SSC MAINS (MATHS)-5 (SOLUTION)

1. (C) $\because(x-1)$ is factor of $x^{3}-a x^{2}+14 x+b$

So, $x=1$
$\Rightarrow 1^{3}-a \times 1^{2}-14 \times 1+b=0$
$\Rightarrow 1-a+14+b=0$
$\Rightarrow a-b=15$ \qquad
$\because(x-2)$ is also factor of $x^{3}-a x^{2}+14 x+b$ So, $x=2$
$\Rightarrow 2^{3}-a \times 2^{2}+14 \times 2+b=0$
$\Rightarrow 8-4 a+28+b=0$
$\Rightarrow 4 a-b=36$
$a-b=15$
(i)
$\frac{-+}{3 a}=21$
$a=7, \quad b=-8$
2. (A) $1^{\text {st }}$ term $\Rightarrow(b-a) x=(b-a)(b-c+a)$

$$
\begin{gathered}
=(b-a)\{(b+a)-c\} \\
\Rightarrow(b-a)(b+a)-(b-a) c \\
=b^{2}-a^{2}-b c+a c \ldots \text { (i) }
\end{gathered}
$$

$2^{\text {nd }}$ term $\Rightarrow(c-b) y=(c-b)(c-a+b)$

$$
=(c-b)\{(c+b)-a\}
$$

$$
\Rightarrow(c-b)(c+b)-(c-b) a
$$

$$
\begin{equation*}
=c^{2}-b^{2}-c a+a b \tag{ii}
\end{equation*}
$$

$3^{\text {rd }}$ term $\Rightarrow(a-c) z=(a-c)(a-b+c)$

$$
=(a-c)\{(a+c)-b\}
$$

$$
\Rightarrow(a-c)(a+c)-(a-c) b
$$

$$
\begin{equation*}
=a^{2}-c^{2}-a b+b c \tag{iii}
\end{equation*}
$$

From (i), (ii) and (iii)

$$
(b-a) x+(c-b) y+(a-c) z
$$

$=b^{2}-a^{2}+c^{2}-b^{2}+a^{2}-c^{2}-b c+a c-c a+$ $a b-a b+b c$
$=0$
3. (B) We have, $x^{3}-27=(x-3)\left(x^{2}+9+3 x\right)$
\therefore In 1 sec distance travelled by the wheel

$$
\begin{gathered}
x^{2}+9+3 x \begin{array}{l}
x^{3}+4 x^{2}+12 x+\mathrm{K}(x+1 \\
x^{3}+3 x^{2}+9 x
\end{array} \\
=-\frac{-}{x^{2}+3 x+\mathrm{K}} \\
\frac{x^{2}+3 x+9}{\mathrm{~K}-9}
\end{gathered}
$$

\therefore Value of $\mathrm{K}=9$
4. (C) Distance $=330 \times 30 \mathrm{~m}$

$$
\begin{aligned}
\text { speed } & =\frac{330 \times 30}{11 \times 60+30} \mathrm{~m} / \mathrm{s} \\
& =\frac{330 \times 30}{690} \\
& =\frac{330}{23} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. (D)

Total $(n+1)$ triangles will be formed
Whose base are same and height are equal.
\therefore Area of $\triangle \mathrm{ABC}=(n+1) \times$ Area of $\triangle \mathrm{AA}_{4} \mathrm{~A}_{5}$ $=(n+1) \times \mathrm{K} \mathrm{sq} . \mathrm{cm}$
6. (C)

$\mathrm{OB}=\sqrt{15^{2}+8^{2}}$
$=\sqrt{225+64}$
$=\sqrt{289}$
$=17 \mathrm{~cm}$
\because OB \& OD are radius of circle.
$\mathrm{DN}=\sqrt{17^{2}-8^{2}}$
$=\sqrt{289-64}$
$=\sqrt{225}$
$=15 \mathrm{~cm}$
$\mathrm{CD}=\mathrm{CN}+\mathrm{DN}$

$$
=15+15
$$

$$
=30 \mathrm{~cm}
$$

7. (A) From one hour 15 minutes to half past three, minute hand covers 2 hours 15 minutes or $2 \frac{1}{4}$ rotations.
\therefore If covers $2 \frac{1}{4} \times 2 \pi=(4.5) \pi$
8. (B)

$\operatorname{Cot} B+\operatorname{Cot} C$

Campus

K D Campus Pvt. Ltd

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{BD}}{4}+\frac{\mathrm{CD}}{4}[\mathrm{In} \triangle \mathrm{ABD} \& \mathrm{ACD}] \\
& \Rightarrow \frac{\mathrm{BD}+\mathrm{CD}}{4} \\
& \Rightarrow \frac{12}{4}=3 \mathrm{~cm}
\end{aligned}
$$

9. (C)

In right angled $\triangle \mathrm{ABC}$,
$\Rightarrow \tan \alpha=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{h}{x}$
$\Rightarrow x \tan \alpha=h$ or $x=\frac{h}{\tan \alpha}$
In right angled $\triangle \mathrm{ABD}$

$$
\begin{aligned}
& \Rightarrow \tan \beta=\frac{\mathrm{AB}}{\mathrm{BD}}=\frac{h}{1-x} \\
& \Rightarrow h=\tan \beta-x \tan \beta \\
& \Rightarrow h=\tan \beta-\frac{h}{\tan \alpha} \times \tan \beta \\
& \Rightarrow h=\frac{\tan \alpha \tan \beta-h \tan \beta}{\tan \alpha} \\
& \Rightarrow h \tan \alpha=\tan \alpha \times \tan \beta-h \tan \beta \\
& \Rightarrow h(\tan \alpha+\tan \beta)=\tan \alpha \cdot \tan \beta \\
& \Rightarrow h=\frac{\tan \alpha \times \tan \beta}{\tan \alpha+\tan \beta} \mathrm{Km}
\end{aligned}
$$

10. (A)

$\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}+\angle \mathrm{QYP}=180^{\circ}$
or $64^{\circ}+2 \angle \mathrm{ZYQ}=180[\angle \mathrm{ZYQ}=\angle \mathrm{QYP}]$
$\therefore \angle \mathrm{ZYQ}=58^{\circ}$

$$
\begin{aligned}
\because \angle \mathrm{XYQ} & =\angle \mathrm{XYZ}+\angle \mathrm{ZYQ} \\
& =64^{\circ}+58^{\circ} \\
& =122^{\circ}
\end{aligned}
$$

Now reflex,

$$
\begin{aligned}
\angle \mathrm{QYP} & =\angle \mathrm{PYX}+\angle \mathrm{XYQ} \\
& =180^{\circ}+122^{\circ} \\
& =302^{\circ}
\end{aligned}
$$

11. (D)

Required area $=\frac{1}{2}|3-(-6)| \times 3$

$$
\begin{aligned}
& =\frac{1}{2} \times 9 \times 3 \\
& =\frac{27}{2} \text { sq. unit } \\
& =13.5 \text { sq. unit }
\end{aligned}
$$

12. (C) Let the required side of triangle be $x \mathrm{~cm}$.

