SSC MAINS - 03 (SOLUTION)

1. (C) $\mathrm{OA}=\mathrm{OB} \Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OAB}=50^{\circ}$

In $\triangle \mathrm{OAB}$,
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$

$$
\begin{aligned}
50^{\circ}+50^{\circ}+\angle \mathrm{AOB} & =180^{\circ} \\
\angle \mathrm{AOB} & =80^{\circ} \\
\angle \mathrm{BOD} & =\left(180^{\circ}-80^{\circ}\right) \\
& =100^{\circ}
\end{aligned}
$$

2. (A) $\frac{\sin \theta-(\cos \theta-1)}{\sin \theta+(\cos \theta-1)}$
$=\frac{\sin \theta-(\cos \theta-1)}{\sin \theta+(\cos \theta-1)} \times \frac{\sin \theta-(\cos \theta-1)}{\sin \theta-(\cos \theta-1)}$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta-2 \cos \theta+1-2 \sin \theta(\cos \theta-1)}{\sin ^{2} \theta-(\cos \theta-1)^{2}}$
$=\frac{2-2 \cos \theta-2 \sin \theta \cos \theta+2 \sin \theta}{\sin ^{2} \theta-\cos ^{2} \theta+2 \cos \theta-1}$
$=\frac{2(1-\cos \theta)-2 \sin \theta(1-\cos \theta)}{1-\cos ^{2} \theta-\cos ^{2} \theta+2 \cos \theta-1}=\frac{2(1+\sin \theta)}{2 \cos \theta}$
$=\frac{1+\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}+\tan \theta=\sec \theta+\tan \theta$
3. (A) $\quad \cos x+\cos y=2$
$\because \quad \cos x \leq 1 \Rightarrow \cos x=1, \cos y=1$
$\Rightarrow x=y=0$
4. (B) Since the side opposite to a greater angle is larger.

$$
\angle \mathrm{C}>\angle \mathrm{B} \Rightarrow \mathrm{AB}>\mathrm{AC}
$$

5. (C)
6. (A) When A runs 800 m , B runs 760 m

When A runs 200 m , B runs

$$
=\frac{760}{800} \times 200=190 \mathrm{~m}
$$

Again, When B runs 500 m, C runs 495 m
\therefore When B runs 190 m , C runs

$$
=\frac{495}{500} \times 190=188.1 \mathrm{~m}
$$

Hence, A will beat C by $200-188.1$
$=11.9 \mathrm{~m}$ in a race of 200 m .
7. (B)

$$
\begin{aligned}
x-\frac{1}{x} & =4 \\
\left(x+\frac{1}{x}\right)^{2} & =\left(x-\frac{1}{x}\right)^{2}+4=(4)^{2}+4=20 \\
x+\frac{1}{x} & =\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

8. (B) $\angle \mathrm{BAD}=70^{\circ}$
$\angle \mathrm{BDA}=180^{\circ}-\left(70^{\circ}+50^{\circ}\right)=60^{\circ}$
9.

(B) $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{CD}} \Rightarrow \frac{5}{\mathrm{AC}}=\frac{2}{3} \Rightarrow \mathrm{AC}=7.5 \mathrm{~cm}$
10. (C) $\mathrm{CD}|\mid \mathrm{AB}, \mathrm{BD}$ is transversal
$\therefore \quad \angle \mathrm{CDB}=\angle \mathrm{DBA}=45^{\circ}$
$\mathrm{AD} \| \mathrm{BC}$
$\angle \mathrm{DAB}+\angle \mathrm{ABC}=180^{\circ}$
$\angle \mathrm{ABC}=180^{\circ}-75^{\circ}=105^{\circ}$
$\angle \mathrm{CBD}=105^{\circ}-45^{\circ}=60^{\circ}$
11. (C) $\angle \mathrm{ACB}=\angle \mathrm{ADB}=32^{\circ}$
$\angle \mathrm{ACD}=\angle \mathrm{ABD}=50^{\circ}$

$$
x=\angle \mathrm{BCD}=\angle \mathrm{ACB}+\angle \mathrm{ACD}=82^{\circ}
$$

12. (B) Time taken $=\frac{\text { Distance }}{\text { Speed }}=\frac{\frac{4}{5}}{45}$ hours

$$
=\frac{4 \times 60 \times 60}{5 \times 45}=64 \text { seconds }
$$

13. (A) Total time $=\frac{600}{80}+\frac{800}{40}+\frac{500}{400}+\frac{100}{50}$

