SSC MAINS (MATHS) MOCK TEST-2 (SOLUTION)

1. (C)
2. (A) Unit place of $3762 \times 4725 \times 8719 \times 6743$
$=$ Unit place of $2 \times 5 \times 9 \times 3=0$
3. (D)

$$
\begin{aligned}
(-8 a b 02) \div 286 & =-307 \\
-8 a b 02 & =-307 \times 286 \\
8 a b 02 & =87802 \\
\text { So, } \quad a=7 \text { and } b & =8 \\
a+b & =7+8=15
\end{aligned}
$$

4. (C) Required measure of container
$=$ HCF of 1938, 1102 and 9367
= 19 l
5. (D) Required number
$=($ HCF of 9,10 and 12$) \times \mathrm{N}$
$=180 \times \mathrm{N}=53 \mathrm{Q}+10$
So, $\quad N=3 \Rightarrow 180 \times 3=540$
6. (A)

$=\frac{47}{48}$
7. (B) $\frac{\sqrt{\sqrt{578 \times 2888}}}{\sqrt{9.5 \times 8.5}}=\frac{\sqrt{1292}}{\sqrt{9.5 \times 8.5}}=\sqrt{\frac{1292}{9.5 \times 8.5}}$

$$
=\sqrt{16}=4
$$

8. (C) Average weight of class $=\frac{36 \times 45+24 \times 38}{36+24}$

$$
=42.2 \mathrm{~kg}
$$

9. (D) A 45

Let total units of work $=360$ units
Units of work done by B in 23 days

$$
=23 \times 9=207 \text { units }
$$

Then, units of work done by A and B together $=360-207=153$ units

A did the work for $=\frac{153}{17}=9$ days
10. (A) Let cost price $=₹ x$

Selling price $=₹ x\left(x \times \frac{4}{3}\right)=₹ \frac{4}{3} x$
Market price $=₹\left(\frac{4}{3} x \times \frac{10}{9}\right)=₹ \frac{40}{27} x$
New Selling price $=₹\left(\frac{40}{27} x \times \frac{1}{2}\right)=₹ \frac{20}{27} x$
Loss percentage $=\frac{x-\frac{20}{27} x}{x} \times 100$

$$
=\frac{7}{27} \times 100=26 \%
$$

11. (D) Let cost price of a bicycle $=₹ 80 x$

$$
\begin{aligned}
\text { Marked Price } & =₹\left(\frac{5}{4} \times 80 x\right) \\
& =₹ 100 x
\end{aligned}
$$

Selling price at cash sale $=₹\left(\frac{90}{100} \times 100 x\right)$

$$
\begin{aligned}
& =₹ 90 x \\
\text { Profit } & =₹(90 x-80 x) \\
& =₹ 10 x
\end{aligned}
$$

Selling price at credit sale $=₹\left(\frac{95}{100} \times 100 x\right)$

$$
\begin{aligned}
& =₹ 95 x \\
\text { Profit } & =₹(95 x-80 x) \\
& =15 x
\end{aligned}
$$

ATQ,

$$
\begin{aligned}
10 x \times \frac{3}{4} \times 40+15 x \times \frac{1}{4} \times 40 & =20250 \\
300 x+150 x & =20250 \\
x & =\frac{20250}{450}=45
\end{aligned}
$$

Cost price of a bicycle $=₹(80 \times 45)=₹ 3600$
12. (B) Let the speed of a cyclist $=x \mathrm{kms} / \mathrm{hr}$ Then, the speed of the motorist $=(x+5) \mathrm{kms} / \mathrm{hr}$ ATQ,

$$
\begin{gathered}
\frac{9}{x+15}+\frac{30}{60}+\frac{9}{(x+15) \times \frac{4}{5}}=\frac{18}{x}-\frac{15}{60} \\
\frac{9 \times 4}{4(x+15)}+\frac{9 \times 5}{4(x+15)}=\frac{72}{4 x}-\frac{1}{4}-\frac{2}{4} \\
\frac{81}{(x+15)}=\frac{72-3 x}{x} \\
81 x=72 x-3 x^{2}+1080-45 x \\
30 x-12 x-360=0 \\
(x+30)(x-12)=0 \\
x=12 \\
\text { Speed of cyclist }=12 \mathrm{kms} / \mathrm{hr}
\end{gathered}
$$