So, $\frac{x^{2}}{7^{2}}=\frac{256}{196}$
$\Rightarrow x^{2}=\frac{256 \times 49}{196}$
$\Rightarrow \quad x=8 \mathrm{~cm}$
13. (A)

\because Medians of right angled triangle meet at mid point of AC.
So, required ratio $=1: \sqrt{2}: \sqrt{3}$
14. (D) $\sqrt{4 a-9}+\sqrt{4 x+9}=5+\sqrt{7}$

$$
\begin{align*}
& \Rightarrow(\sqrt{4 x-9}+\sqrt{4 x+9})(\sqrt{4 x-9}-\sqrt{4 x+9}) \\
& =4 x-9-4 x-9 \\
& \Rightarrow(5+\sqrt{7})(\sqrt{4 x-9}-\sqrt{4 x+9})=-18 \\
& \Rightarrow \sqrt{4 x-9}-\sqrt{4 x+9}=-\frac{18}{5+\sqrt{7}} \times \frac{5-\sqrt{7}}{5-\sqrt{7}} \\
& \Rightarrow \sqrt{4 x-9}-\sqrt{4 x+9}=-\frac{18}{25-7} \\
& \Rightarrow \sqrt{4 x-9}-\sqrt{4 x+9}=-\frac{18(5-\sqrt{7})}{18} \\
& \Rightarrow \sqrt{4 x-9}-\sqrt{4 x+9}=-(5-\sqrt{7}) \ldots \ldots . \text { (i) } \tag{i}
\end{align*}
$$

$$
\begin{equation*}
\sqrt{4 x-9}+\sqrt{4 x+9}=(5+\sqrt{7}) \tag{ii}
\end{equation*}
$$

[Given]

$$
\begin{aligned}
2 & & \sqrt{4 x-9} & =2 \sqrt{7} \\
\Rightarrow & & \sqrt{4 x-9} & =\sqrt{7} \\
\Rightarrow & & 4 x-9 & =7 \\
\Rightarrow & & 4 x & =16 \\
\Rightarrow & & x & =4
\end{aligned}
$$

15. (B)

Let MN be $2 a$ and RS be $2 b$ unit, and OA be x and OB be y unit.
\because AOBP is a square,
So, $\mathrm{AO}=\mathrm{PB} ; \mathrm{OB}=\mathrm{PA}$
In $\triangle \mathrm{OAM} ; a^{2}+x^{2}=\mathrm{OM}^{2}$
In $\triangle \mathrm{OBS} ; b^{2}+y^{2}=\mathrm{OS}^{2}$
$\mathrm{OM}^{2}+\mathrm{OS}^{2}=a^{2}+x^{2}+b^{2}+y^{2}$
In \triangle OPA ; $x^{2}+y^{2}=c^{2}$
$2 \mathrm{OM}^{2}=\mathrm{c}^{2}+a^{2}+b^{2}$
$\mathrm{OB}=\sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}}$
16. (C)

$\operatorname{Cot} \theta=\frac{b}{p}=\frac{2 x y}{x^{2}-y^{2}}$
In $\triangle \mathrm{ABC}$
$\therefore h^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$

$$
\begin{aligned}
& =\left(x^{2}+y^{2}\right)^{2} \\
h & =x^{2}+y^{2}
\end{aligned}
$$

$\therefore \cos \theta=\frac{b}{h}=\frac{2 x y}{x^{2}+y^{2}}$
17. (C) $\frac{A}{B}=\frac{4}{5}$
$(A+B)$'s 1 day work $=9$
$(A+B)$'s 7 day work $=63$
As given in 3 days 37% of the work is completed
\therefore Total work $=100$
C's 3 day work $=37-((9 \times 3)=10$
C's 1 day work $=\frac{10}{3}$
A will complete the work $=\frac{100}{4}=25$ days
B will complete the work $=\frac{100}{5}=20$ days
C will complete the work $=\frac{100}{\frac{10}{3}}=30$ days
18. (C)

$\sin 17^{\circ}=\frac{p}{h}$
So, $b=\sqrt{h^{2}-p^{2}}$
$\Rightarrow \sin 73^{\circ}=\sin (90-17)=\cos 17^{\circ}$

$$
=\frac{\sqrt{h^{2}-p^{2}}}{h}
$$

So, $\sec 17^{\circ}-\sin 73^{\circ}$
$\Rightarrow \frac{h}{h^{2}-p^{2}}-\frac{h^{2}-p^{2}}{h}$
$\Rightarrow \frac{h^{2}-h^{2}+p^{2}}{h \sqrt{h^{2}-p^{2}}}$
$\Rightarrow \frac{p^{2}}{h \sqrt{h^{2}-p^{2}}}$
19. (B) $\frac{\sin ^{6} \theta-\cos ^{6} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}=\frac{\left(\sin ^{2} \theta\right)^{3}-\left(\cos ^{2} \theta\right)^{3}}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\Rightarrow \frac{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta+\sin ^{2} \theta \cdot \cos ^{2} \theta\right)}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\Rightarrow \sin ^{4} \theta+\cos ^{4} \theta+2 \sin ^{2} \theta \cdot \cos ^{2} \theta-\sin ^{2} \theta \cdot \cos ^{2} \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-\sin ^{2} \theta \cdot \cos ^{2} \theta$
$=1-\sin ^{2} \theta \cdot \cos ^{2} \theta$
20. (D) Let their shares be $x, 8 x$ and $6 x$ respectively.

