac{1}{48}$
15 women complete a work in days $=4$
$\therefore 1$ day work of a women $=\frac{1}{60}$
work done by 6 men in 2 days
$=\frac{1}{48} \times 6 \times 2=\frac{1}{4}$
\therefore Remaining work $=1-\frac{1}{4}=\frac{3}{4}$
Number of women required to finish the
remaining work in 3 days $=\frac{\frac{3}{4}}{\frac{1 \times 3}{60}}=15$
48. (D) Speed of $P=50 \mathrm{~km} / \mathrm{hr}$

Speed of $Q=40 \mathrm{~km} / \mathrm{hr}$
\because Per hour, P travelled 100 km more than Q .
$\therefore \mathrm{P}$ travelled 100 km more than Q in
$=10$ hours
\therefore They meet after 10 hours
\therefore Distance between P and Q
$=(50+40) \mathrm{km} / \mathrm{hr} \times 10$ hours
$=90 \times 10=900 \mathrm{kms}$
49. (B) Given A and B can fill in 24 min and 32 \min respectively
ATQ,

A

> B

Let B should be closed after x min ATQ,
We have,
$(4+3) \times x+4(18-x)=96$
$\Rightarrow 7 x+4(18-x)=96$
$\Rightarrow 7 x+72-4 x=96$
$\Rightarrow 3 x=24$
$\Rightarrow x=8$
So tank B should be closed after 8 min.
50. (C) Let speed of car be $x \mathrm{~km} /$ hour

ATQ,
$\frac{715}{x}-\frac{715}{x+10}=2$ hours
$\Rightarrow \frac{715(10+x-x)}{x(x+10)}=2$
$\Rightarrow x(x+10)=\frac{715 \times 10}{2}$
$\Rightarrow x(x+10)=715 \times 5$
$\Rightarrow x(x+10)=13 \times 11 \times 5 \times 5$
$(715=13 \times 11 \times 5)$
$x(x+10)=\underset{\text { Diff }=10}{65}$
(From Options)
$\therefore x=55 \mathrm{kms} / \mathrm{hr}$
51. (C) $3 \mathrm{M}+4 \mathrm{~B} \Rightarrow 96$ hours
$2 \mathrm{M}+8 \mathrm{~B} \Rightarrow 80$ hours
$2 \mathrm{M}+3 \mathrm{~W} \Rightarrow 120$ hours
LCM of 96, 80 and $120=480$
Let total work be 480 units
$3 M+4 B \Rightarrow \frac{480}{96}=5$ units
$2 M+8 B \Rightarrow \frac{480}{80}=6$ units
or, $M+4 B=3$ units
$2 M+3 W \Rightarrow \frac{480}{120}=4$ units \qquad
Subtracting equation (ii) from (i)
$\Rightarrow 2 \mathrm{M}=2$ units
or, $\mathrm{M}=1$ unit
putting value of M in equation (i)
$\Rightarrow 3 \times 1+4 \mathrm{~B}=5$
or, $\mathrm{B}=\frac{1}{2}$ unit
one hour work of $5 \mathrm{M}+12 \mathrm{~B}=5 \times 1+12 \times \frac{1}{2}$
$=5+6$
$=11$ units
Required hours $=\frac{480}{11}$ hours

$$
=43 \frac{7}{11} \text { hours }
$$

52. (D) Train $1 \mathrm{st}=137 \mathrm{~m}$

Train $2 \mathrm{nd}=163 \mathrm{~m}$
Net distance to be travelled by both the trains $=137+163$

$$
=300 \mathrm{~m}
$$

speed of the $1^{\text {st }}$ train $=42 \mathrm{kms} / \mathrm{hr}$
speed of another train $=38 \mathrm{kms} / \mathrm{hr}$
\therefore Net speed $=(42+48) \mathrm{kms} / \mathrm{hr}$
$(\because$ They are travelling toward each other i.e in opposite direction)
$=90 \mathrm{~km} / \mathrm{hr}$
$=90 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}$
$=25 \mathrm{~m} / \mathrm{sec}$
Required time $=\frac{\mathrm{D}}{\mathrm{S}}=\frac{300}{25} \mathrm{sec}$
$=12 \mathrm{sec}$
53. (C) Water: Syrup $\rightarrow 3: 5$