$$
=\frac{123}{4} \text { hours }
$$

Average speed $=\frac{600+800+500+100}{\frac{123}{4}}$ $=\frac{2000 \times 4}{123}=65 \frac{5}{123} \mathrm{kms} . / \mathrm{hr}$
14. (C) Required time $=\frac{100}{30 \times 1000}$ hours

$$
=\frac{100 \times 60 \times 60}{30 \times 1000}=12 \mathrm{sec} .
$$

15. (B) Required time $=\frac{1200 \mathrm{mt}}{(5+10) \mathrm{mt} / \mathrm{min}}=80 \mathrm{~min}$.
16. (A) $(1)^{2}+1=2$
$(2)^{2}+1=5$
$(5)^{2}+1=26$
$(26)^{2}+1=677$
Therefore the next number of the series will be 677 .
17. (D) ? $=125+216+343+512+729+1000$

$$
=2925
$$

18. (B) $?=9+16+25+36+49+64+81+100$

$$
=380
$$

19. (B) Let the speed of stream $=x \mathrm{~km} / \mathrm{hr}$

$$
\text { Rate upstream }=\frac{9}{2}-x
$$

Rate downstream $=\frac{9}{2}+x$
Then,

$$
\frac{2}{\frac{9}{2}+x}=\frac{1}{\frac{9}{2}-x}
$$

K D Campus Pvt. Ltd

$$
\begin{aligned}
9-2 x & =\frac{9}{2}+x \\
3 x & =9-\frac{9}{2}=\frac{9}{2} \\
x & =\frac{9}{2 \times 3}=\frac{3}{2}=1.5 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

20. (D) Area of shaded part $=\pi(4)^{2}-\frac{1}{2}(8)^{2}$

$$
=(16 \pi-32) \mathrm{cm}^{2}
$$

21. (C) $2(20+20) \times h=2 \times 20 \times 20$

$$
h=\frac{2 \times 20 \times 20}{2 \times 40}=10 \mathrm{~m}
$$

22. (C) Area of space in between the circles

$$
\begin{aligned}
& =\pi(5)^{2}-\pi(4)^{2}=\pi(25-16) \\
& =\frac{198}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

23. (B) $\frac{\text { First volume of cylinder }}{\text { Second volume of cylinder }}$

$$
\begin{aligned}
& =\frac{\text { First radius }}{\text { Second radius }} \times \frac{\text { First height }}{\text { Second height }} \\
& \frac{3850}{\text { Second volume }}=\left(\frac{1}{2}\right)^{2} \times \frac{2}{1}
\end{aligned}
$$

Hence second volume $=\frac{1}{2} \times 3850$

$$
=1925 \text { cube } \mathrm{mm}
$$

24. (D) Let number of balls $=n$

Volume of n balls = Volume of cone

$$
\begin{aligned}
n \times \frac{4}{3} \pi r^{3} & =\frac{1}{3} \pi \mathrm{R}^{3} h \\
n \times \frac{4}{3}(2)^{3} & =\frac{1}{3} \times(20)^{2} \times 10 \\
n & =125
\end{aligned}
$$

25. (B) Suman's share $=\frac{2}{5} \times 150=₹ 60$
26. (C) Part filled by A and B in 1 hr

$$
=\frac{1}{12}+\frac{1}{15}=\frac{5+4}{60}=\frac{3}{20}
$$

Part filled by A and C in the next 1 hr

$$
=\frac{1}{12}+\frac{1}{20}=\frac{5+3}{60}=\frac{2}{15}
$$

Part filled in $2 \mathrm{hr}=\frac{3}{20}+\frac{2}{15}=\frac{9+8}{60}$

$$
=\frac{17}{60}
$$

Part filled in $6 \mathrm{hr}=\frac{51}{60}$
Remaining part $=1-\frac{51}{60}=\frac{9}{60}=\frac{3}{20}$
This will be filled by $(\mathrm{A}+\mathrm{B})$ in 1 hour.
27. (D) $(A+B)$'s 2 day work $=2 \frac{1}{12}+\frac{1}{18}=\frac{10}{36}$

Time taken by B to complete $\frac{26}{36}$ part of work $=\frac{26}{36} \times 18=13$ days
28. (D) Let principal $=₹ x$

Then amount $=\frac{8 x}{5}$
Then simple interest $=\left(\frac{8 x}{5}-x\right)=\frac{3 x}{5}$ time $=5$ years
Then,
29. (D)

$$
\begin{aligned}
\text { Rate } & =\left(100 \times \frac{3 x}{5}-\frac{1}{x} \times \frac{1}{5}\right) \% \\
& =12 \% \text { annual }
\end{aligned}
$$