13. (A) Positions of trains P, Q and R at t_{1} time

Position of trains at 11:30 a.m.
$P \rightarrow \frac{210}{60} \times 25=87.5 \mathrm{kms}$ from X
$\mathrm{Q} \rightarrow \frac{99}{60} \times 25=33 \mathrm{kms}$ from X
$\mathrm{R} \rightarrow 0 \mathrm{kms}$ from Y
Let after t minutes, P be at equal distance from Q and R
ATQ,
$(87.5-33)+\frac{t}{60} \times(25-60)$

$$
=(220-87.5)-\frac{t}{60} \times(25+30)
$$

$\frac{t}{60} \times 5+\frac{t}{60} \times 55=132.5-54.5$

$$
\frac{60 t}{60}=78 \Rightarrow t=78
$$

78 minutes after 11 : 30 a.m. i.e. at 12:48 p.m., trains Q and R will be equidistance from train P.
14. (D) Amount of loan = ₹ 10000

Total number of installments $=15$
Amount of one installment $=₹ 800$
Amount paid in installments $=₹(800 \times 15)$

$$
=₹ 12000
$$

Simple interest $=₹(12000-10000)=2000$
Rate of interest $=\frac{2000 \times 12}{15 \times 100 \times 1}=16 \%$
15. (D) ATQ,

Loan amount : Total interest $=5: 2$

$$
\text { Rate } \times \text { time }
$$

Loan amount : Rate $\times 5=5: 2$

$$
\text { Loan amount }: \text { Rate }=5: \frac{2}{5}
$$

$$
=25: 2
$$

16. (D) ATQ,

Time taken by air + Time taken by train $=4$ hours
Time taken by air $+\frac{1}{5}$ th time taken by train $=2$ hours
So, Time taken by train

$$
=2 \times \frac{5}{4}=2 \frac{1}{2} \text { hours }
$$

Time taken by air $=1 \frac{1}{2}$ hours

$$
\text { Speed by air }=\frac{400}{2}
$$

$$
=200 \mathrm{kms} / \mathrm{hr}
$$

Distance travelled by air $=200 \times 1 \frac{1}{2}$

$$
=300 \mathrm{kms}
$$

So, distance travelled by train $=400-300$
17. (D)

$$
\begin{aligned}
\angle \mathrm{ACD} & =\angle \mathrm{ABD}=20^{\circ} \\
\angle \mathrm{BEC} & =\angle \mathrm{BAC}+\angle \mathrm{ABD} \\
130^{\circ} & =\angle \mathrm{BAC}+20^{\circ} \\
\angle \mathrm{BAC} & =110^{\circ}
\end{aligned}
$$

18. (C)

ATQ,
$\mathrm{OA}=(\sqrt{3}+1) \mathrm{cm}, \quad \mathrm{OC}=(\sqrt{3}-1) \mathrm{cm}$
$\mathrm{AC}=\sqrt{(\mathrm{OA})^{2}-(\mathrm{OB})^{2}}$

$$
=\sqrt{(\sqrt{3}+1)^{2}-(\sqrt{3}+1)^{2}}
$$

$$
=\sqrt{(\sqrt{3}+1+\sqrt{3}-1)(\sqrt{3}+1-\sqrt{3}+1)}
$$

$$
=\sqrt{2 \sqrt{3} \times 2}=2 \times 3^{\frac{1}{4}}
$$

$A B=2 \times A B=4 \times 3^{\frac{1}{4}}$
19. (D)
20. (A) ATQ,

$$
\begin{aligned}
4 \pi r^{2} & =616 \\
r^{2} & =616 \times \frac{7}{22 \times 4}=49
\end{aligned}
$$

Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
=\frac{4}{3} \times \frac{22}{7} \times(7)^{3}=\frac{4312}{3} \text { cubic } \mathrm{cms}
$$

21. (A) Let length $=l$, breadth $=b$ and height $=h$ ATQ,

$$
\begin{aligned}
l b h & =720 \\
l b & =72 \\
h & =10 \mathrm{cms} \\
\text { So, } \quad 2(l b+b h+l h) & =484 \\
72+10 b+10 l & =242 \\
b+l & =17 \\
l-b & =\sqrt{(17)^{2}-4 \times 72}=1 \\
l & =\frac{17+1}{2}=9 \mathrm{cms} \\
b & =\frac{17-1}{2}=8 \mathrm{cms}
\end{aligned}
$$

22. (D) Geometric mean

$$
\begin{aligned}
(32 \times 4 \times 8 \times x \times 2)^{\frac{1}{5}} & =8 \\
32 \times 4 \times 8 \times x \times 2 & =8 \times 8 \times 8 \times 8 \times 8 \\
x & =16
\end{aligned}
$$

