SSC MAINS (MATH) - 04 (SOLUTION)

1. (A) Marks scored in Hindi and Maths

$$
=\frac{160^{\circ}}{360^{\circ}} \times 540=240
$$

Marks scored in English and Social
Science $=\frac{120^{\circ}}{360^{\circ}} \times 540=180$
Difference $=240-180$

$$
=60^{\circ}
$$

2. (B) $100 \%=360^{\circ}$
$\Rightarrow 22.2 \%=\frac{360^{\circ} \times 22.2}{100}$
$=79.2^{\circ}$ or 80°
3. (B) $540=360^{\circ}$
$\therefore 105=\frac{360^{\circ}}{540} \times 105=70^{\circ}$
4. (B) $\frac{540}{5}=108$
5. (D) $360^{\circ}=540$
$90^{\circ}=\frac{540}{360}$
Reqd $\%=\frac{135}{540} \times 100=25 \%$
6. (C) The distance covered by the wheel in
one minute $=\frac{66 \times 1000 \times 100}{60}$
$=110000 \mathrm{~cm}$
The distance covered by the wheel in one revolution $=$ The circumference of the wheel
$=2 \pi \mathrm{r}$
$=2 \times \frac{22}{7} \times \frac{70}{2}$
$=220 \mathrm{~cm}$
$\therefore \quad$ Number of revolutions of the wheel

$$
\begin{aligned}
& =\frac{110000}{220} \\
& =500
\end{aligned}
$$

7. (B) \quad Perimeter of circle $=2 \times \frac{22}{7} \times 7$

$$
=44 \mathrm{~cm}
$$

Perimeter of semi circle $=22 \mathrm{~cm}$ The length of the wire $=22+14=36 \mathrm{~cm}$
8. (A) Perimeter of rhombus $=4 \sqrt{12^{2}+16^{2}}$

$$
=80 \mathrm{~cm}
$$

9. (A)
$\mathrm{r}=21 \mathrm{~cm}, \mathrm{~h}=20 \mathrm{~cm}$
$l=\sqrt{r^{2}+h^{2}}=29 \mathrm{~cm}$
$\therefore \quad$ Area of the sheet $=$ Total surface area of the cone $=\pi r l+\pi r^{2}=\pi r(l+r)$

$$
=\frac{22}{7} \times 21(29+21)=3300 \mathrm{~cm}^{2}
$$

10. (C)

BM is median of $\triangle \mathrm{ABC}$
By Appolloneous theorem

$$
(\mathrm{BA})^{2}+(\mathrm{BC})^{2}=2\left[(\mathrm{BM})^{2}+\left(\frac{1}{2} \mathrm{AC}\right)^{2}\right]
$$

$$
(81)^{2}+(6)^{2}=2\left[(\mathrm{BM})^{2}+(5)^{2}\right]
$$

$$
100=2\left[(\mathrm{BM})^{2}+(25)\right]
$$

$$
\mathrm{BM}^{2}=25
$$

$$
\mathrm{BM}=\overline{5}
$$

11. (B)

$$
x^{(a+b)(a-b)} \times x^{(b+c)(b-c)} \times x^{(c+a)(c-a)}
$$

$$
\begin{aligned}
& =x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}} \\
& =1
\end{aligned}
$$

12. (C) $x=3+2 \sqrt{3}, \frac{1}{x}=3-2 \sqrt{3}$

$$
\begin{aligned}
& x+\frac{1}{x}=6 \\
& \left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}=x+\frac{1}{x}-2 \\
& =6-2=4 \\
& \sqrt{x}+\frac{1}{\sqrt{x}}=2
\end{aligned}
$$

13. (A) Circumference $=2 \pi r=4 x$
$r=\frac{4 x}{2 \pi}=\frac{2 x}{\pi}$
Area $=\pi r^{2}=\pi\left(\frac{2 x}{\pi}\right)^{2}=\pi \cdot \frac{4 x^{2}}{\pi^{2}}$
$\therefore \quad$ Ratio of area of the circle and the square

$$
=\frac{4}{\pi} x^{2}: x^{2}
$$

$$
\begin{array}{ll}
4 & : \frac{22}{7} \\
28 & : 22 \\
14 & : 11
\end{array}
$$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
14. (C) Let the upstream speed be $x \mathrm{~km} / \mathrm{hr}$ and the downstream speed by $y \mathrm{~km} / \mathrm{hr}$.