ATQ, $7 x+8 x+6 x=4200$

$$
x=200
$$

Amount of Pinku, Rinku \& Tinku are 1400, $1600 \& 1200$ respectively.
Required Ratio $=(1400+200):(1600+200)$

$$
\begin{aligned}
& :(1200+200) \\
= & 1600: 1800: 1400 \\
= & 8: 9: 7
\end{aligned}
$$

21. (B) Let the speed of A be $x \mathrm{Km} / \mathrm{hrs}$ and B be $y \mathrm{~km} / \mathrm{hrs}$
$\Rightarrow \frac{60}{x-y}=6$
$\Rightarrow x-y=10$
ATQ,
$\frac{60}{\frac{2}{3} x-2 y}=5$
$\Rightarrow \frac{2 x-6 y}{3}=12$

$$
\begin{align*}
& \Rightarrow 2 x-6 y=36 \ldots \ldots . . \text { (ii) } \\
& 6 x-6 y=60 \ldots \ldots . \text { (iii) } \\
&-\quad+\quad- \\
& \hline-4 x=-24 \\
& x=6 \mathrm{~km} / \mathrm{hrs}
\end{align*}
$$

22. (A) Required ratio $=\frac{3}{2}: \frac{4}{1}: \frac{2}{8}$

$$
\begin{aligned}
& =24: 64: 4 \\
& =6: 16: 1
\end{aligned}
$$

23. (C) Required average speed
$=\frac{1}{\frac{1}{4 \times 10}+\frac{9}{20 \times 5}+\frac{3}{10 \times 15}}$
$=\frac{1}{\frac{1}{40}+\frac{9}{100}+\frac{3}{150}}$
$=\frac{200}{5+18+4}$
$=\frac{200}{27} \mathrm{~km} / \mathrm{hrs}$
24. (A) Let the fraction be $\frac{x}{y}$

$$
\begin{align*}
& \frac{x+2}{y+1}=\frac{1}{2} \\
\Rightarrow & 2 x-y=3 \ldots \\
& \frac{x+1}{y-2}=\frac{3}{5} \\
\Rightarrow & 5 x-3 y=11 \tag{ii}\\
& \frac{6 x-3 y=-9}{-x=-2} \\
x= & 2, \quad y=7
\end{align*}
$$

So, fraction $=\frac{2}{7}$
25. (B) Let principal for the first year be P_{1} and that for two years be P_{2}.

$$
\begin{gathered}
\therefore 16224=\mathrm{P}_{1}\left(1+\frac{4}{100}\right) \\
\Rightarrow \mathrm{P}_{1}=\frac{16224 \times 25}{26} \\
=₹ 15600
\end{gathered}
$$

$16224=\mathrm{P}_{2}\left(1+\frac{4}{100}\right)^{2}$
$\Rightarrow \mathrm{P}_{2}=\frac{16224 \times 25 \times 25}{26 \times 26}$
= ₹ 15000
\therefore Cash value of the scooter
$=₹(16224+15600+15000)$
= ₹ 46824
26. (D) HCF of 408 and 312 is 24 .

Total number of section $=\frac{408}{24}+\frac{312}{24}$
$=17+13$
$=30$
27. (A) Let the number of men of the beginning be x.
$\mathrm{m} \times \mathrm{m} \times \mathrm{m} \times x=\mathrm{n} \times \mathrm{n} \times \mathrm{n} \times \mathrm{m}$
$x=\frac{\mathrm{n}^{3} \times \mathrm{m}}{\mathrm{m}^{3}}$
$x=\frac{\mathrm{n}^{3}}{\mathrm{~m}^{2}}$
28. (C)

A can complete it in $\frac{18 \times 4}{3}=24$ days
B can complete it in $\frac{12 \times 3}{2}=18$ days
C can complete it in $\frac{24 \times 5}{3}=40$ days
A completed $=30 \times 4=120$ units
B completed $=40 \times 6=240$ units
C completed $=18 \times 8=144$ units
Total work completed $=504$ units
Required percentage $=\frac{720-504}{720} \times 100$

$$
\begin{aligned}
& =\frac{216}{720} \times 100 \\
& =30 \%
\end{aligned}
$$

29. (B) Required days $=\frac{800 \times 6}{240}$

$$
=20 \text { days }
$$

30. (D) Let the money be P.

$$
\begin{aligned}
\Rightarrow & \frac{1}{3} \times \mathrm{P} \times 7 \%+\frac{1}{4} \times \mathrm{P} \times 8 \%+ \\
& \left.\times 1-\left(\frac{1}{3}+\frac{1}{4}\right)\right] \\
\Rightarrow & \frac{7 \mathrm{P}}{300}+\frac{8 \mathrm{P}}{400}+\frac{50 \mathrm{P}}{1200}= \\
\hline \mathrm{P}= & \frac{510}{510 \times 100 \times 6} \\
= & ₹ 6000
\end{aligned}
$$

31. (C) Let x, y and z be the amounts invested in schemes P, Q and R respectively.

$$
\begin{align*}
& \frac{x \times 10 \times 1}{100}+\frac{y \times 12 \times 1}{100} \times \frac{z \times 15 \times 1}{100}=3200 \\
& \Rightarrow 10 x+12 y+15 z=32000 \ldots \ldots . \text { (i) } \tag{i}
\end{align*}
$$

Now, $z=240 \%$ of $y=\frac{12}{5} y$ \qquad
and $z=150 \%$ of $x=\frac{3}{2} x$
$\Rightarrow x=\frac{2}{3} z=\left(\frac{2}{3} \times \frac{12}{5}\right) y=\frac{8}{5} y$
From Eqs (i), (ii) and (iii), we have $16 y+12 y+36 y=320000$

$$
y=5000
$$

\therefore Sum invested in scheme $Q=₹ 5000$
32. (C) Percentage growth $=\left(\frac{1}{8} \times 100\right) \%$
= 12.5\%

Height after two years $=64 \times\left(1+\frac{12.5}{100}\right)^{2}$

$$
\begin{aligned}
& =64 \times \frac{9}{8} \times \frac{9}{8} \\
& =81 \mathrm{~cm}
\end{aligned}
$$