After drawing \rightarrow 3:5
(ratio of the mixture remains the same)
After replacing $1: 1$
by water, the
quantity of syrup
remains same
$\rightarrow 5: 5 \rightarrow$ (Multiplying by 5) W: S
After drawing $3: 5 \Rightarrow$ Total 8 unit
After replacing $5: 5 \Rightarrow 2$ units of water is be added
\because After drawing, Mixture $=8$ unit
\therefore Before drawing, Mixture $=(8+2)$ units
= 10 units
Drawn amount $=2$ units
\therefore Part of the mixture drawn $=\frac{2}{10}=\frac{1}{5}$
54. (B) $\frac{\text { Perimeter of } \triangle \mathrm{ABC}}{\text { Perimeter of } \triangle \mathrm{PQR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$
$\Rightarrow \frac{36}{24}=\frac{A B}{10}$
$\Rightarrow \mathrm{AB}=\frac{36 \times 10}{24}=15 \mathrm{cms}$
55. (A) $\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF})$
$\Rightarrow \frac{64 \mathrm{~cm}^{2}}{121 \mathrm{~cm}^{2}}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{EF}}=\sqrt{\frac{64}{121}}$
$\Rightarrow \mathrm{BC}=\frac{8 \times 15.4}{11}$

$$
=11.2 \mathrm{cms}
$$

56. (A) $(r \cos \theta-\sqrt{3})^{2}+(r \sin \theta-1)^{2}=0$
$r \cos \theta=\sqrt{3}$
$r \sin \theta=1$
\qquad
From (i) and (ii)
$r=2 \quad \& \quad \theta=30^{\circ}$
$\Rightarrow \frac{r \tan \theta+\sec \theta}{r \sec \theta+\tan \theta}=\frac{2 \tan 30^{\circ}+\sec 30^{\circ}}{2 \sec 30^{\circ}+\tan 30^{\circ}}=\frac{4}{5}$
57. (B)

\therefore It divides $\triangle \mathrm{ABC}$ in three equal parts.
$\operatorname{Area}(\Delta \mathrm{AGB})=\operatorname{Area}(\Delta \mathrm{BGC})=\operatorname{Area}(\Delta \mathrm{CGA})$
$=\frac{60}{3} \mathrm{sq} \mathrm{cm}=20 \mathrm{~cm}^{2}$
Now, each individual Δ is divided into equal parts.
\therefore In $\triangle B G C$, Area of $\triangle B G D=\frac{20}{2}=10 \mathrm{~cm}^{2}$
Similarly in $\triangle \mathrm{AGB}$, Area of $\triangle \mathrm{FGB}=\frac{20}{10}$
$=10 \mathrm{~cm}^{2}$
\therefore Area of BDGF $=$ Area of $\Delta \mathrm{BGF}+$
Area of $\triangle \mathrm{BGD}=10+10$

$$
=20 \mathrm{~cm}^{2}
$$

Short trick
6 units $=60$
$\Rightarrow 2$ units $=20 \mathrm{~cm}^{2}$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
58. (B)

$r=\frac{14}{2}=7$

$\mathrm{R}=\frac{14 \sqrt{2}}{2}=7 \sqrt{2}$
$r: \mathrm{R}=1: \sqrt{2}$
59. (D)

both parallelogram and rhombus are same as base are same.
60. (D)

PQ||RS
$\mathrm{OP}=\mathrm{OR}$ Radius (R) (O is centre)
Let DO be $x \& O E$ be $y \mathrm{~cm}$
$P Q$ is a chord $\Rightarrow P Q=30$
$\therefore \mathrm{PD}=\mathrm{DQ}=\frac{30}{2}=15 \mathrm{cms}$
Similarly, RS $=16 \mathrm{cms}$
$\Rightarrow \mathrm{RE}=\mathrm{ES}=\frac{16}{2}=8 \mathrm{cms}$
$x^{2}+(15)^{2}=\mathrm{R}^{2} \ldots$.
(I) [Applying pythagorus
$y^{2}+(8)^{2}=\mathrm{R}^{2}$
(ii) theorem]