Then, $\frac{24}{x}+\frac{36}{y}=6$
and $\frac{36}{x}+\frac{24}{y}=\frac{13}{2}$
Then, $x=8 \mathrm{~km} / \mathrm{hr}, y=12 \mathrm{~km} / \mathrm{hr}$
Speed of current $=\frac{1}{2}(12-8)$
$=2 \mathrm{~km} / \mathrm{hr}$
15. (B)
$r=\sqrt{22^{2}+19^{2}+8^{2}}=\sqrt{900}=30$
16. (D) Let x, y be the side the square

$$
\begin{aligned}
\frac{x^{2}}{y^{2}} & =\frac{9}{1} \\
\Rightarrow \quad \frac{x}{y} & =\frac{3}{1} \\
x: y & =3: 1
\end{aligned}
$$

17. (D)

As the cow is tied at the corner of rectangular field, it will graze the area of the field enclosed between two sides of the rectangular
$=\frac{1}{4}(\pi \times 14 \times 14)=\frac{1}{4} \times \frac{22}{7} \times 14 \times 14=154 \mathrm{~m}^{2}$
18. (C) \because Exterior angle $=\frac{1}{3} \times 180^{\circ}=60^{\circ}$
$\therefore \mathrm{n} \times 60^{\circ}=360^{\circ} \Rightarrow \mathrm{n}=6$
19. (A) Let AB be the rod and AC be its shadow. $\angle \mathrm{ACB}=\theta$. Let $\mathrm{AB}=x$.

Then, $\mathrm{AC}=\sqrt{3} x$

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{x}{\sqrt{3} x}=\frac{1}{\sqrt{3}} \\
\theta & =30^{\circ}
\end{aligned}
$$

20. (A) Side of the equilateral triangle

$$
\begin{aligned}
& =\sqrt{\frac{4}{\sqrt{3}} \times 400 \sqrt{3}} \\
& =\sqrt{1600} \\
& =40 \text { meter }
\end{aligned}
$$

Perimeter $=40 \times 3=120$ meter
21. (C) Let the fraction be $\frac{x}{y}$.

So, that new fraction is $\frac{115 \% \text { of } x}{92 \% \text { of } y}$ $\therefore \quad \frac{115 \% \text { of } x}{92 \% \text { of } y}=\frac{15}{16}$

$$
\frac{x}{y}=\frac{15}{16} \times \frac{92}{115}=\frac{3}{4}
$$

22. (A) $\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\left(\frac{2 t}{1+t^{2}}\right)^{2}}$

$$
=\frac{\sqrt{\left(1+t^{2}\right)^{2}-4 t^{2}}}{\left(1+t^{2}\right)}=\frac{\sqrt{\left(1-t^{2}\right)^{2}}}{\left(1+t^{2}\right)}
$$

$$
=\frac{1-t^{2}}{1+t^{2}}
$$

$$
\tan \theta=\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}=\frac{1-t^{2}}{2 t}
$$

23. (C)

$$
\begin{aligned}
& 4\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right]-3\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-(1)^{2}\right] \\
& =4\left[\frac{1}{16}+\frac{1}{16}\right]-3\left[\frac{1}{2}-1\right] \\
& =\frac{1}{2}+\frac{3}{2}=2
\end{aligned}
$$

24. (B)

$$
\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}
$$

$$
=\frac{\frac{1}{4}}{\frac{3}{4}}+\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{1}{3}+3=3 \frac{1}{3}
$$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
25. (D) $\sin 15^{\circ} \cos 15^{\circ}$
$=\sin 15^{\circ}+\cos \left(90^{\circ}-75^{\circ}\right)$
$=\sin 15^{\circ}+\sin 75^{\circ}$
$=\sin \left(45^{\circ}-30^{\circ}\right)+\sin \left(45^{\circ}+30^{\circ}\right)$
$=2 \sin 45^{\circ} \cos 30^{\circ}$
$=2 \times \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{\sqrt{2}}$
26. (C) $x+y=2 z$ means $x-z=z-y$
$\therefore \quad \frac{x}{x-z}+\frac{z}{y-z}$
$=\frac{x}{z-y}+\frac{z}{y-z}$
$=\frac{-x+z}{y-z}=\frac{z-x}{z-x}=1$
27. (A) Let the two number is x and $(100-x)$. LCM $\times \mathrm{HCF}=$ Product of the numbers $495 \times 5=x(100-x)$
or, $x^{2}-100 x+2475=0$
or, $x^{2}-55 x-45 x+2475=0$
or, $(x-55)(x-55)=0$
$\therefore \quad x=45$ or $x=55$
When $x=55$, we get $100-x=45$
Hence their difference $=55-45=10$
28. (D) New ratio of income of P and Q:-

$$
=\frac{3 \times \frac{120}{100}}{5 \times \frac{20}{100}}=\frac{36}{10}=\frac{18}{5}=18: 5
$$

29. (A) From Formula,
S.I. $=\frac{\text { PRT }}{100}$
$80=\frac{800 \times \mathrm{R} \times 2}{100}$
R $=5 \%$
For C.I.