Rate $\%=\left[\left(\frac{y}{x}\right)^{\frac{1}{n}}-1\right] \times 100$
Here, $\quad n=3-2=1, x=578.40$ and $y=614.55$
$\left[\left(\frac{614.55}{578.40}\right)^{\frac{1}{3-2}}-1\right] \times 100$
$=\frac{(61455-57840)}{57840} \times 100=6 \frac{1}{4} \%$
30. (B) Cost price of watch $=₹ 198$

Profit $=10 \%$, cost price $=$?

$$
\text { Cost price }=\frac{\text { S.P. } \times 100}{100+\text { Profit }}
$$

Hence, C.P. $=\frac{198 \times 100}{100+10}=₹ 180$
31. (A) In these type of question always loss is obtained.

$$
\text { Loss } \%=\left(\frac{b}{10}\right)^{2}
$$

Here, $b=10$
Hence loss percentage $=\left(\frac{10}{10}\right)^{2}=1$
32. (C) Equivalent discount

$$
\begin{aligned}
& =100-\frac{(100-35)(100-10)}{100} \\
& \quad=100-\frac{65 \times 90}{100}=41.5 \%
\end{aligned}
$$

S.P. $=$ M.P. $\times(100-$ discount $) \%$

Hence

$$
\begin{aligned}
1170 & =\text { M.P. } \times(100-41.5) \% \\
& =\text { M.P. } \times 58.5 \% \\
\text { M.P. } & =\frac{1170 \times 100}{58.5}=₹ 2000
\end{aligned}
$$

K D Campus Pvt. Ltd

33. (A) C.P. of article

$$
=\frac{x}{\frac{(100+\mathrm{A})}{100} \times \frac{(100+\mathrm{B})}{100}-\frac{(100+\mathrm{C})}{100}}
$$

Here $x=-780, \mathrm{~A}=-15, \mathrm{~b}=20, \mathrm{C}=15$
Hence C.P. of article

$$
\begin{aligned}
& =\frac{-7.80}{\frac{(100-15)}{100} \times \frac{(100+20)}{100}-\frac{(100+15)}{100}} \\
& =₹ 60
\end{aligned}
$$

34. (C) Let the amount be divided in three parts

A, B and C. Now, according to question,
$\frac{1}{2} \mathrm{~A}=\frac{1}{2} \mathrm{~B}=\frac{1}{2} \mathrm{C}=\mathrm{K}$
Then, $\mathrm{A}=2 \mathrm{~K}, \mathrm{~B}=3 \mathrm{~K}, \mathrm{C}=6 \mathrm{~K}$
Then, $\mathrm{A}: \mathrm{B}: \mathrm{C}=2 \mathrm{~K}: 3 \mathrm{~K}: 6 \mathrm{~K}$

$$
=2: 3: 6
$$

Hence share of $A=₹\left(3740 \times \frac{2}{11}\right)$

$$
\text { = ₹ } 680
$$

$$
\text { Share of } B=₹\left(3740 \times \frac{3}{11}\right)
$$

$$
\text { = ₹ } 1020
$$

$$
\begin{aligned}
\text { Share of } C & =[3740-(680+1020)] \\
& =₹ 2040
\end{aligned}
$$

$$
\text { = ₹ } 2040
$$

35. (B) Let initially capital of A and B is ₹ $9 x$ and $₹ 8 x$ respectively and B's capital is for y months in the business.
Then ratio of A and B's capital

$$
\begin{aligned}
& =(9 x \times 8: 8 x \times y): 9: y \\
\frac{9}{y} & =\frac{3}{4} \\
y & =12 \text { months }
\end{aligned}
$$

36. (D) Let total profit = ₹ 100

A's share after given to charity

$$
=₹\left(91 \times \frac{4}{7}\right)=₹ 52
$$

Hence, $\frac{\text { A's share }}{\text { Total profit }}=₹ \frac{52}{100}$
Hence, total profit $=₹\left(1196 \times \frac{100}{62}\right)$

$$
\text { = ₹ } 2300
$$

37. (D) 3 women $=2$ men

Similarly 21 women = 14 men
Men

$$
\left.\begin{array}{c}
14: 15 \\
6: 8
\end{array}\right\}:: 21 \times x
$$

$$
x=\frac{15 \times 8 \times 21}{14 \times 6}=30
$$

38. (C)