23. (C)

$$
\mathrm{BC}=h \mathrm{~m}
$$

Let
In $\triangle B C D$

$$
\begin{aligned}
\frac{\mathrm{BD}}{\mathrm{BC}} & =\cot 45^{\circ} \\
\mathrm{AB}+21 & =h \\
\mathrm{AB} & =h-21
\end{aligned}
$$

In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{BC}} & =\cot 60^{\circ} \\
h-21 & =h \times \frac{1}{\sqrt{3}} \\
\sqrt{3} h-21 \sqrt{3} & =h \\
h(\sqrt{3}-1) & =21 \sqrt{3} \\
h & =\frac{21 \times 1.732}{1.732-1}=49.77 \\
& =50
\end{aligned}
$$

24. (C)
25. (C) $f(x)=36\left(3 x^{4}+5 x^{3}-2 x^{2}\right)$

$$
=36 x^{2}(3 x-1)(x+2)
$$

$g(x)=9\left(6 x^{3}+4 x^{2}-2 x\right)$

$$
=18 x(3 x-1)(x+1)
$$

$h(x)=54\left(27 x^{4}-x\right)$

$$
=54 x(3 x-1)\left(9 x^{2}+1+3 x\right)
$$

H.C.F. of $f(x), g(x)$ and $h(x)=18(3 x-1)$
26. (C) Let total amount of money $=₹ x$ ATQ,

$$
\begin{aligned}
& x-\left(x \times \frac{20}{100}+x \times \frac{80}{100} \times \frac{25}{100}\right)=480 \\
& x-\frac{x}{5}-\frac{x}{5}=480 \\
& \frac{3 x}{5}=480 \Rightarrow x=800
\end{aligned}
$$

Total money the man had $=₹ 800$
27. (C) Average percentage profit

$$
\begin{aligned}
& =\frac{3 \times 10+3 \times 0-2 \times 5}{8} \\
& =2.5 \%
\end{aligned}
$$

28. (A) Radius of folded cardboard (in shape of cone)

$$
\begin{aligned}
& =\frac{2 \times \pi \times 30 \times 144^{\circ}}{2 \pi \times 360^{\circ}} \\
& =12 \mathrm{cms}
\end{aligned}
$$

29. (C)

$$
\begin{aligned}
x+\frac{1}{x} & =a \\
x^{3}+\frac{1}{x^{3}} & =a^{3}-3 a \\
x^{2}+\frac{1}{x^{2}} & =a^{2}-2 \\
x^{3}+x^{2}+\frac{1}{x^{3}}+\frac{1}{x^{2}} & =a^{3}+a^{2}-3 a-2
\end{aligned}
$$

30. (D)

In $\triangle \mathrm{BCE}$

In $\triangle \mathrm{ADE}$

$$
\frac{\mathrm{BC}}{\mathrm{CE}}=\cot 45^{\circ} \Rightarrow \mathrm{BC}=200 \mathrm{~m}
$$

$$
\frac{\mathrm{ED}}{\mathrm{AD}}=\tan 30^{\circ} \Rightarrow \mathrm{ED}=\frac{200 \sqrt{3}}{3}
$$

$$
\mathrm{AB}=\mathrm{CD}=\mathrm{CE}-\mathrm{ED}=200-\frac{200 \sqrt{3}}{3}
$$

$$
=200\left(\frac{3-\sqrt{3}}{3}\right)=\frac{200(9-3)}{3(3+\sqrt{3})}
$$

31. (C) ATQ,

$$
=\frac{400}{3+\sqrt{3}} \mathrm{~m}
$$

$$
\begin{aligned}
\frac{x}{y} & =\frac{2}{3} \Rightarrow 3 x=2 y \\
\frac{x+9}{y+9} & =\frac{3}{4} \\
4 x+36 & =3 y+27=4.5 x+27 \\
4.5 x-4 x & =36-27 \\
x & =18 \\
y & =\frac{3 \times 18}{2}=27 \\
x y & =18 \times 27=486
\end{aligned}
$$

So,
32. (D) $2 x-1=0 \Rightarrow x=\frac{1}{2}$

$$
\begin{aligned}
& f(x)=4 x^{4}-(k-1) x^{3}+k x^{2}-6 x+1 \\
& f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{4}-(k-1)\left(\frac{1}{2}\right)^{3}+k\left(\frac{1}{2}\right)^{2} \\
&-6\left(\frac{1}{2}\right)+1 \\
& \Rightarrow \frac{1}{4}-\frac{k-1}{8}+\frac{k}{4}-3+1=0 \\
& \frac{-k+1+2 k}{8}=\frac{7}{4} \\
& k+1=14 \Rightarrow k=13
\end{aligned}
$$