Amount $=\mathrm{P}+$ C.I.

$$
\begin{aligned}
& =800+126.1 \\
& =926.1
\end{aligned}
$$

30. (B)

Given $\angle \mathrm{OBC}=45^{\circ}$
Also, $\angle \mathrm{OCB}=45^{\circ}$
Hence, $\angle \mathrm{BOC}=180^{\circ}-\left(45^{\circ}+45^{\circ}\right)=90^{\circ}$
So, $\angle \mathrm{BAC}=\frac{\angle \mathrm{BOC}}{2}=\frac{90^{\circ}}{2}=45^{\circ}$
31. (B) $(A+B+C)$ in 5 days complete $\frac{1}{4}$ work. $(A+B+C)$ in 1 day compelte $\frac{1}{20}$ work. Similarly,
$(B+C)$ in 1 day complete $\frac{1}{24}$ works.
\therefore A's 1 day work $=\frac{1}{20}-\frac{1}{24}=\frac{1}{120}$
A completes a work in 120 days.
\therefore A will completes half work in 60 days.
32. (D) $x^{a} \cdot x^{b} \cdot x^{c}=1$
$a+b+c=0$
Again, $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)$ $\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$ \because since $a+b+c=0$
Hence, $a^{3}+b^{3}+c^{3}=3 a b c$
33. (B) Since 20% of the students neither play football nor hockey, it means 80% of the students either play football or hockey or both.

$$
\begin{aligned}
& \therefore \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& 80=55+45-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& 80-100=-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& \mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=20 \%
\end{aligned}
$$

34. (A) $\left(\frac{1}{64}\right)^{0}+(64)^{-\frac{1}{2}}+(-32)^{\frac{4}{5}}$
$=1+8^{2 \times\left(-\frac{1}{2}\right)}+(-1 \times 32)^{\frac{4}{5}}$
$=1+8^{-1}+\left[(-1)^{\frac{4}{5}} \times(32)^{\frac{4}{2}}\right]$
$=1+\frac{1}{8}+(1 \times 16)=17 \frac{1}{8}$

K D Campus Pvt. Ltd

35. (C) Average
$=\frac{x+y}{2}=\frac{\frac{b^{2}}{a}+\frac{a^{2}}{b}}{2}=\frac{\frac{b^{3}+a^{3}}{a b}}{2}=\frac{a^{3}+b^{3}}{2 a b}$
Reciprocal $=\frac{2 a b}{a^{3}+b^{3}}$
36. (B) $\tan 2 \theta$
$=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 \frac{p}{q}}{1+\frac{p^{2}}{q^{2}}}=\frac{2 \frac{p}{q}}{\frac{p^{2}+q^{2}}{q^{2}}}=\frac{2 p q}{p^{2}+q^{2}}$
37. (B) $+13,+15,+17,+$
38. (A) Area $=$ Base \times Height $=75 \times 10=75 \mathrm{~cm}^{2}$ Again,

Area $=\frac{1}{2} d_{1} \times d_{2}$
$75=\frac{1}{2} \times 30 \times d_{2}$
$d_{2}=5 \mathrm{~cm}$
39. (D) $\mathrm{S}=\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{\mathrm{~T}}$

$$
\begin{aligned}
& \mathrm{T}=\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{5} \\
& =\frac{180+220}{72 \times \frac{5}{18}}=\frac{400}{20}=20 \text { seconds }
\end{aligned}
$$

40. (C) $\angle \mathrm{OSQ}=\angle \mathrm{SPR}=40^{\circ}(\because \mathrm{PR}| | \mathrm{QS})$ $\angle \mathrm{SOQ}=180^{\circ}-(\angle \mathrm{OSQ}+\angle \mathrm{OQS})$
$=180^{\circ}-\left(40^{\circ}+35^{\circ}\right)=105^{\circ}$
41. (C) $\frac{3 \sin 55}{\cos (90-55)^{\circ}}+\frac{3 \tan 33^{\circ}}{\cot (90-33)^{\circ}}$

$$
=3 \frac{\sin 55^{\circ}}{\sin 55^{\circ}}+\frac{3 \tan 33^{\circ}}{\tan 33^{\circ}}=3+3=6
$$

42. (A) $\frac{r}{h}=\frac{3 x}{4 x}$,
volume $=x \pi r^{2} h=4851$
$r=3.5$
$r=10.5$ meter and $h=14$ meter
\therefore curved surface area

$$
\begin{aligned}
& =2 \pi r h \\
& =2 \times \frac{22}{7} \times 10.5 \times 14 \\
& =924 \mathrm{~m}^{3} .
\end{aligned}
$$

43. (B) $\mathrm{n}=\frac{\text { Volume of cylinder }}{\text { Volume of one cone }}$

$$
=\frac{\pi \times 3 \times 3 \times 5}{\frac{1}{3} \pi \times \frac{1}{10} \times \frac{1}{10} \times 1}=13500
$$

44. (B)

Here,
$\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDE}+\angle \mathrm{DEA}+\angle \mathrm{EAB}$
$=3$ [Sum of angles of trangles]
$=3 \times 180^{\circ}=540^{\circ}$
45. (C) $x^{3}-5 x^{2}+7 x-8$

Remainder is obtained by putting $x-2=0$
$x=2$
$\Rightarrow 2^{3}-5 \times 2^{2}+7 \times 2-8$
$\Rightarrow 8-20+14-8=-6$
46. (B)