33. (A) Let the original price of mobile be 100% then, selling price $=80 \%$
selling price of Apurv $=80 \times \frac{140}{100}$
$=112 \%$
Profit percentage on original price

$$
\begin{aligned}
& =112 \%-100 \% \\
& =12 \%
\end{aligned}
$$

34. (C) Case I : Percentage profit $\Rightarrow \frac{17 \times 100}{36}$

$$
=47.22 \%
$$

Case II : Percentage profit $\Rightarrow \frac{24 \times 100}{50}$

$$
=48 \%
$$

Case III : Percentage profit $\Rightarrow \frac{19 \times 100}{40}$

$$
=47.50 \%
$$

Case IV : Percentage profit $\Rightarrow \frac{29 \times 100}{60}$

$$
=48.33 \%
$$

Case IV is the best transaction.
35. (D) Given values are odd numbers.
then its common factor $=(41+43)$

$$
=84
$$

36. (C) Required number $=\mathrm{HCF}$ of $(260-7)$,
(270-7) and (145-7)
$=\mathrm{HCF}$ of 253, 713 and 138
$=23$
37. (B) Let, amount of equal instalment be x.
$\mathrm{I}^{\text {st }}$ instalment $(x)=\mathrm{P}_{1} \times \frac{87}{80}$
$\mathrm{II}^{\text {nd }}$ instalment $(x)=\mathrm{P}_{2} \times \frac{87}{80} \times \frac{87}{80}$

So, $13,360=\frac{80}{87} x\left(1+\frac{80}{87}\right)$
$\Rightarrow 13,360=\frac{80}{87} x \times \frac{167}{87}$

$$
x=\frac{13360 \times 87 \times 87}{80 \times 167}
$$

$$
\text { = ₹ } 7569
$$

38. (B) After two years, the simple interest
$=\frac{6000 \times 5 \times 2}{100}$
= ₹ 600
After two years, the compound interest

$$
\begin{aligned}
& =5000\left(1+\frac{8}{100}\right)^{2}-5000 \\
& =5000 \times \frac{27}{25} \times \frac{27}{25}-5000 \\
& =₹ 5832-5000 \\
& =₹ 832
\end{aligned}
$$

Required difference $=₹ 832-₹ 600$

$$
\text { = ₹ } 232
$$

39. (B) $\mathrm{A}=250\left(1+\frac{4}{100}\right)\left(1+\frac{8}{100}\right)$

$$
\begin{aligned}
& =250 \times \frac{26}{25} \times \frac{27}{25} \\
& =₹ 280.80
\end{aligned}
$$

40. (D)

$B=\frac{30}{1}$ hours
\therefore Capacity of tank $=30 \times 60 \times 4$
41. (A)

$$
=7200 l
$$

So, A will meet B $=\frac{\text { Distance }}{\text { relative speed }}$
$=\frac{125}{250-125} \min$
$=\frac{125}{75} \mathrm{~min}$
$=\frac{5}{3} \mathrm{~min}$
A will meet $C=\frac{\text { Distance }}{\text { relative speed }}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& =\frac{200}{200-100} \mathrm{~min} \\
& =2 \mathrm{~min}
\end{aligned}
$$

42. (B)

In right angle $\triangle \mathrm{AOB}$
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$

$$
=5^{2}+12^{2}
$$

So, $\mathrm{AB}=13 \mathrm{~cm}$
43. (A)

Let the speed of Ravi the $x \mathrm{Km} / \mathrm{H}$, then speed of Ajay be $(x-4) \mathrm{Km} / \mathrm{H}$ and their time of travelling be t hrs.
$t=\frac{48}{x-4}$
$\mathrm{t}=\frac{72}{x}-$ (ii)
$\Rightarrow \frac{48}{x-4}=\frac{72}{x}$
$\Rightarrow \frac{4}{x-4}=\frac{6}{x}$
$\Rightarrow 4 x=6 x-24$
$\Rightarrow \quad 2 x=24$
$\Rightarrow \quad x=12 \mathrm{~km} / \mathrm{hrs}$
44. (B) Distance $=\frac{330 \times 8}{352} \mathrm{~m}$

$$
\begin{aligned}
\text { speed } & =\frac{330 \times 8}{352} \times \frac{18}{5} \mathrm{~km} / \mathrm{hrs} \\
& =27 \mathrm{~km} / \mathrm{hrs}
\end{aligned}
$$

45. (B) $\mathrm{I}^{\text {st }}$ Alloy ;

$$
\begin{aligned}
\mathrm{Zn} & =\frac{1}{5} \times 10 \\
& =2 \mathrm{Kg}
\end{aligned}
$$

$\therefore \mathrm{Cu}=8 \mathrm{Kg}$
II ${ }^{\text {nd }}$ Alloy ;

$$
\begin{aligned}
\mathrm{Zn} & =\frac{3}{4} \times 16 \\
& =12 \mathrm{Kg}
\end{aligned}
$$

$\mathrm{Cu}=4 \mathrm{Kg}$
Let $x \mathrm{Kg}$ pure copper melted.
ATQ,

$$
\begin{aligned}
\frac{8+4+x}{2+12} & =\frac{3}{2} \\
\Rightarrow & \frac{12+x}{14}=\frac{3}{2}
\end{aligned}
$$

$\begin{aligned} \Rightarrow & 12+x & =21 \\ \Rightarrow & x & =9 \mathrm{Kg}\end{aligned}$
So, Total weight of alloy

$$
\begin{aligned}
& =10+16+9 \\
& =35 \mathrm{Kg}
\end{aligned}
$$

46. (A)Let the sum be ₹ P .

$$
\begin{aligned}
& \mathrm{SI}=\frac{\mathrm{P} r \times 3}{100}=\frac{3 \mathrm{Pr}}{100} \\
& \mathrm{CI}=\mathrm{P}\left[\left(1+\frac{r}{100}\right)^{3}-1\right] \\
&=\mathrm{P}\left[1+\frac{r^{3}}{100^{3}}+\frac{3 r^{2}}{100^{2}}+\frac{3 r}{100}-1\right] \\
&=\mathrm{P}\left[\frac{r^{3}}{100^{3}}+\frac{3 r^{2}}{100^{2}}+\frac{3 r}{100}\right] \\
& \Rightarrow \mathrm{CI}-\mathrm{SI}=\mathrm{P}\left[\frac{r^{3}}{100^{3}}+\frac{3 r^{2}}{100^{2}}+\frac{3 r}{100}\right]-\frac{3 \mathrm{P} r}{100} \\
& x=\mathrm{P}\left[\frac{r^{3}}{100^{3}}+\frac{3 r^{2}}{100^{2}}\right] \\
&=\mathrm{P}\left(\frac{r^{2}}{100^{3}}\right)(r+300) \\
& \mathrm{P}=\frac{r(100)^{3}}{r^{2}(r+300)}
\end{aligned}
$$