From equation (i) and (ii)
$x^{2}+225=y^{2}+64$
$\Rightarrow y^{2}-x^{2}=225-64 \Rightarrow y^{2}-x^{2}=161 \mathrm{~cm}^{2}$
$\Rightarrow(y+x)(y-x)=161 \mathrm{~cm}$
$\because(x+y)=23 \mathrm{~cm}$ (Given is question i.e distance between chords)
$\Rightarrow 23(y-x)=161$
$\Rightarrow y-x=\frac{161}{23}$
$\Rightarrow \mathrm{y}-x=7 \mathrm{~cm}$
$\mathrm{y}+x=23 \mathrm{~cm}$
Adding $=$ (iii) $\&$ (iv)
$\Rightarrow y=\frac{23+7}{2} \Rightarrow y=15 \mathrm{cms}$
$\therefore \mathrm{R}^{2}=y^{2}+8^{2}$
$\Rightarrow \mathrm{R}=\sqrt{15^{2}+64}$
$\Rightarrow \mathrm{R}=\sqrt{225+64}$
$=\sqrt{289}=17 \mathrm{cms}$
61. (A) Distance between the thief \& police $=200 \mathrm{~m}$

Speed of police $=11 \mathrm{kms} / \mathrm{hr}$
Speed of thief $=10 \mathrm{kms} / \mathrm{hr}$
Net speed $=(11-10) \mathrm{kms} / \mathrm{hr}$
(\because Travelling is in the same direction)
Distance covered in 6 min
$=$ speed \times time
$=1 \mathrm{Km} /$ hours $\times \frac{6}{60}$ hours
$=\frac{1}{10} \mathrm{~km}=100 \mathrm{~m}$
\therefore Distance left between them after 6 min
$=(200-100)$
$=100 \mathrm{~m}$
62. (A)

Distance $\quad 3 \mathrm{~km}$
Downstream
travelled
in same time
\therefore speed ratio $3: 4$
\therefore Time ratio $4: 3$
Total time $=14$ hours
$\Rightarrow(4+3)$ unit $=14$ hours
$\Rightarrow 7$ unit $=14$ hours
$\Rightarrow 1$ unit $=2$ hours

Upstream
Downstream
Time taken \Rightarrow
8 hours
6 hours
\therefore Speed $\Rightarrow \frac{48}{8} \mathrm{~km} / \mathrm{hr} \quad \frac{48}{6} \mathrm{~km} / \mathrm{hr}$

$$
\Rightarrow 6 \mathrm{~km} / \mathrm{hr} \quad 8 \mathrm{~km} / \mathrm{hr}
$$

\therefore Speed of stream
$\underline{\text { Speed (downstream)-Speed (Upstream) }}$
6
$=\frac{8-6}{2}=1 \mathrm{~km} / \mathrm{hr}$

Campus

K D Campus Pvt. Ltd

63. (C)

In right angle triangle $\triangle \mathrm{ABC}$
$\mathrm{BD} \perp \mathrm{AC} \& \mathrm{BD}=p$
$\mathrm{AB}=a$
$\mathrm{BC}=b$
Area of $\Delta \mathrm{ABC}=\frac{1}{2} \times$ base \times height
$\Rightarrow \frac{1}{2} \times a \times b=\frac{1}{2} \times \mathrm{AC} \times p$
$\Rightarrow p=\frac{a b}{A C}$
Squaring equation both sides
$\mathrm{P}^{2}=\frac{a^{2} b^{2}}{(\mathrm{AC})^{2}}$
$\Rightarrow \mathrm{P}^{2}=\frac{a^{2} b^{2}}{a^{2}+b^{2}} \quad\left(\because \mathrm{AC}^{2}=a^{2}+b^{2}\right)$

Short trick

$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
64. (A)

Height of hemispherical part
$=7 \mathrm{~cm}=$ radius of hemispherical part $\&$ ATQ,
Radius of hemispherical part = height of the cone
$=7 \mathrm{~cm}$
\therefore Volume of ice cream $=$ Volume of cone

+ hemispherical part
$=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{1}{3} \pi \mathrm{r}^{2}(h+2 r)$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7(7+2 \times 7)$
$=\frac{22 \times 7}{3} \times 21=22 \times 7 \times 7$
$=1078 \mathrm{~cm}^{2}$

65. (A)