$\sin A=\frac{4}{5}$
$\tan \mathrm{A}=\frac{4}{3}$
$\sec A=\frac{5}{3}$
$\tan A+\sec A=\frac{4}{5}+\frac{5}{3}=\frac{9}{3}=3$
47. (D) $\pi r^{2}=770$

$$
\begin{aligned}
& r^{2}=\frac{770 \times 7}{22}=245 \\
& r=\sqrt{245}=7 \sqrt{5} \\
& \pi r l=814
\end{aligned}
$$

K D Campus Pvt. Ltd

48. (A) $P=₹ 4500, R=5 \%$

Compound Interest - Simple Interest

$$
\begin{aligned}
& =P\left(\frac{\mathrm{R}}{100}\right)^{2}=4500\left(\frac{5}{100}\right)^{2} \\
& =\frac{4500}{20 \times 20}=₹ 11.25
\end{aligned}
$$

49. (D) $\left(\frac{1+x}{x}\right)\left(\frac{x+2}{x+1}\right)\left(\frac{x+3}{x+2}\right)\left(\frac{x+4}{x+3}\right)=\frac{x+4}{x}$
50. (D) $\left[2^{9 \cdot \frac{1}{6} \cdot \frac{1}{3}}\right]^{4} \times\left[2^{9 \cdot \frac{1}{3} \cdot \frac{1}{6}}\right]^{4},\left[2^{\frac{1}{2}}\right]^{4} \times\left[2^{\frac{1}{2}}\right]^{4}$
$2^{2} \times 2^{2}=2^{4}$
51. (A) Average Speed

$$
\begin{aligned}
& =\frac{3 \times 120 \times 140 \times 80}{120 \times 140+140 \times 80+80 \times 120} \\
& =\frac{360 \times 140 \times 80}{16800+11200+9600}=\frac{4302000}{37600} \\
& =107 \frac{11}{47} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

52. (A) A's capital $=16 \frac{2}{3} \%$ of total

$$
=\frac{1}{6}
$$

B's profit $=83 \frac{1}{3} \%=\frac{5}{6}$
$\therefore \quad$ B's profit : A's profit : : $5: 1$

\therefore	A	B
Capital \rightarrow1 5 Month \rightarrow15 x1 5		

$$
\frac{1 \times 15}{5 \times x}=\frac{1}{5}
$$

$x=15$ months
53. (A) Overall gain $\%$ is given by
$\Rightarrow \frac{100+g}{100}+\frac{100}{90}$
$\Rightarrow 900+9 \mathrm{~g}=1000$
$\Rightarrow 9 \mathrm{~g}=100$
$\Rightarrow \mathrm{g}=\frac{100}{9}=11 \frac{1}{9} \%$
54. (B) $\mathrm{S}_{1}=75$ and $\mathrm{S}_{2}=50$
\therefore stoppage time/hour $=\frac{75-50}{75}=\frac{25}{75}$
$=\frac{1}{3}$ hour $=20$ minute
55. (B) $x=a \cos \theta, y=b \sin \theta$
$\therefore b^{2} x^{2}+a^{2} y^{2}=b^{2} a^{2} \cos ^{2} \theta+a^{2} b^{2} \sin ^{2} \theta$
$=a^{2} b^{2} \times 1=a^{2} b^{2}$
56. (C) $\because \cos 90^{\circ}=0$
\therefore given product $=0=0$
57. (C) Let the number of valid votes be x.

Then, 52% of $x-48 \%$ of $x=98$ ATQ,
or, 4% of $x=98 \Rightarrow x=2430$
Total number of polled votes

$$
=2450+68=2518
$$

58. (A) Let the side of square be x.
$2 \pi \mathrm{r}=4 x$,
where $x^{2}=14400 \Rightarrow x=120$

$$
2 \pi \mathrm{r}=480 \Rightarrow \mathrm{r}=76.36 \mathrm{~m}
$$

So, the area of circular field

$$
=\pi \mathrm{r}^{2}=\frac{22}{7} \times 76.36 \times 76.36=18325.53 \mathrm{~m}^{2}
$$

59. (C) Let the number of correct answers be x.
\therefore The number of wrong answers $=(120-x)$ $x \times 1(120-x) \times 0.25=90$
$x-30+\frac{x}{4}=90$
$x=120 \times \frac{4}{5}=96$
60. (D) Maximum marks $=\frac{100 \times 208}{40}=520$
61. (C) $\angle \mathrm{P}=50^{\circ}$
$\angle \theta=100^{\circ}$
$\angle \mathrm{R}=150^{\circ}$
$\angle \mathrm{S}=360^{\circ}-300^{\circ}=60^{\circ}$
$\angle \mathrm{Q}-\angle \mathrm{S}=100^{\circ}-60^{\circ}=40^{\circ}$
62. (D) $\mathrm{H}=60 \mathrm{~cm}$
radius $=32 \mathrm{~cm}$
Area of the curved surface $=\pi \mathrm{rl}$

$$
\begin{aligned}
\mathrm{L} & =\sqrt{R^{2}+H^{2}}=\sqrt{(32)^{2}+(60)^{2}} \\
& =\sqrt{1024+3600}=\sqrt{4624}=68 \mathrm{~cm}
\end{aligned}
$$