Here, x ₹ 608 (given) and $r 4 \%$ per annum
$\mathrm{P}=\frac{608 \times 100 \times 100 \times 100}{4 \times 4 \times(4+300)}$
$P=₹ 1,25,000$
47. (D) Capacity of cask
$=\frac{6}{1-\left(\frac{121}{144}\right)^{1 / 2}}$
$=\frac{6}{1-\left(\frac{11}{12}\right)^{2 \times \frac{1}{2}}}$
$=\frac{6}{1-\frac{11}{12}}$
$=\frac{6}{\frac{1}{12}}$
= 72 litres
48. (A) Ratio of profit $=125000: 85000$

$$
=25: 17
$$

Let the total profit be ₹ x Share of first partner
$=40 \%$ of $x\left(\frac{25}{25+17}\right)$
$=40 \%$ of $x\left(\frac{25}{42}\right)$
$=\frac{40 x}{100} \times \frac{25}{42}$
$=\frac{5 x}{21}$
Share of second partner
$=40 \%$ of $x\left(\frac{17}{42}\right)$
$=\frac{17 x}{105}$
ATQ,
$\frac{5 x}{21}-\frac{17 x}{105}=300$
$\Rightarrow \frac{25 x-17 x}{105}=300$
$\Rightarrow \frac{8 x}{105}=300$
$\Rightarrow x=\frac{300 \times 105}{8}$

$$
x=₹ 3937.50
$$

49. (B) Let the distance D Km and speed be $x \mathrm{Km} / \mathrm{hrs}$.
$\Rightarrow \frac{50}{x}+\frac{(\mathrm{D}-50) 4}{3 x}=\frac{\mathrm{D}}{x}+\frac{25}{60}$
$\Rightarrow \frac{150+4 \mathrm{D}-200}{3 x}=\frac{60 \mathrm{D}+25 x}{60 x}$
$\Rightarrow 4 \mathrm{D}-50=3 \mathrm{D}+\frac{5}{4} x$
$\Rightarrow 4 \mathrm{D}-5 x=50 \times 4$ $4 \mathrm{D}-5 x=200$
$\Rightarrow \frac{50-24}{x}+\frac{(\mathrm{D}-26) \times 4}{3 x}=\frac{\mathrm{D}}{x}+\frac{35}{60}$
$\Rightarrow 4 \mathrm{D}-7 x=104$
From equation (i) and (ii)
$\mathrm{D}=110 \mathrm{kms}$
50. (A) Let up stream speed be $x \mathrm{~km} / \mathrm{hrs}$ and down stream speed $y \mathrm{~km} / \mathrm{hrs}$.
$\Rightarrow \frac{30}{x}+\frac{44}{y}=10$.
$\Rightarrow \frac{40}{x}+\frac{55}{y}=13$
From equation (i) and (ii)
$x=5, \mathrm{~km} / \mathrm{hrs}$
and $y=11 \mathrm{~km} / \mathrm{hrs}$
Speed of current $=\frac{11-5}{2}$

$$
=3 \mathrm{~km} / \mathrm{hrs}
$$

$$
\begin{aligned}
\text { Speed of man } & =\frac{11+5}{2} \\
& =8 \mathrm{~km} / \mathrm{hrs}
\end{aligned}
$$

51. (A) Let the required time be T years.

$$
\begin{aligned}
\frac{\mathrm{M} \times 22}{\mathrm{~W}} & =\frac{\mathrm{T}(50 \mathrm{M}+45 \mathrm{~F}+17 \mathrm{C})}{\mathrm{W}} \\
4 \times 22 & =\mathrm{T}(50 \times 4+45 \times 3+17 \times 1) \\
\mathrm{T} & =\frac{88}{200+135+17} \\
& =\frac{88}{352} \\
& =\frac{1}{4} \text { Years or } 3 \text { months }
\end{aligned}
$$

52. (B) $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{5}{8}$
$\mathrm{Q}=\frac{8 \mathrm{P}}{5}$
$Q-(P+9)=6$
$Q-P-9=6$
$\mathrm{Q}-\mathrm{P}=15$
$\mathrm{Q}=\mathrm{p}+15$
$\frac{8 \mathrm{P}}{5}=\mathrm{P}+15$
$8 \mathrm{P}=5 \mathrm{P}+75$
$3 \mathrm{P}=75$
$\mathrm{P}=25$
$\mathrm{Q}=25+15=40$
Total age $=25+40=65$ years.
53. (C) Sum of the ratios must divide 12 . Since $3+2=5$ doesn't divide 12,
54. (A)

Let the height of tower be $h \mathrm{~m}$. total height of tower and

$$
\begin{aligned}
\text { flagstaff } & =\frac{7}{\left(1-\frac{\tan 30^{\circ}}{\tan 45^{\circ}}\right)} \\
& =\frac{7}{\left(1-\frac{1}{\sqrt{3} \times 1}\right)} \\
& =\frac{7 \sqrt{3}}{\sqrt{3}-1}
\end{aligned}
$$

Height of tower

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
h & =\frac{7 \sqrt{3}}{\sqrt{3}-1}-7 \\
& =7\left(\frac{\sqrt{3}-\sqrt{3}+1}{\sqrt{3}-1}\right) \mathrm{m} \\
& =\frac{7}{\sqrt{3}-1} \mathrm{~m}
\end{aligned}
$$

55. (A) 20 pieces $\rightarrow(3+x)$ min.

60 pieces $\rightarrow(8-3-x)$ min.
$\frac{20}{3+x}+\frac{60}{5-x}=20$
$5-x+9+3 x=15-3 x+5 x-x^{2}$
$\Rightarrow \quad 14+2 x=15+2 x-x^{2}$
$\Rightarrow \quad x^{2}=1$
$\Rightarrow \quad x=1$
20 pieces $\rightarrow 4$ min
160 pieces $\rightarrow 32 \mathrm{~min}$
56. (A) Let the polynomial be $p(x)$ then by remainder theorem $p(2)=1$ and $p(3)=2$
$\because x^{2}-5 x+6=0$
$\Rightarrow x^{2}-3 x-2 x+6=0$
$\Rightarrow(x-3)(x-2)=0$
Let $p(x)=h(x)(x-2)(x-2)+a x+b$
$\therefore p(2)=0+2 a+b$
$\Rightarrow \quad 1=0+2 a+b$
or $1=2 a+b$ \qquad

$$
\begin{equation*}
p(3)=0+3 a+b \tag{i}
\end{equation*}
$$

$\Rightarrow 2=3 a+b$ \qquad
Subtracting (i) from (ii)
$a=1, \quad b=-1$
Hence, required remainder $a x+b=x-1$
57. (A) Let the CP of book be x and pen be y,
$x+y=13,800$ \qquad (i)

$$
\begin{align*}
&\left(x \times \frac{117}{100}+y \times \frac{113}{100}\right)-\left(x \times \frac{113}{100}+y \times \frac{117}{100}\right)=40 \\
& x \times \frac{4}{100}-y \times \frac{4}{100}=40 \\
& x-y=1000 \ldots \ldots \ldots \text { (ii) } \tag{ii}\\
& x+y=13,800 \ldots \ldots(\mathrm{i}) \tag{i}\\
& x=\frac{14800}{2} \\
&=₹ 7,400 \\
& y=₹ 6,400
\end{align*}
$$