Radius of circle having centre $A=8 \mathrm{~cm}$
Radius of circle having centre $B=\frac{8}{2}=4 \mathrm{~cm}$
Now, $\mathrm{AB}=$ diameter $=(8+4)$
$\Rightarrow 2 r=12$
$\Rightarrow \quad r=6 \mathrm{~cm}$
\therefore Area of new circle $=\pi r^{2}=36 \pi$
66. (D) $\frac{1}{a^{2}+a x+x^{2}}-\frac{1}{a^{2}-a x+x^{2}}+\frac{2 a x}{a^{4}+a^{2} x^{2}+x^{4}}$
$=\frac{a^{2}-a x+x^{2}-a^{2}-a x-x^{2}}{\left[\left(a^{2}+x^{2}\right)-(a x)^{2}\right]}+\frac{2 a x}{a^{4}+a^{2} x^{2}+x^{4}}$
$=\frac{-2 a x}{a^{4}+a^{2} x^{2}+x^{4}}+\frac{2 a x}{a^{4}+a^{2} x^{2}+x^{4}}$
$=0$
67. (C)

A In $\triangle \mathrm{DBE} \& \Delta \mathrm{ABC}$
$\mathrm{DE} \| \mathrm{AC}, \angle \mathrm{BDE}=\angle \mathrm{BAC}\left[\begin{array}{l}\text { corresponding } \\ \text { angles }\end{array}\right]$
$\& \angle \mathrm{~B}$ is common in both
\therefore By AAA, $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DBE}$
68. (C)

Interior angle $=\frac{(n-2) 180}{n}$
Exterior angle $=\frac{360}{n}$$\left\{\begin{array}{l}\text { Where ' } n \text { ' is } \\ \text { number of } \\ \text { sides }\end{array}\right\}$

$$
\begin{aligned}
& \frac{(n-2) \times 180}{n}-\frac{360}{n}=132^{\circ} \\
& \Rightarrow \frac{180 n-360-360}{n}=132^{\circ} \\
& \Rightarrow 180 n-720=132 n
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow 48 n=720$
$\Rightarrow n=\frac{720}{48}=15$
69. (A)

Volume of given
pyramid $=\frac{2}{3}[(10 \times 8)+(8 \times 5) \times$
$\sqrt{(10 \times 8) \times(8 \times 5)}$
$=\frac{2}{3}[80+40+\sqrt{80 \times 40}]$
$=\frac{2}{3}[120+57]$
$=\frac{2}{3} \times 177$
$=118 \mathrm{~m}^{3}$
Required level increased $=\frac{118}{100 \times 80}$

$$
=\frac{118}{8000} \mathrm{~m}
$$

$=1.47 \mathrm{~cm}$
70. (A) Equation having root 8 \& 2
i.e $(x-8)(x-2)=0$
$\Rightarrow x^{2}-8 x-2 x+16=0$
$\Rightarrow \mathrm{x}^{2}-10 \mathrm{x}+16=0$
It is wrong
Now, equation having roots - $98-1$
$(x-9)(x-1)=0$
$\Rightarrow x^{2}-9 x-x+9=0$
$\Rightarrow \mathrm{x}^{2}-\underset{\text { It is wrong }}{\downarrow} 10 x+9=0$
From (i) \& (ii)
Correct equation $=x^{2}-10 x+9$
71. (C) $\frac{\left(4 x^{3}-x\right)}{(2 x+1)(6 x-3)}$
$=\frac{x\left(4 x^{2}-1\right)}{(2 x+1) \times 3(2 x-1)}=\frac{x \times(2 x-1)(2 x+1)}{3 \times(2 x+1)(2 x-3)}$
$=\frac{x}{3}=\frac{9999}{3}=3333$
72. $(C) \sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B$
$\sin 75=\sin (45+30)$
$=\sin 45 \cdot \cos 30+\cos 45 \cdot \sin 30$
$=\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \frac{1}{2}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
73. (B)

$\because \mathrm{AD}$ is median
$\therefore \mathrm{BD}=\mathrm{CD}-$ (i)
$\mathrm{ATQ}, \mathrm{AD}=\frac{1}{2} \mathrm{BC}$
\therefore From (i) \& (ii)
$\mathrm{AD}=\mathrm{CD}=\mathrm{BD}$
$\because \mathrm{BD}=\mathrm{AD}$
$\therefore \angle \mathrm{ABD}=\angle \mathrm{BAD}=30^{\circ}$
Let $\angle \mathrm{ACB}$ be x
$\therefore \angle \mathrm{ACB}=\angle \mathrm{DAC}=x^{\circ}(\because \mathrm{DA}=\mathrm{CD})$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (In $\left.\triangle \mathrm{ABC}\right)$
$\Rightarrow 30+x+30+x=180^{\circ}$
$\Rightarrow 2 x=180^{\circ}-60^{\circ}$
$\Rightarrow x=\frac{120}{2} \Rightarrow x=60^{\circ}$
74. (B)