Area of curved surface $=\frac{22}{7} \times 32 \times 68$
Total cost of painting $=35 \times \frac{22}{7} \times 32 \times 68 \times \frac{1}{10000}$

$$
=23.94 \text { approximate }
$$

K D Campus Pvt. Ltd

63. (B) Total persons

$$
=4[3 \text { adult }+ \text { two children (} 1 \text { adult })]
$$

Total amount = ₹ 884

Per person ticket $=\frac{884}{4}=221$

Ticket per student $=\frac{221}{2}=₹ 110.5$
64. (B) A's capital $=\frac{1}{3} x$, B's capital $=\frac{2}{3} x$

A's and B's total profit ratio $=2: 1$.
Let B contributes for Y months.

$$
\frac{\frac{1}{3} \times x \times 15}{\frac{2}{3} \times x \times 4}=\frac{2}{1} \Rightarrow y=\frac{15}{4}
$$

65. (A) Gain $=25 \%, \mathrm{SP}=₹ 13.25$ per litre
\therefore Cost price of mixture

$$
=\frac{100 \times 13.25}{125}=₹ 10.6
$$

C.P. of 1 litre of water
C.P. of 1 litre of liquid

\therefore Water : liquid $=1.4: 10.6$

$$
=7: 53
$$

66. (B) Area $=\frac{\pi r^{2}}{4} \Rightarrow \frac{22 \times 14 \times 14}{7 \times 4}=154 \mathrm{~cm}^{2}$
67. (B) Let the present age of son is x years.

Age of father $=42$ years
ATQ,

$$
\begin{aligned}
2 x & =42 \text { years } \\
x & =21 \text { years }
\end{aligned}
$$

\therefore Age of son 5 years back was

$$
=21-5=16 \text { years }
$$

68. (B)

$$
\angle \mathrm{BOC}=\angle \mathrm{AOC}=\frac{\beta}{2}
$$

$\angle \mathrm{A}=\mathrm{BC}=\mathrm{r}$
\therefore In \triangle COD,

$$
\begin{equation*}
\sin \alpha=\frac{D C}{C} \tag{1}
\end{equation*}
$$

$\mathrm{DC}=\mathrm{OC} \sin \alpha$
\therefore In $\triangle \mathrm{COA}$,

$$
\begin{aligned}
& \frac{\sin \beta}{2}=\frac{A C}{O C} \\
& \mathrm{OC}=\frac{r}{\sin \frac{\beta}{2}}
\end{aligned}
$$

From ... (1)

$$
\begin{aligned}
\therefore \mathrm{DC} & =\frac{r}{\sin \frac{\beta}{2}} \times \sin \alpha \\
& =\mathrm{r} \operatorname{cosec} \frac{\beta}{2} \cdot \sin \alpha
\end{aligned}
$$

69. (D) LCM of $(8,9,10)=360$
70. (C) $(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s work for 2 hours

$$
=2 \times \frac{1}{6}=\frac{1}{3}
$$

Remaining work $=1-\frac{1}{3}=\frac{2}{3}$
In 7 hours $(A+B)$'s can fill $=\frac{2}{3}$ of cistern
\therefore In 1 hour $(A+B)$'s can fill

$$
\begin{aligned}
& =\frac{1}{7} \times \frac{2}{3} \text { of cistern } \\
& =\frac{2}{21} \text { of cistern }
\end{aligned}
$$

But $(A+B+C)$'s 1 hour work $=\frac{1}{6}$
C's one hour work $=\frac{1}{6}-\frac{2}{21}=\frac{1}{14}$

K D Campus Pvt. Ltd

71. (B) $x y+z x=1-y z$
$x(y+z)=1-y z$
$\frac{1}{x}=\frac{y+z}{1-y z}$
Similarly,

$$
\frac{x+y}{1-x y}=\frac{1}{2} \& \frac{z+x}{1-x z}=\frac{1}{y}
$$

Thus, the given expression

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{x}+\frac{1}{y} \\
& =\frac{x y+y z+z x}{x y z} \\
& =\frac{1}{x y z}
\end{aligned}
$$

72. (C)

Let CD be the tower of height x and $\mathrm{BD}=\mathrm{CF}=\mathrm{Y}$ From $\triangle \mathrm{ABD}=\frac{30}{y}=\tan 60^{\circ}$
or $y=\frac{30}{\sqrt{3}}$
From $\triangle \mathrm{AFC}$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{30-x}{y} \\
& \frac{1}{\sqrt{3}}=\frac{30-x}{\frac{30}{\sqrt{3}}}
\end{aligned}
$$