58. (A) Total CP of 13 dozen bottles
$=12 \times 12 \times 117 \times \frac{3}{4}$
= ₹ 12636
Total bottles purchased $=13 \times 12$

$$
=156
$$

Lowest price of one bottles $=\frac{12636}{156}$

$$
\text { = ₹ } 81
$$

59. (B) Let the CP of article $=100 \%$ SP of article $=120 \%$
ATQ,

$$
\begin{aligned}
120 \%-100 & =(100 \%-100) \frac{124}{100} \\
4 \% & =24 \\
100 \% & =\frac{24}{4} \times 100 \\
\text { C P } & =₹ 600
\end{aligned}
$$

60. (D) Let milkman purchased x litre.

ATQ, $50 x+2000=60 x-1500$

$$
\begin{aligned}
10 x & =3500 \text { litre } \\
x & =350 \text { litres }
\end{aligned}
$$

61. (C) Let the CP of first article be 100\% CP
$I^{\text {st }}$ article 100% 80\%
$\mathrm{II}^{\text {nd }}$ article $\frac{100}{125} \times 100=80 \% 100 \%$
180\%
180%
\because CP of two article is equal to SP.
So, shopkeeper has neither profit nor loss.
62. (B)

$$
\begin{array}{r}
\mathrm{CP} \\
\mathrm{I}^{\text {st }} \frac{180}{80}=\frac{5}{4} \Rightarrow 4 \times 6=24 \\
\text { II }^{\text {nd }} \frac{120}{100}=\frac{6}{5} \Rightarrow 5 \times 5=30 \\
30 \xrightarrow{\times 60} 1800
\end{array}
$$

difference $\Rightarrow 25-24=1$

$$
1 \xrightarrow{\times 60} ₹ 60
$$

63. (C) Maximum value of $\sin ^{6} \theta+\cos ^{6} \theta=1$
64. (B) Let the speed of A be $4 x \mathrm{~m} / \mathrm{sec}$ and B be $3 x \mathrm{~m} / \mathrm{sec}$
Speed of A is more than B

$$
\begin{aligned}
& =4 x-3 x \\
& =x \mathrm{~m} / \mathrm{sec} \\
t & =\frac{500}{x} \mathrm{sec} .
\end{aligned}
$$

\because Time taken by A to run
$7 \mathrm{Km}=\frac{7000}{4 x}$ seconds
\therefore Number of rounds $=\frac{7000}{4 x} \div \frac{500}{x}$

$$
=3.5
$$

So, A crosses B 3 times.
65. (A) $\sqrt{(x-1)^{2}}+\sqrt{(x-3)^{2}}$
$\Rightarrow x-1+x-3$
$\Rightarrow 2 x-4$
$\because 1<x<2$
 \title{
Campus
 \title{
Campus

 K D Campus Pvt. Ltd
}

 K D Campus Pvt. Ltd
}
66. (B)

Let side of cube $=a$
radius of sphere $=r$
diagonal of cube $=$ diameter of sphere

$$
\begin{aligned}
a \sqrt{3} & =2 r \\
a & =\frac{2 r}{\sqrt{3}}
\end{aligned}
$$

Volume of cube $=a^{3}=\left(\frac{2 r}{\sqrt{3}}\right)^{3}=\left(\frac{2}{\sqrt{3}}\right)^{3} \cdot r^{3}$
67. (C) Let the CP of the article be ₹ 100 and its SP be x.

$$
\begin{aligned}
& \Rightarrow \quad \frac{100-x}{100} \times 100=\frac{2 x-100}{100} \times 100 \\
& \Rightarrow \quad 100-x=2 x-100 \\
& \Rightarrow \quad 3 x=200 \\
& \Rightarrow \quad x=\frac{200}{3}
\end{aligned}
$$

$$
\therefore \mathrm{Loss} \%=100-\frac{200}{3}
$$

$$
=\frac{100}{3}
$$

$$
=33 \frac{1}{3} \%
$$

68. (D) Let the marked price be x.

$$
\begin{aligned}
& \therefore \mathrm{CP}=\frac{13}{15} x \\
& \mathrm{SP}=\frac{112}{100} x \\
& \begin{aligned}
\therefore \text { Profit } & =\frac{112 x}{100}-\frac{13 x}{15} \\
& =\frac{336 x-260 x}{300} \\
& =\frac{76}{300} x \\
\therefore \text { Profit } \% & =\frac{76 x}{300} \times \frac{15}{13 x} \times 100 \\
& =\frac{380}{13} \% \\
& =29 \frac{3}{13} \%
\end{aligned}
\end{aligned}
$$

69. (B) Gain $=X \times \frac{25}{100}$

$$
=₹ \frac{X}{4}
$$

Taxes $=\frac{X}{4} \times \frac{50}{100}$

$$
=\frac{X}{8}
$$

70. (B) CP of the article $=\frac{700 \times 100}{140}$

$$
\text { = ₹ } 500
$$

\therefore New selling price $=\frac{500 \times 110}{100}$

$$
=₹ 550
$$

71. (B) Investment ratio in terms of one month or of their equivalent capitals,
$A: B: C=\left\{(50,000 \times 4)+\left(\frac{50,000}{2} \times 8\right)\right\}:$
$\left\{(45,000 \times 8)+\left(\frac{45,000}{2} \times 4\right)\right\}:(70,000 \times 4)$
$=400000: 450000: 280000$
$=40: 45: 28$
72. (D) Effective discount $=25+15-\frac{25 \times 15}{100}$

$$
\begin{aligned}
& =(40-3.75) \% \\
& =36.25 \%
\end{aligned}
$$

\therefore CP of buyer $=(100-36.25) \%$ of 800

$$
\begin{aligned}
& =\frac{63.75}{100} \times 800 \\
& =\frac{63.75 \times 800}{100} \\
& =₹ 510
\end{aligned}
$$