Area of road $\mathrm{AB}=500 \times 10=5000 \mathrm{~m}^{2}$
Area of road $\mathrm{CD}=400 \times 10=4000 \mathrm{~m}^{2}$
Area of EFGH $=10 \times 10=100 \mathrm{~m}^{2}$
Hence area of both roads

$$
\begin{aligned}
& =5000+4000-100 \\
& =8900 \mathrm{~m}^{2}
\end{aligned}
$$

39. (A)

Pair of alternate angles.
40. (B) $\angle \mathrm{ABP}=100^{\circ}$ (given in figure)
$\angle \mathrm{ABP}=\angle \mathrm{AER}=100^{\circ}$
$\angle \mathrm{AER}=\angle \mathrm{CDR}$
Thus,
$y=80^{\circ}\left(\because \angle \mathrm{CDR}+\angle \mathrm{CDS}=180^{\circ}\right)$
41. (A) $\angle \mathrm{CEF}=\angle \mathrm{ABF}=70^{\circ}$
$\angle \mathrm{FED}=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle \mathrm{EDF}+\angle \mathrm{DFE}+\angle \mathrm{FED}=180^{\circ}$
$\angle \mathrm{FDE}=180^{\circ}-\left(110^{\circ}+20^{\circ}\right)=50^{\circ}$
42. (B)

Let $\mathrm{BC}=x$ then $\mathrm{CA}=9 x$
$\therefore \quad \mathrm{AB}=10 x$
ATQ,

$$
\begin{aligned}
\angle \mathrm{ADC} & =\angle \mathrm{CDB}=\theta \\
\text { and } \mathrm{BD} & =15 \mathrm{~m}
\end{aligned}
$$

In $\triangle B D C$,

$$
\tan \theta=\frac{\mathrm{BC}}{\mathrm{BD}}=\frac{x}{15}
$$

In $\triangle \mathrm{ADB}$,

$$
\begin{array}{rlrl}
\tan 2 \theta & =\frac{\mathrm{AB}}{\mathrm{BD}}=\frac{10 x}{15} \\
\text { or, } \frac{2 \tan \theta}{1-\tan ^{2} \theta} & =\frac{10 x}{15}=\frac{2 x}{3} \\
\frac{\frac{2 x}{3}}{\frac{1-x^{2}}{225}} & =\frac{2 x}{3} \\
\therefore \quad & x & =6 \sqrt{5} \mathrm{~m}
\end{array}
$$

The height of the pole is $6 \sqrt{5} \mathrm{~m}$.
43. (A) $\sqrt[3]{4 x-7}-5=0$

Cube on both sides

$$
\begin{aligned}
4 x-7 & =125 \\
4 x & =132 \\
x & =33
\end{aligned}
$$

K D Campus Pvt. Ltd

44. (B) $\left(\frac{1}{4}\right)^{-2}-3 \times(8)^{\frac{2}{3}} \times(4)^{0}+\left(\frac{9}{16}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =\left[\left(\frac{1}{2}\right)^{2}\right]^{-2}-3\left[\left((2)^{3}\right)^{\frac{2}{3}} \times 1\right]+\left[\left(\frac{3}{4}\right)^{2}\right]^{\frac{-1}{2}} \\
& =\left(\frac{1}{2}\right)^{-4}-3 \times 2^{2}+\left(\frac{3}{4}\right)^{-1} \\
& =2^{4}-3 \times 2^{2}+\frac{4}{3}=16-12+\frac{4}{3} \\
& =\frac{48-36+4}{3}=\frac{16}{3}=5 \frac{1}{3}
\end{aligned}
$$

45. (A)
$x=\sqrt{7 \sqrt{7 \sqrt{7 \ldots \ldots \ldots \infty}}}$
Squaring both sides
$x^{2}=7 \sqrt{7 \sqrt{7 \sqrt{7 \ldots \ldots \infty}}}$
$x^{2}=7 x \Rightarrow x^{2}-7 x=0$
$x(x-7)=0$
$x=0$ or 7 but $x \neq 0$
46. (C) Let $x=2^{a}$ and $y=3^{b}$

Then,

$$
\begin{align*}
x+y & =17 \tag{i}\\
4 x-3 y & =5
\end{align*}
$$

From equation (i) $\times 3+$ eq. (ii)

$$
\begin{aligned}
3 x+3 y & =51 \\
4 x-3 y & =5 \\
\hline 7 x & =56 \\
\therefore \quad x & =\frac{56}{7}=8
\end{aligned}
$$

From eq. (i)

$$
\begin{aligned}
y & =17-x=17-8=9 \\
x & =8 \text { and } y=9 \\
x & =2^{a}=8 \\
2^{a} & =3 \Rightarrow a=3 \\
y & =3^{b}=9 \\
3^{b} & =3^{2} \Rightarrow b=2
\end{aligned}
$$