$30-x=\frac{1}{\sqrt{3}} \times \frac{30}{\sqrt{3}}=\frac{30}{3}=10$
$x=20$ meter
73. (B)

Area of equilateral triangle

$$
=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times(12)^{2}=\frac{144 \sqrt{3}}{4}
$$

Now, the area of a regular tetrahedron

$$
=4 \times \frac{144}{4} \times \sqrt{3}=144 \sqrt{3}
$$

74. (B) $\mathrm{d}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

$$
\begin{aligned}
& d=\sqrt{(1-2)^{2}+(3-2)^{2}} \\
& d=\sqrt{1+1}=\sqrt{2}
\end{aligned}
$$

Hence, the distance of common chord $=\sqrt{2}$
75. (B)

$$
\begin{equation*}
\frac{x}{2}+\frac{y}{4}=1 \tag{1}
\end{equation*}
$$

and $\frac{x}{-1}+\frac{y}{-1}=1$
from equation (1) and (2):-

$$
\begin{aligned}
2 x+y & =4 \\
x-y & =-1 \\
\hline 3 x & =3 \\
x & =1 \\
\therefore y & =2 \\
\text { OC } & =4 \\
& =2
\end{aligned}
$$

K D Campus Pvt. Ltd

76. (C)

$\angle \mathrm{ABC}=45^{\circ}$
$\angle \mathrm{ABO}=45^{\circ}$
$\mathrm{BD}=3 \mathrm{~cm}$
$\cos 45^{\circ}=\frac{\mathrm{BD}}{\mathrm{OB}}$
$\cos 45^{\circ}=\frac{3}{\mathrm{OB}}$
$\frac{1}{\sqrt{2}}=\frac{3}{\mathrm{OB}}$
$\mathrm{OB}=3 \sqrt{2} \mathrm{~cm}$
77. (A)

$\because \mathrm{PA} \times \mathrm{PB}=\mathrm{PD} \times \mathrm{PC}$
$x(x+6)=5 \times 8$
$x^{2}+6 x-40=0$
$(x+10)(x+4)=0$
$x=4,-10$
We take $x=4$

$$
\therefore \mathrm{AP}=4 \mathrm{~cm}
$$

78. (B)

$$
\begin{aligned}
\angle \mathrm{BCD} & =\angle \mathrm{DAB}=65^{\circ} \\
\therefore \angle \mathrm{BDC} & =180^{\circ}-\left(65^{\circ}+45^{\circ}\right)=70^{\circ}
\end{aligned}
$$

79. (D) Let x be substracted:-

$$
\begin{aligned}
\frac{15-x}{19-x} & =\frac{3}{4} \\
60-4 x & =57-3 x \\
x & =3
\end{aligned}
$$

80. (D) No. of persons in management

$$
=12000 \times \frac{14}{100}=1680
$$

No. of females in management

$$
=1680 \times \frac{20}{100}=336
$$

No. of persons in engineering

$$
=12000 \times \frac{16}{100}=1920
$$

No. of females in engineering

$$
=1920 \times \frac{50}{100}=960
$$

$$
\begin{aligned}
\text { Required } \% & =\frac{960 \times 100}{336} \% \\
& =285.7 \% \\
& =286 \% \text { approx. }
\end{aligned}
$$

81. (C) Required difference

$$
\begin{aligned}
= & (792+960+858+750+1980+1344) \\
& -(648+960+462+2250+660+336) \\
= & 6684-5316 \\
= & 1368
\end{aligned}
$$

82. (D) Required ratio $=\frac{1980}{1344}=\frac{165}{112}=165: 112$
83. (B) Required ratio

$$
=\frac{792+750}{648+2250}=\frac{1542}{2898}=257: 483
$$

84. (A) Required percentage

$$
=\frac{3000 \times 100}{1320}=227 \%
$$

85. (B) $y=3$ and $y=3 x$

then $\mathrm{n}=1$
Then point O is equal to $(1,3)$ equation of a circle $=x_{1}^{2}+y_{1}^{2}=a^{2}$
Hence, radius of circle

$$
\begin{aligned}
a & =\sqrt{(1-0)^{2}+(3-3)^{2}} \\
a & =\sqrt{(1)^{2}+(0)^{2}} \\
& =1
\end{aligned}
$$