$\mathrm{DE}|\mid \mathrm{BC}$
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{2}{5}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AD}}{\mathrm{AD}+\mathrm{BD}}=\frac{2}{2+3}=\frac{2}{5}$
$\frac{\therefore \text { Area of } \triangle \mathrm{ADE}}{\text { Area of } \triangle \mathrm{ABC}}=\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2}=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}$
\therefore Area of $\mathrm{DECB}=\operatorname{Area}(\triangle \mathrm{ABC}-\triangle \mathrm{ADE})$

$$
=25-4=21
$$

$\frac{\text { Area (trapezium DECB) }}{\text { Area }(\triangle \mathrm{ABC})}=\frac{21}{25}$

Campus

K D Campus Pvt. Ltd

75. (C)

$\mathrm{CD}=\mathrm{EF}=4.5$
76. (C) Required average $=\frac{6 \times 22-(6 \times 8)}{5}$ years

$$
\begin{aligned}
& =\frac{132-48}{5} \text { years } \\
& =\frac{84}{5} \text { years } \\
& =16.8 \text { years }
\end{aligned}
$$

77. (A) Required votes $=7.5 \times \frac{80}{100} \times \frac{45}{100}$

$$
=2.7 \text { crores }
$$

78. (B) Sum $=135 \Rightarrow x+\mathrm{y}=135$

Difference $=\frac{\pi}{12}=15 \Rightarrow x-y=15$
$\therefore x=\frac{135+15}{2}=75^{\circ}$
$y=\frac{135-15}{2}=60^{\circ}$
79. (B) $\sin 3 \mathrm{~A}=\cos \left(3 \mathrm{~A}-60^{\circ}\right)$

$$
\begin{gathered}
\cos \left(90^{\circ}-3 A\right)=\cos \left(3 A-60^{\circ}\right) \\
90^{\circ}-3 A=3 A-60^{\circ} \\
3 A+3 A=90^{\circ}+60^{\circ} \\
6 A=150^{\circ} \\
A=25^{\circ}
\end{gathered}
$$

80. (B) Time taken by Kamal $=\frac{100}{18 \times \frac{5}{18}}$

$$
=20 \text { seconds }
$$

\therefore Time taken by Kunal $=20+5$
$=25$ seconds
\therefore Kunal's speed $=\frac{100}{25} \times \frac{18}{5} \mathrm{~km} /$ hour

$$
=14.4 \mathrm{~km} / \text { hour }
$$

81. (A)

$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=\frac{x y z}{x y+y z+x z}$

A alone can do the work $=\frac{2 x y z}{x y+y z-z x}$ days
B alone can do the work $=\frac{2 x y z}{y z+z x-x y}$ days
C alone can do the work $=\frac{2 x y z}{z x+x y-y z}$ days
82. (D) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow \frac{y z+x z+x y}{x y z}=0$
$\Rightarrow x y+y z+z x=0$
Also, $x^{2}+y^{2}+z^{2}=25$
Now, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
$=x^{2}+y^{2}+z^{2}+2(x y+y z+2 x)$
$=25+2$ (0)
$=25$
$x+y+z=\sqrt{25}= \pm 5$
83. (A)

In $\triangle \mathrm{DEF}$
LM || DE
$\mathrm{LM}=\frac{1}{2} \mathrm{DE}$
$[\because$ Line joining the mid points of two sides of a Δ is $|\mid$ and half of the 3rd side.]
Similarly, In $\triangle \mathrm{ABC}$
$\mathrm{DE}=\frac{1}{2} \mathrm{BC}$
From (i) \& (ii)

$$
\begin{aligned}
& \mathrm{LM}=\frac{1}{2} \times \frac{1}{2} \mathrm{BC}=\frac{1}{4} \mathrm{BC} \\
& \therefore \frac{\mathrm{LM}}{\mathrm{BC}}=\frac{1}{4} ; \mathrm{LM}: \mathrm{BC}=1: 4
\end{aligned}
$$