And
47. (A) $\frac{1}{1-a+a^{2}}-\frac{1}{1+a^{2}+a}-\frac{2 a}{1+a^{2}+a^{4}}$

$$
=\frac{1+a^{2}+a-\left(1+a^{2}-a\right)}{\left(1+a^{2}-a\right)\left(1+a^{2}+a\right)}-\frac{2 a}{\left(1+a^{4}+a^{2}\right)}
$$

$$
=\frac{2 a}{1+a^{4}+2 a^{2}-a^{2}}-\frac{2 a}{1+a^{4}+a^{2}}
$$

$$
=\frac{2 a}{1+a^{4}+a^{2}}-\frac{2 a}{1+a^{4}+a^{2}}=0
$$

48. (D) $x+\frac{1}{x}=1$

$$
\begin{aligned}
& \frac{1}{x}=\frac{y}{y-1}, y+\frac{1}{z}=1 \text { and } z=\frac{1}{1-y} \\
& z+\frac{1}{x}=\frac{1}{1-y}+\frac{y}{y-1}=\frac{1-y}{1-y}=1
\end{aligned}
$$

49. (B)

$$
\begin{aligned}
& 2 x-\frac{1}{2 x}=6 \\
& x-\frac{1}{4 x}=3(\text { on divided by } 2) \\
& x^{2}+\frac{1}{16 x^{2}}-2 \times x \times \frac{1}{4 x}=9
\end{aligned}
$$

On squaring

$$
x^{2}+\frac{1}{16 x^{2}}=9+\frac{1}{2}=\frac{19}{2}
$$

50. (B) $a+\frac{1}{a}+2=0$

$$
\begin{aligned}
a^{2}+1+2 a & =0 \\
(a+1)^{2} & =0 \\
a & =-1 \\
a^{37} & =(-1)^{37}=-1-1=-2
\end{aligned}
$$

51. (B) Let $0.03=x$

$$
\begin{aligned}
0.003 & =\frac{x}{10} \\
0.21 & =y \Rightarrow 0.021=\frac{y}{10}
\end{aligned}
$$

and $0.065=z=0.0065=\frac{z}{10}$

$$
\begin{aligned}
& \sqrt{\frac{x^{2}+y^{2}+z^{2}}{\left(\frac{x}{10}\right)^{2}+\left(\frac{y}{10}\right)^{2}+\left(\frac{z}{10}\right)^{2}}} \\
&=\sqrt{100 \frac{x^{2}+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}} \\
&= \sqrt{100} \\
&= 10
\end{aligned}
$$

52. (B) HCF of two number $=27$

$$
\begin{aligned}
27 x+27 y & =216 \\
x+y & =\frac{216}{27}=8
\end{aligned}
$$

Possible pair $=(1,7)(3,5)$
53. (B)

$$
5^{\sqrt{x}}+12^{\sqrt{x}}=13^{\sqrt{x}}
$$

We know that

$$
\begin{array}{rlrl}
5^{2}+12^{2} & =13^{2} \\
\therefore & \sqrt{x} & =2 \Rightarrow x=2^{2}=4
\end{array}
$$

54. (D)
55. (D) Required percentage $=\frac{20 \times 100}{100+20}$

$$
=16 \frac{2}{3} \%
$$

56. (D) $\mathrm{A}: \mathrm{D}=\frac{\mathrm{A}}{\mathrm{D}}=\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}} \times \frac{\mathrm{C}}{\mathrm{D}}$

$$
=\frac{3}{4} \times \frac{5}{7} \times \frac{8}{9}=10: 21
$$

K D Campus Pvt. Ltd

57. (A) Let x be the height of the tower
$\mathrm{AB}=60 \mathrm{~m}, \mathrm{BD}=y \mathrm{~m}$

In $\triangle \mathrm{ABD}$,

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{BD}} & =\tan 60^{\circ} \Rightarrow \frac{60}{y}=\sqrt{3} \\
y & =\frac{60}{\sqrt{3}}
\end{align*}
$$

In $\triangle \mathrm{AEC}$,

$$
\begin{aligned}
\frac{\mathrm{AE}}{\mathrm{EC}} & =\tan 30^{\circ} \\
\frac{\mathrm{AE}}{\mathrm{EC}} & =\frac{1}{\sqrt{3}} \Rightarrow \frac{\mathrm{AE}}{y}=\frac{1}{\sqrt{3}} \\
\frac{\mathrm{AE}}{\frac{60}{\sqrt{3}}} & =\frac{1}{\sqrt{3}} \\
\therefore \quad \mathrm{AE} & =\frac{1}{\sqrt{3}} \times \frac{60}{\sqrt{3}}=20 \mathrm{~m} \\
\therefore \quad x & =\mathrm{AB}-\mathrm{AE} \\
& =60-20=40 \mathrm{~m}
\end{aligned}
$$