Hence, the circle of $(x-1)^{2}+(y-3)^{2}=1$

K D Campus Pvt. Ltd

86. (A) $x^{2}-3 x+2=0$
$x^{2}-2 x-x+2=0$
$x(x-2)-1(x-2)=0$
$(x-1)(x-2)=0$
$x=1$
$x=2$
Hence, $\left(x-\frac{1}{x}\right)=\left(2-\frac{1}{2}\right)$

$$
=\frac{4-1}{2}
$$

$$
=\frac{3}{2}
$$

$$
=1 \frac{1}{2}
$$

87. (A) Required number of diagonals
$=100_{C_{2}}-100=\frac{100!}{98!2!}-100$
$=\frac{100 \times 99}{2}-100=4950-100=4850$
88. (B) $A_{1}=900$
$A_{2}=600$
$\mathrm{R}_{1}=10 \%$
$R_{2}=4 \%$

$$
\begin{aligned}
\therefore \quad \mathrm{T} & =\frac{A_{1}-A_{2}}{A_{2} R_{1}-A_{1} R_{2}} \times 100 \\
& =\frac{900-600}{600 \times 10-900 \times 4} \times 100 \\
& =\frac{300 \times 100}{2400}=12.5 \text { years }
\end{aligned}
$$

89. (A) Since $, x_{1}, x_{2}, x_{3}$ and y_{1}, y_{2}, y_{3} are in G.P. whose common ratio is r .
$\therefore \quad x_{2}=x_{1} r, x_{3}=x_{1} r^{2}$ and $y_{2}=y_{1} r, y_{3}=y_{1} r^{2}$
Slope of $\mathrm{PQ}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1} r-y_{1}}{x_{1} r-x_{1}}=\frac{y_{1}}{x_{1}}$
Slope of $\mathrm{PR}=\frac{y_{3}-y_{1}}{x_{3}-x_{1}}=\frac{y_{1} r^{2}-y_{1}}{x_{1} r^{2}-x_{1}}=\frac{y_{1}}{x_{1}} \therefore$
Slope of $\mathrm{PQ}=$ Slope of PR
$\Rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear.
90. (C) Let $y=m x$ be the equation of tangent (s) from the origin to the circle $(x-7)^{2}+(y+1)^{2}=5^{2}$, there $r=\mathrm{d}$
$\Rightarrow \frac{7 m-(-1)}{\sqrt{m^{2}+1}}=+5$
\Rightarrow Let m_{1} and m_{2} be the slopes of the tangents. Since, $m_{1}: m_{2}=$ product of the roots $=\frac{12}{12}=-1$
\therefore The angle between two tangents is $\frac{\pi}{2}$.
91. (C) Let $x=$ no. of benches So, ATQ,

$$
6(x+1)=7 x-5
$$

or $\quad 7 x-6 x=6+5$
$\Rightarrow x=11$
So, No. of students $=6(x+1)=72$
92. (C) Let the C.P. of each article by ₹ 1

For 15 books, the tradesman gives 1 book free.
$\therefore \quad$ C.P. of 15 book $=₹ 16$
$\therefore \quad$ S.P. of 15 book
$=16 \times \frac{135}{100}=₹ \frac{108}{5}$
$\therefore \quad$ S.P. of 1 book

$$
=\frac{108}{5 \times 15}=₹ \frac{36}{25}
$$

Now, 96% of marked price $=\frac{36}{25}$
$\therefore \quad$ Marked price $=\frac{36 \times 100}{25 \times 96}=\frac{3}{2}=₹ 1.5$
\therefore The required \% increase

$$
=\frac{0.5}{1} \times 100=50 \%
$$

93. (B) Let the weigth of Mr. Gupta and Mrs. Gupta be $7 x \mathrm{~kg}$ and $8 x \mathrm{~kg}$ respectively.
Then, $7 x+8 x=120$
$15 x=120$
$\Rightarrow x=\frac{120}{15}=8 \mathrm{~kg}$
Initially weight of Mr. Gupta $=7 x=7 \times 8=56 \mathrm{~kg}$ and initially weight of Mrs.
Gupta $=8 x=8 \times 8=64 \mathrm{~kg}$
After taking dieting, weight of Mr. Gupta
$=56-6=50 \mathrm{~kg}$ and ratio of their weight $=\frac{50}{60}$
$=5: 6$
So, Mrs. Gupta reduced weight $=64-60=4 \mathrm{~kg}$. 94.(B) Let the annual instalment be ₹ x

Amount of ₹ 100 after 4 years

$$
=₹\left(100+\frac{100 \times 5 \times 4}{100}\right)=₹ 120
$$

\therefore Present value of ₹ 120 due after 4 yrs $=₹ 100$
\therefore Present value of $₹ x$ due after $4 \mathrm{yrs}=₹ \frac{5}{6} x$ Similarly present value of $₹ x$ due after 3 years $=₹ \frac{20}{23} x$
Present value of $₹ x$ due after $2 \mathrm{yrs}=₹ \frac{10}{11} x$ and Present value of $₹ x$ due after $1 \mathrm{yr}=₹ \frac{20}{21} x$
$\therefore \quad \frac{5}{6} x+\frac{20}{23} x+\frac{10}{11} x+\frac{20}{21} x=6450$
$\Rightarrow \quad x=₹ 1800$ (approx.)