84. (D) $x=\frac{1+\sin \theta}{\cos \theta}$
$\Rightarrow \frac{1}{x}=\frac{\cos \theta}{1+\sin \theta}=\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}$

Campus

K D Campus Pvt. Ltd

$$
\begin{aligned}
& =\frac{\cos \theta(1-\sin \theta)}{1-\sin ^{2} \theta} \\
& =\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}=\frac{1-\sin \theta}{\cos \theta}
\end{aligned}
$$

85. (C)

$\tan \theta=\frac{h}{24}=\frac{60}{18}$

$$
h=80 \mathrm{~m}
$$

86. (D) Cannot be determined.
87. (C)

$$
\begin{aligned}
\mathrm{EF} & =\frac{1}{2}(\mathrm{AB}+\mathrm{DC}) \\
& =\frac{1}{2}(p+q) \\
& =\frac{p+q}{2}
\end{aligned}
$$

88. (B) Let the number of side be x.

$$
\begin{aligned}
& x=\frac{(x-3) x}{2} \\
& 2=x-3 \\
& x=5
\end{aligned}
$$

89. (A)

If $\angle \mathrm{A}=80^{\circ}, \angle \mathrm{B}=60^{\circ}$,
Then $\angle \mathrm{C}=180-140$

$$
=40^{\circ}
$$

$\angle \mathrm{BOC}=90+\frac{\angle \mathrm{A}}{2}$

$$
=90+\frac{80}{2}
$$

$$
=130^{\circ}
$$

$\angle \mathrm{OCB}=\frac{40}{2}=20$
Required sum $=130+20=150^{\circ}$
90. (B)

$180^{\circ}-b^{\circ}+180^{\circ}-a^{\circ}+x^{\circ}+y^{\circ}=360^{\circ}$
$x^{\circ}+y^{\circ}=a^{0}+b^{\circ}$
91. (A) Required percentage rise/fall in production from the previous year is maximum for company y in 2011
$=\frac{35-25}{25} \times 100=40 \%$
92. (C) Average of company x in the period (2012-14)
$=\frac{\text { Production in }(2012+2013+2014)}{\text { Number of years }}$
$=\frac{45+50+40}{3}=\frac{115}{3}$
Average production of company Y in period (2012-14)
Production in $(2012+2013+2014)$
Number of years
$=\frac{35+40+50}{3}=\frac{125}{3}$
Taking ratio of equation (i) \& (ii)
Average production of company X
Average production of company Y
$=\frac{\frac{115}{3}}{\frac{125}{3}}=\frac{23}{25}$
or, $23: 25$
93. (D) Average production of x
$=\frac{\text { Sum of the production of all the years }}{\text { Number of years }}$
$=\frac{30+45+25+50+40}{5}=\frac{190}{5}$
$=\frac{200}{5}=40=38$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Similarly, Average Production of Y
$=\frac{25+35+35+40+50}{5}=\frac{185}{5}=37$
Average production of z
$=\frac{35+40+45+35+35}{5}=\frac{190}{5}=38$
From equation (i), (ii) and (iii)
Average Production of both $x \& z$ is maximum.
94. (A) Percentage of production of company z to company y in 2010
$=\frac{\text { Production of company } z}{\text { Production of company } y} \times 10$
$=\frac{35}{25} \times 100=140 \%$
Similarly percentage of production of company z to company Y in 2011
$=\frac{40}{35} \times 100=\frac{8}{7} \times 100$
$=\left(1+\frac{1}{7}\right) \times 100$
$=114 \frac{2}{7} \%$
Percentage production of z to y in 2012
$=\frac{45}{35} \times 100$
$=\frac{9}{7} \times 100$
$=\left(1+\frac{2}{7}\right) \times 100$
$=100+\frac{2}{7} \times 100$
$=128 \frac{4}{7} \%$
Percentage production z to company y in

$$
\text { year } \begin{aligned}
2013 & =\frac{35}{40} \times 100 \\
& =\frac{7}{8} \times 100 \\
& =\left(1-\frac{1}{8}\right) \times 100 \\
& =\left(100-12 \frac{1}{2}\right) \% \\
& =87 \frac{1}{2} \%
\end{aligned}
$$

Hence, in 2010 of production of company z was maximum to the production of company y.
95. (*) Required percent $=\frac{40-25}{25} \times 100=60 \%$
96. (D) Initial strength of school in $2009=3000$