\therefore To gain 20%
$\mathrm{SP}=₹\left(\frac{120 \times 510}{100}\right)$
= ₹ 612
Let the list price be ₹ x.
$\therefore 90 \%$ of $x=₹ 612$
$\Rightarrow \frac{90 \times x}{100}=612$
$\Rightarrow \quad x=\frac{612 \times 100}{90}$

$$
\text { = ₹ } 680
$$

73. (B) Let the CP be ₹ 100 , the $\mathrm{SP}=₹ 120$ Let the marked price be x.
Then 90% of $x=₹ 120$
$x=\frac{120 \times 100}{90}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=\frac{400}{3} \%$
$=133 \frac{1}{3} \%$
So, it is $33 \frac{1}{3} \%$ higher then the CP.
74. (C)

$A+2 B+C=\frac{60}{9}$ days
$\mathrm{A}=2 \mathrm{C} \quad$ [given]
$2 C+2 B+C=9$ unit
$C=(9-8)$ unit work
= 1 unit
$B=\frac{60}{4-1}$

$$
=\frac{60}{3} \text { days }
$$

$$
=20 \text { days }
$$

75. (D) $10 \times\left[\frac{2 \mathrm{M}+3 \mathrm{~W}+4 \mathrm{C}}{10}\right]=\mathrm{D}\left[\frac{6 \mathrm{M}+4 \mathrm{~W}+7 \mathrm{C}}{16}\right]$
$\Rightarrow[2 \times 5+3 \times 4+4 \times 2]$
$=\mathrm{D}\left[\frac{6 \times 5+4 \times 4+7 \times 2}{16}\right]$
$\Rightarrow[10+12+8]=\mathrm{D}\left[\frac{30+16+14}{16}\right]$
$D=\frac{30 \times 16}{60}=8$ days
76. (B) P can complete the whole work $=40$ days Q can complete the whole work $=\frac{15 \times 5}{2}$ days
R can complete the whole work $=39$ days S can complete the whole work $=42$ days So, Q will complete it first
77. (C)

Distance travelled till $9 \mathrm{am}=60 \mathrm{Km}$
Required time $=9 \mathrm{am}+\frac{270}{60+75} \mathrm{hrs}$
$=9 \mathrm{am}+\frac{270}{135} \mathrm{hrs}$
$=9 \mathrm{am}+2$ hours
$=11 \mathrm{am}$
78. (D) Total work $=120$ units (LCM of 8 and 15)

$(\mathrm{A}+\mathrm{B})$'s 1 day work $=15+8=23$ units $(A+B)$'s 3 days work $=23 \times 3=69$ units Remaining work $=120-69=51$ units Number of days taken by A to complete the remaining work $=\frac{51}{15}=3 \frac{6}{15}+3 \frac{2}{5}$

Total number of days $=3 \frac{2}{5}+3=6 \frac{2}{5}$ days
79. (B)

Let the time taken be equal
$\frac{40}{\mathrm{~V}_{1}}=\frac{50}{\mathrm{~V}_{2}}$, then they will
collide i.e. cars will reach at the same time
$\therefore \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \neq \frac{40}{50}=\frac{4}{5}$
80. (A)

$\angle \mathrm{OAD}=\angle \mathrm{ODA}=45^{\circ}$
$\angle \mathrm{PCE}=\angle \mathrm{PEC}=45^{\circ}$
$\angle \mathrm{ABC}=180^{\circ}-(45+45)$

$$
\begin{aligned}
&=90^{\circ} \\
& \mathrm{AB}=\mathrm{CB}
\end{aligned}
$$

In $\triangle \mathrm{ABC}$,

$$
\Rightarrow 12^{2}=\sqrt{\mathrm{AB}^{2}+\mathrm{CB}^{2}}
$$

$$
\Rightarrow 144=\sqrt{\mathrm{AB}^{2}+\mathrm{AB}^{2}}
$$

$$
\Rightarrow \mathrm{AB}=\frac{\sqrt{144}}{\sqrt{2}} \mathrm{~cm}
$$

$$
=\frac{12}{\sqrt{2}} \mathrm{~cm}
$$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \frac{12}{\sqrt{2}} \times \frac{12}{\sqrt{2}}$
81. (A) $x^{2}-$ (Sum of roots) $x+$ (product of roots) $=0$
$\Rightarrow 3 x^{2}+4 x+2=0$
$\Rightarrow x^{2}+\frac{4}{3} x+\frac{2}{3}=0$
sum of roots $=\frac{4}{3}$
product of roots $=\frac{2}{3}$
So, X does not have any real roots.
82. (C) Value of $\cos \theta-\sin \theta=\sqrt{2-m^{2}}$
83. (B) HCF of 120 and $105=15$

Number of tiles $=\frac{120 \times 105}{15}$

$$
\begin{aligned}
& =8 \times 7 \\
& =56
\end{aligned}
$$

84. (B)