K D Campus Pvt. Ltd

95. (D) $\mathrm{A} \times 1.2 \times 0.75=\mathrm{B} \times 1.25 \times 0.8$
$\Rightarrow A \times 0.9=B \times 1$
$\Rightarrow \frac{\mathrm{B}}{\mathrm{A}}=\frac{0.9}{1}=\frac{9}{10}$
$\therefore B: A=9: 10$
96. (B) Let the amount invested by P and Q are $₹ 5 x$ and ₹ $6 x$ respectively
Ratio of investment of P, Q and R
$=5 x \times 12: 6 x \times 12: 6 x \times 6=5: 6: 3$
Total profit $=₹ 98000$
$=20 \%$ of total investment
\Rightarrow Total investment $=₹ \frac{98000 \times 100}{20}$

$$
=₹ 490000
$$

So, R's investment $=\frac{3}{14} \times 490000$

$$
\text { = ₹ } 105000
$$

97. (D) Let L and $\mathrm{S}=$ length and speed of the train

So, $\quad L=(S-6) \mathrm{kmph} \times 5 \mathrm{sec}$ \qquad (i)
$\& \quad \mathrm{~L}=(\mathrm{S}-7.5) \mathrm{kmph} \times 5.5 \mathrm{sec}$ \qquad (ii)

From (i) and (ii)
$(\mathrm{S}-6) \mathrm{kmph} \times 5 \mathrm{sec}=(\mathrm{S}-7.5) \mathrm{kmph} \times 5.5 \mathrm{sec}$ or, $5 \mathrm{~S}-30=5.5 \mathrm{~S}-41.25$
So, $\mathrm{S}=22.5 \mathrm{kmph}$
So, L $=22.92 \mathrm{~m}$
98. (D) Let length of rectangle $=x$ and breadth of rectangle $=y$ $(x+2)(y-2)=x y+20$
$\Rightarrow x y+2 y-2 x-4=x y+20$
$\Rightarrow 2 \mathrm{y}-2 \mathrm{x}=24$
$\Rightarrow y-x=12$
Also, $\quad(x-2)(y-1)=x y-37$
$\Rightarrow x y-x-2 y+2=x y-37$
$\Rightarrow 2 y+x=39$
On solving Eqs. (i) and (ii),
we get $x=5$ and $y=17$
Hence, area of rectangle $=x y$

$$
=5 \times 17=85 \text { sq m }
$$

99.(B) Let the length of the smaller line segment $=x \mathrm{~cm}$.
\therefore The length of larger line segment $=(x+2) \mathrm{cm}$ According to the question.
$(x+2)^{2}-x^{2}=32$
$\Rightarrow x^{2}+4 x+4-x^{2}=32$
$\Rightarrow 4 x=32-4=28$
$\Rightarrow x=\frac{28}{4}=7$
\therefore The required length $=x+2=7+2=9 \mathrm{~cm}$.
100. (D) Possible combinations \rightarrow (3 ladies $\& 2$ men) or, (4 ladies $\& 1 \mathrm{man}$) or (5 ladies $\&$ no man)
So, Required number of ways
$={ }^{5} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{5} \times{ }^{8} \mathrm{C}_{0}$
$=280+40+1=321$

SSC MAINS-04 (ANSWER KEY)

1.	(A)	16.	(D)	31.	(B)	46.	(B)	61.	(A)	76.	(C)	91.	(C)
2.	(B)	17.	(D)	32.	(D)	47.	(D)	62.	(D)	77.	(A)	92.	(C)
3.	(B)	18.	(C)	33.	(B)	48.	(A)	63.	(B)	78.	(B)	93.	(B)
4.	(B)	19.	(A)	34.	(A)	49.	(D)	64.	(B)	79.	(D)	94.	(B)
5.	(D)	20.	(A)	35.	(C)	50.	(D)	65.	(A)	80.	(D)	95.	(D)
6.	(C)	21.	(C)	36.	(B)	51.	(A)	66.	(B)	81.	(C)	96.	(B)
7.	(B)	22.	(A)	37.	(B)	52.	(A)	67.	(B)	82.	(D)	97.	(D)
8.	(A)	23.	(C)	38.	(A)	53.	(A)	68.	(B)	83.	(B)	98.	(D)
9.	(A)	24.	(B)	39.	(D)	54.	(B)	69.	(D)	84.	(A)	99.	(B)
10.	(C)	25.	(D)	40.	(C)	55.	(B)	70.	(C)	85.	(B)	100.	(D)
11.	(B)	26.	(C)	41.	(C)	56.	(C)	71.	(B)	86.	(A)		
12.	(C)	27.	(A)	42.	(A)	57.	(C)	72.	(C)	87.	(A)		
13.	(A)	28.	(D)	43.	(B)	58.	(A)	73.	(B)	88.	(B)		
14.	(C)	29.	(A)	44.	(B)	59.	(C)	74.	(B)	89.	(A)		
15.	(B)	30.	(B)	45.	(C)	60.	(D)	75.	(B)	90.	(C)		

Note: If your opinion differs regarding any answer please message the mock test and question no to 886030003

For any issues related to Result Processing, kindly contact us on 9313111777.