In 2010, 350 students gain $\& 250$ students left
\Rightarrow Net 100 students join school
\therefore Strength of school in $2010=3000+100$

$$
=3100
$$

In 2011, 300 students join and 450 students left
\Rightarrow Net 150 students left the school
\therefore Strength of school in 2011 = 3100-150

$$
=2950
$$

In 2012, 450 students join and 400 students left
Similarly, in 2013 net 150 students join.
\therefore Strength of school in $2013=3000+150$

$$
=3150
$$

97. (A) Percent rise/fail in number of students who left the school to the previous year in 2011
$=\frac{\text { Rise in no. of students left in 2011-12 }}{\text { No. of students who left in } 2010} \times 100$
$=\frac{200}{250} \times 100=80 \%$ increase
Students left in $2012=\frac{50}{450} \times 100$
$=11 \frac{1}{9} \%$ decrease
Student left in 2013
$=\frac{50}{400} \times 100$
$=\frac{1}{8} \times 100=12 \frac{1}{2} \%$ decrease
Student left in 2014
$=\frac{100}{350} \times 100$
$=28 \frac{4}{7} \%$ increase
\therefore Maximum rise/fail was in year 2011.
98. (B) Strength of school in $2011=2950$

Strength of school in $2012=3000$
Percent increase in strength of school from (2011-2012)
$=\frac{50}{2950} \times 100=1.7 \%$
99. (B) Take reference from Question. 96

Number of students in school in $2012=$ 3000
In 2013, strength of school $=3150$ (From in 96)
In 2014, 400 students join and 450 left
\Rightarrow Net 50 students left in 2014
\therefore Strength of students in 2014
$=3150-50$
$=3100$
In 2015, 550 students join and 450 students left \Rightarrow Net 100 students join school in 2015
\therefore Strength of school in 2015
$=3100+100$
$=3200$
Percent of students studying in school in

2012 to that in 2015
$=\frac{3000}{3200} \times 100=\left(1-\frac{1}{16}\right) \times 100$
$=\left(100-\frac{1}{16} \times 100\right)$
$=100-6 \frac{1}{4} \%$
$=99 \frac{3}{4} \%=93.75 \%$
100. (D)Least number of students who join the school = 300 (2011)
Maximum number of students left the school $=450$
Ratio $=\frac{300}{450}=\frac{2}{3}=2: 3$

SSC MAINS (MATHS)-6 (ANSWER KEY)

1. (A)	21. (D)	41. (A)	61. (A)	81. (A)
2. (D)	22. (D)	42. (C)	62. (A)	82. (D)
3. (D)	23. (B)	43. (C)	63. (C)	83. (A)
4. (B)	24. (B)	44. (D)	64. (A)	84. (D)
5. (D)	25. (C)	45. (A)	65. (A)	85. (C)
6. (B)	26. (C)	46. (C)	66. (D)	86. (D)
7. (C)	27. (*)	47. (A)	67. (C)	87. (C)
8. (C)	28. (A)	48. (D)	68. (C)	88. (B)
9. (B)	29. (A)	49. (B)	69. (A)	89. (A)
10. (A)	30. (B)	50. (C)	70. (A)	90. (B)
11. (B)	31. (C)	51. (C)	71. (C)	91. (A)
12. (B)	32. (D)	52. (D)	72. (C)	92. (C)
13. (C)	33. (B)	53. (C)	73. (B)	93. (D)
14. (D)	34. (D)	54. (B)	74. (B)	94. (A)
15. (C)	35. (B)	55. (A)	75. (C)	95. (*)
16. (D)	36. (D)	56. (A)	76. (C)	96. (D)
17. (C)	37. (A)	57. (B)	77. (A)	97. (A)
18. (A)	38. (D)	58. (B)	78. (B)	98. (B)
19. (B)	39. (D)	59. (D)	79. (B)	99. (B)
20. (C)	40. (D)	60. (D)	80. (B)	100. (D)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Correction of Mock test- 4(Maths)

12. (C) Read in question $x=3+2 \sqrt{3}$ as

$$
x=3+2 \sqrt{2}
$$

also, read solution

$$
\sqrt{x}+\frac{1}{\sqrt{x}} \text { as } \sqrt{x}-\frac{1}{\sqrt{x}}
$$

71. (B) Read in solution $\frac{1}{2}$ as $\frac{1}{z}$.