58. (D) Let the breadth of rectangle hall $=x$ length $=(x+5)$
Area of hall $=$ Length \times Breadth $750=(x+5) x$

$$
x^{2}+5 x-750=0
$$

$$
(x-25)(x+30)=0
$$

$$
x=25
$$

Length of hall $=x-5=25+5=30 \mathrm{~m}$
59. (C) $\frac{115 \times(115+1)}{2}-\frac{44 \times(44+1)}{2}$
$=\frac{115 \times 116}{2}-\frac{44 \times 45}{2}=6670-990=5680$
60. (C) $(100-9) \%=105$
$(100+30) \%=\frac{105}{91} \times 130=150$
61. (C) Cost price of 6 pencils $=₹ 4$

Selling price of 4 pencils $=₹ 6$
\therefore Selling price of 6 pencils $=\frac{6}{4} \times 6=₹ 9$
Gain percentage $=\frac{9-4}{4} \times 100=125$
62. (B)
63. (C) $\frac{2 a-5 b}{3 a+6 b}=\frac{4}{7}$
$14 a-35 b=12 a+14 b$ $2 a=59 b$

$$
\frac{a}{b}=\frac{59}{2}
$$

$$
a: b=59: 2
$$

64. (D) Let the radius of new ball $=\mathrm{R} \mathrm{cm}$

$$
\begin{aligned}
\therefore \quad \frac{4}{3} \pi \mathrm{R}^{3} & =\frac{4}{3} \pi\left(3^{3}+4^{3}+5^{3}\right) \\
\mathrm{R}^{3} & =24+64+125 \\
& =216 \\
\mathrm{R} & =\sqrt[3]{6 \times 6 \times 6} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

65. (B) Let the third number be 100
$\therefore \quad$ First number $=120$
Second number $=120$

$$
\begin{aligned}
\text { Required ratio } & =\frac{120}{150}=\frac{4}{5} \\
& =4: 5
\end{aligned}
$$

66. (B) Let the incomes of A and B be $₹ 4 x$ and $₹ 3 x$ respectively and their expense be $₹ 3 y$ and $₹ 2 y$ respectively.

Saving of $A=4 x-3 y$
Saving of $B=3 x-2 y$
The saving is each is same

$$
4 x-3 y=3 x-2 y
$$

$$
x=y
$$

But $\quad 4 x-3 y=600$

$$
x=600
$$

Income of $\mathrm{A}=600 \times 4=2400$
67. (C) Total mark obtained by 5 student

$$
=50 \times 5=250
$$

Correct total mark $=250-84+48$

$$
=214
$$

$$
\text { Average }=\frac{214}{5}=42.8
$$

68. (C) Population $=5000\left(1+\frac{4}{100}\right)^{2}$

$$
\begin{aligned}
& =5000 \times \frac{26}{25} \times \frac{26}{25} \\
& =54080
\end{aligned}
$$

69. (B) Let the present age of A and B be $4 x$ and $5 x$ year respectively.

$$
\begin{aligned}
\frac{4 x+5}{5 x+5} & =\frac{5}{6} \\
25 x+25 & =24 x+30 \\
x & =30-25=5
\end{aligned}
$$

A's present age $=4 x=4 \times 5=20$ years

K D Campus Pvt. Ltd

70. (C) In 40 litre mixture,

Quantity of milk $=\frac{7}{8} \times 40=35$ litre
Quantity of water $=5$ litre
Let x litres of water be mixed

$$
\begin{aligned}
\frac{35}{5+x} & =\frac{3}{1} \\
3 x+15 & =35 \\
3 x & =20 \\
x & =\frac{20}{3}=6 \frac{2}{3}
\end{aligned}
$$

71. (B) Let the radius of the circle be $r \mathrm{~cm}$ Then,

$$
\begin{aligned}
2 \pi r-2 r & =30 \\
2 r \times \frac{22-7}{7} & =30 \\
r & =7 \mathrm{~cm}
\end{aligned}
$$

72. (B) 2(A + B + C)'s 1 day's work

$$
\begin{aligned}
& =\frac{1}{12}+\frac{1}{20}+\frac{1}{15} \\
& =\frac{12}{60}=\frac{1}{5}
\end{aligned}
$$