Let radius of that circle be r.
$\cos 40^{\circ}=\frac{r}{R}$
$\therefore r=\mathrm{R} \cos 40^{\circ}$
85. (B) As given $3 \mathrm{M}=5 \mathrm{~W}$
$2 \mathrm{~W}=3 \mathrm{C}$
$\therefore 2 \times \frac{3}{5} \mathrm{M}=3 \mathrm{C}$ [from eq. (i)
$\Rightarrow 2 \mathrm{M}=5 \mathrm{C}$
Now, $M_{1} D_{1} W_{2}=M_{2} D_{2} W_{1}$
$(20 \mathrm{M}+30 \mathrm{~W}+75 \mathrm{C}) \times 60 \times \frac{3}{4}$
$=[(20+x) \mathrm{M}+25 \mathrm{C}] \times 85 \times \frac{1}{4}$
$\Rightarrow(20 \mathrm{M}+18 \mathrm{~W}+75 \mathrm{C}) \times 60 \times \frac{3}{4}$
$=[(20+x) \mathrm{M}+10 \mathrm{M}] \times 85 \times \frac{1}{4}$
$\Rightarrow 68 \mathrm{M} \times 45=(30+x) \mathrm{M} \times 85 \times \frac{1}{4}$
$\Rightarrow \quad(30+x)=144$
$\Rightarrow \quad x=114$
86. (C) Let radius of hemisphere $=$ height of cylinder $=r$ units.
$\therefore \frac{\text { Volume of hemisphere }}{\text { Volume of cylinder }}=1$
$\Rightarrow \frac{\frac{2}{3} \pi r^{3}}{\pi r_{1}^{2} r}=1$
$\Rightarrow \frac{r^{2}}{r_{1}^{2}}=\frac{3}{2}$
$\Rightarrow r: r_{1}=\sqrt{3}: \sqrt{2}$
87. (D) ATQ, $\pi m^{2} \mathrm{H}=\frac{1}{3} \pi r^{2} h$
$\Rightarrow \mathrm{H}=\frac{1}{3} \frac{\pi r^{2} h}{\pi m^{2}}=\frac{h r^{2}}{3 m^{2}}$
88. (C) Let radius of circle be $x \mathrm{~cm}$, side of square be $y \mathrm{~cm}$ and side of equilateral triangle be $z \mathrm{~cm}$
ATQ,
$2 \pi x=4 y=3 z$
$\Rightarrow x=\frac{4 y}{2 \pi}=\frac{2 y}{\pi}$

$$
z=\frac{4 y}{3}
$$

Area of circle ' $\mathrm{C}^{\prime}=\pi x^{2}=\pi \times \frac{4}{\pi^{2}} y^{2}$

$$
=\frac{4}{\pi} y^{2}>y^{2}
$$

Area of square 'S' = y^{2}
Area of triangle ' T ' $=\frac{\sqrt{3}}{4} z^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times \frac{4 \times 4}{3 \times 3} y^{2} \\
& =\frac{4}{3 \sqrt{3}} y^{2}
\end{aligned}
$$

or, $\frac{4}{3 \sqrt{3}}<y^{2}$
$\therefore \mathrm{T}<\mathrm{S}<\mathrm{C}$
89. (D) Distance covered $=66 \times \frac{5}{2}$
$2 \pi r=165$ metre
$r=\frac{165 \times 7}{2 \times 22}$
$=26.25$ metres
90. (C) Let number of revolutions of rear wheel be m . Distance covered by front wheel in 1 revolution $=\pi \times$ diameter

$$
=2 \pi x \mathrm{~cm}
$$

Distance covered by rear wheel in 1 revolution $=2 \pi y \mathrm{~cm}$
$\therefore 2 \pi x \times n=2 \pi y \times m$

$$
\mathrm{m}=\frac{n x}{y}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
91. (C) Total number of boys in school

$$
\begin{aligned}
\mathrm{T} & =1250 \times \frac{60}{100} \\
& =750
\end{aligned}
$$

92. (C) Required number of boys

$$
\begin{aligned}
& =\frac{2500 \times \frac{60}{100}+3000 \times \frac{55}{100}}{2} \\
& =\frac{1500+1650}{2} \\
& =\frac{3150}{2} \\
& =1575
\end{aligned}
$$

93. (C) Required ratio $=2500 \times \frac{40}{100}: 3000 \times \frac{45}{100}$

$$
=1000: 1350
$$

$$
=20: 27
$$

94. (A) Required average

$$
\begin{aligned}
& =\frac{2500+3000+2000+2250+1250+1000}{6} \\
& =\frac{12000}{6}=2000
\end{aligned}
$$

95. (D) Total girl students in all schools.

$$
\begin{aligned}
& =2500 \times \frac{40}{100}+3000 \times \frac{45}{100}+2000 \times \frac{27.5}{100} \\
& +2250 \times \frac{32.5}{100}+1250 \times \frac{40}{100}+1000 \times \frac{12.5}{100} \\
& =1000+1350+540+675+500+125
\end{aligned}
$$

$$
\text { Required percentage }=\frac{4190}{12000} \times 100
$$

$$
=34.90 \%
$$

96. (D) Average profit $=\frac{25+35+22.5+30+35.5}{5}$

$$
\begin{aligned}
& =\frac{148}{5} \\
& =29.6 \text { or } 30 \mathrm{Lacs}
\end{aligned}
$$

97. (B) Required income $=37.5+28$

$$
=65.5 \mathrm{Lacs}
$$

98. (D) Required percentage $=\frac{30-22.5}{22.5} \times 100$

$$
\begin{aligned}
& =\frac{7.5}{22.5} \times 100 \\
& =33.33 \%
\end{aligned}
$$

99. (C) Required ratio $=25: 37.5$

$$
\begin{aligned}
& =250: 375 \\
& =2: 3
\end{aligned}
$$

100. (B) Expenditure $=45-22.5$

$$
\begin{aligned}
& =22.5 \mathrm{Lacs} \\
& =₹ 22,50,000
\end{aligned}
$$

SSC MAINS (MATHS)-5 (ANSWER KEY)

1. (C)
2. (A)
3. (B)
4. (C)
5. (D)
6. (C)
7. (A)
8. (B)
9. (C)
10. (A)
11. (D)
12. (C)
13. (A)
14. (D)
15. (B)
16. (C)
17. (C)
18. (C)
19. (B)
20. (D)
21. (B)
22. (A)
23. (C)
24. (A)
25. (B)
26. (D)
27. (A)
28. (C)
29. (B)
30. (D)
31. (C)
32. (C)
33. (A)
34. (C)
35. (D)
36. (C)
37. (B)
38. (B)
39. (B)
40. (D)
41. (A)
42. (B)
43. (A)
44. (B)
45. (B)
46. (A)
47. (D)
48. (A)
49. (B)
50. (A)
51. (A)
52. (B)
53. (C)
54. (A)
55. (A)
56. (A)
57. (A)
58. (A)
59. (B)
60. (D)
61. (C)
62. (B)
63. (C)
64. (B)
65. (A)
66. (B)
67. (C)
68. (D)
69. (B)
70. (B)
71. (B)
72. (D)
73. (B)
74. (C)
75. (D)
76. (B)
77. (C)
78. (D)
79. (B)
80. (A)
81. (A)
82. (C)
83. (B)
84. (B)
85. (B)
86. (C)
87. (D)
88. (C)
89. (D)
90. (C)
91. (C)
92. (C)
93. (C)
94. (A)
95. (D)
96. (D)
97. (B)
98. (D)
99. (C)
100. (B)