$(A+B+C)$'s 1 day's work $=\frac{1}{10}$
($\mathrm{A}+\mathrm{B}+\mathrm{C}$)'s together can complete the work in 10 days.
73. (C) Diagonal of the cube $=4 \sqrt{3}$

Let the edge of cube be $x \mathrm{~cm}$

$$
\begin{aligned}
\sqrt{3} x & =4 \sqrt{3} \\
x & =4
\end{aligned}
$$

Volume of cube $=(4)^{3}=64$
74. (A) Number of boys $=\frac{13}{13+11} \times 504=273$

Number of girls $=504-273=231$
3 girls are admitted
\therefore Required ratio $=273: 234=7: 6$
75. (B) Sum of 4 new number

$$
\begin{aligned}
& =50 \times 104-100 \times 44 \\
& =800 \\
\text { Average } & =\frac{800}{4}=200
\end{aligned}
$$

76. (B)
77. (A) Distance cover in one one revolution
= circumference of wheel

$$
=2 \pi r=2 \times \frac{22}{7} \times 20
$$

Total distance $=176$ meter $=17600 \mathrm{~cm}$
\therefore Number of resolution $=\frac{17600}{2 \times \frac{22}{7} \times 20}=140$
78. (D) Let the side of square is increase by $x \%$ it area is increased by $\left(2 x+\frac{x^{2}}{100}\right) \%$

$$
x=25 \%
$$

$$
\left(2 \times 25+\frac{25 \times 25}{100}\right) \%=56.25 \%
$$

79. (C) Amount

$$
\begin{aligned}
& =P\left(1+\frac{\mathrm{R}_{1}}{100}\right)\left(1+\frac{\mathrm{R}_{2}}{100}\right)\left(1+\frac{\mathrm{R}_{3}}{100}\right) \\
& =10000\left(1+\frac{4}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right) \\
& =10000 \times \frac{26}{25} \times \frac{21}{20} \times \frac{53}{50} \\
& =₹ 11575.2
\end{aligned}
$$

\therefore Compound interest $=₹(11575.2-10000)$

$$
=₹ 1575.2
$$

80. (A) $2 \pi r=2 \times \frac{22}{7} \times 70=440 \mathrm{~cm}=4.4 \mathrm{~m}$

$$
\begin{aligned}
\frac{66000}{60} & =1100 \text { in one minute } \\
\frac{1100}{44} & =250 \text { revolutions }
\end{aligned}
$$

81. (D) Number of bullets $=\frac{\pi \times 6 \times 6 \times 28}{\frac{4}{3} \pi \times \frac{15}{2} \times \frac{15}{2} \times \frac{15}{2}}$

$$
=1792
$$

82. (C) $\frac{136+144+2 x}{4}=133$

$$
\begin{aligned}
\frac{280+2 x}{4} & =133 \\
x & =126
\end{aligned}
$$

83. (B) 84%

$$
\begin{aligned}
-\frac{16 \%}{68 \%} & =476 \\
100 \% & =\frac{476}{68} \times 100=700
\end{aligned}
$$

84. (C)

Let number of be a and b

$$
\begin{aligned}
a+b & =45 \\
a-b & =5 \\
a & =25 \text { and } b=20 \\
\text { LCM } & =100
\end{aligned}
$$

K D Campus Pvt. Ltd

85. (B)

Let radius of the circle is ' r ' units $\mathrm{OP}=(1-r), \mathrm{OA}=(1+r)$ and $\mathrm{AP}=1$ In $\triangle \mathrm{AOP}$,

$$
\begin{aligned}
\mathrm{OA}^{2} & =\mathrm{AP}^{2}+\mathrm{OP}^{2} \\
(1+r)^{2} & =1^{2}+(1-r)^{2} \\
r & =\frac{1}{4} \text { units }
\end{aligned}
$$

Area of smaller circle $=\pi\left(\frac{1}{4}\right)^{2}$

$$
=\frac{\pi}{16} \text { square units }
$$

Sum of the area of the quarter circles

$$
=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2} \text { square units }
$$

Area of shaded region $=2-\left(\frac{\pi}{16}+\frac{\pi}{2}\right)$

$$
\begin{aligned}
\left(2-\frac{9}{10} \pi\right) & \cong 0.23 \text { square units } \\
& =\frac{13}{56} \text { square units }
\end{aligned}
$$

86. (A)

Let area of each shaded portion $=x$ and area of each unshaded portion $=y$
Total area of square $=(8)^{2}=64 \mathrm{~cm}^{2}$
$\therefore \quad 4(x+y)=64$
$x+y=16$
Again in a semicircle,

$$
\begin{align*}
\mathrm{AOB} & =x+y+x \tag{i}\\
& =\frac{1}{2} \pi \times(4)^{2} \\
2 x+y & =8 \pi \tag{ii}
\end{align*}
$$

From (i) and (ii) we get

$$
\begin{aligned}
x & =8 \pi-16 \\
& =8(\pi-2)
\end{aligned}
$$

Total area of shaded region

$$
=32(\pi-2) \mathrm{cm}^{2}
$$

87. (B) ATQ,

$$
\begin{align*}
\mathrm{M}-\mathrm{D} & =31 \tag{i}\\
\mathrm{~F}-\mathrm{S} & =30 \tag{ii}\\
\mathrm{~F}-\mathrm{D} & =34 \tag{iii}
\end{align*}
$$

By equation (i) and (iii)

$$
\begin{aligned}
\mathrm{F}-\mathrm{M} & =3 \\
\mathrm{~F} & =3+\mathrm{M}
\end{aligned}
$$

Put this value in (ii)

$$
\begin{array}{r}
3+\mathrm{M}-\mathrm{S}=30 \\
\mathrm{M}-\mathrm{S}=27
\end{array}
$$

88. (D) CP of 24 items $=\mathrm{SP}$ of 18 items

$$
\frac{\mathrm{CP}}{\mathrm{SP}}=\frac{3}{4}
$$

Profit percentage $=\frac{4-3}{3} \times 100$

$$
=33.33 \%
$$

89. (B) Maximum value of $\cos \theta=1$
90. (D)
91. (C) Income in year $2011=₹ 375$ crore Income in year 2012 = ₹ 475 crore

$$
\begin{aligned}
\text { Percentage increase } & =\left(\frac{100}{375} \times 100\right) \\
& =26.6 \% \\
& =26 \% \text { (approx. })
\end{aligned}
$$

92. (D) Required percentage

$$
\begin{aligned}
& 2007=\frac{800}{450} \times 100=66.66 \% \\
& 2008=\frac{500}{400} \times 100=62.5 \% \\
& 2009=\frac{225}{350} \times 100=64.29 \% \\
& 2010=\frac{375}{425} \times 100=88.24 \% \\
& 2011=\frac{175}{375} \times 100=46.6 \% \\
& 2012=\frac{400}{475} \times 100=84.21 \%
\end{aligned}
$$

93. (B) Average expenditure

$$
\begin{aligned}
& =\frac{300+250+225+375+175+400}{6} \\
& =₹ 287.5 \text { crore }
\end{aligned}
$$

It is clear that the expenditure in year 2007, 2010 and 2012 is more than the average expenditure.
94. (D) Expenditure in $2008=₹ 250$ crore Hence,
Expenditure in 2009 = ₹ 200 crore Percentage decrease in expenditure

$$
=\frac{50}{250} \times 100=20 \%
$$

(C)	11. (C)	21. (C)	31. (A)	41. (A)	51. (B)	61. (C)	71. (B)	81. (C)	91.	(C)
2. (A)	12. (B)	22. (C)	32. (C)	42. (B)	52. (B)	62. (B)	72. (B)	82. (C)	92	(D)
3. (A)	13. (A)	23. (B)	33. (A)	43. (A)	53. (B)	63. (C)	73. (C)	83. (B)	93	(B)
4. (B)	14. (C)	24. (D)	34. (C)	44. (B)	54. (D)	64. (D)	74. (A)	84. (C)	94	(D)
5. (C)	15. (B)	25. (B)	35. (B)	45. (A)	55. (D)	65. (B)	75. (B)	85. (B)	95	(C)
6. (A)	16. (A)	26. (C)	36. (D)	46. (C)	56. (D)	66. (B)	76. (B)	86. (A)	96	(D)
7. (B)	17. (D)	27. (D)	37. (D)	47. (A)	57. (A)	67. (C)	77. (A)	87. (B)	97.	(C)
8. (B)	18. (B)	28. (D)	38. (C)	48. (D)	58. (D)	68. (C)	78. (D)	88. (D)	98.	(C)
9. (B)	19. (B)	29. (D)	39. (A)	49. (B)	59. (C)	69. (B)	79. (C)	89. (B)	99.	(D)
10. (C)	20. (D)	30. (B)	40. (B)	50. (B)	60. (C)	70. (C)	80. (A)	90. (D)	00.	(A)

Note : If your opinion differs regarding any answer please message the mock test and question no to 886030003

For any issues related to Result Processing, kindly contact us on 9313111777.