33. (D)

$$
\begin{aligned}
196 x^{4}=x^{6} & \Rightarrow x^{2}=196 \\
x=14 & \Rightarrow x^{3}=14 x^{2}
\end{aligned}
$$

34. (B) Area of wall $=1225 \times \frac{100}{250}=350 \mathrm{~m}^{2}$ ATQ,

$$
\frac{x \times 7 x}{2}=350 \Rightarrow x=10 \mathrm{~m}
$$

length of the base $=7 \times 10=70 \mathrm{~m}$
35. (A) Area of larger base $=\mathrm{Q}=\pi r_{1}{ }^{2}$

Area of smaller base $=\mathrm{P}=\pi r_{2}{ }^{2}$

$$
r_{1}-r_{2}=\sqrt{\frac{\mathrm{Q}}{\pi}}-\sqrt{\frac{\mathrm{P}}{\pi}}=\frac{\sqrt{\mathrm{Q}}-\sqrt{\mathrm{P}}}{\sqrt{\pi}}
$$

36. (B)
37. (B) Length of diagonal $=\sqrt{3} l$

$$
=\sqrt{3}(729)^{\frac{1}{3}}=9 \sqrt{3} \mathrm{~cm}
$$

38. (D) Area of rectangle $=2 a^{2}$
breadth $=a$

$$
\text { length }=\frac{2 a^{2}}{a}=2 a
$$

Diagonal of rectangle $=\sqrt{2 a^{2}+a^{2}}=\sqrt{5} a$
ATQ, Area of square $=5 a^{2}$
39. (D)

Time taken by $B=\frac{120}{1}=120$ minutes
40. (C) Required sum $=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}=\frac{20}{75}=\frac{4}{5}$
41. (A) Ratio of complementary angles $=1: 5$

Then, difference of complementary angles

$$
=(5-1)=4
$$

If sum of ratio is 6 then require angle $=4$
Sum of ratio is 90° then require angle

$$
=\frac{4}{6} \times 90^{\circ}=60^{\circ}
$$

42. (A)

In $\triangle \mathrm{OCD}$

$$
\mathrm{OC}=\mathrm{CD}=\mathrm{OD}
$$

So, $\quad \angle \mathrm{COD}=60^{\circ}$
Similarly in $\triangle \mathrm{OAC}$ and $\triangle \mathrm{OBD}$

$$
\text { and } \quad \angle \mathrm{OBD}=60^{\circ}
$$

$$
\begin{aligned}
\angle \mathrm{CAO} & =\angle \mathrm{AOC}=60^{\circ} \\
\angle \mathrm{OBD} & =60^{\circ} \\
\angle \mathrm{APB} & =180^{\circ}-\angle \mathrm{PAB}-\angle \mathrm{PBO} \\
& =60^{\circ}
\end{aligned}
$$

43. (B) $3^{x+y}=81 \Rightarrow 3^{x+y}=3^{4}$

$$
x+y=4
$$

$81^{x-y}=3 \Rightarrow 81^{x-y}=(3)^{\frac{1}{4}}$

$$
x-y=\frac{1}{4}
$$

By equation (i) and (ii)

$$
x=\left(4+\frac{1}{4}\right) \times \frac{1}{2}=\frac{17}{8}
$$

44. (C) Let the numbers be $98 a$ and $98 b$

Then, $\quad 98 a b=2352 \Rightarrow a b=24$
So, possible value of a and b is $(1,24)$ and $(3,8)$ As options
Sum of numbers $=98(a+b)=98(3+8)$
45. (B) A

$$
=1078
$$

Time required by $A+B=\frac{12}{4}=3$ days
46. (C) Price at which onions are sold $=₹ 15$ per kg

$$
\begin{aligned}
\text { Cost price for onions } & =\frac{10 \times 1+15 \times 1}{1+1} \\
& =12.5 \text { per } \mathrm{kg} \\
\text { Profit percentage } & =\frac{15-12.5}{12.5} \times 100 \\
& =20 \%
\end{aligned}
$$

47. (B) ATQ,

$$
\begin{aligned}
&(2 \mathrm{M}+1 \mathrm{~W}) \times 14=(2 \mathrm{M}+4 \mathrm{~W}) \times 8 \\
& 28 \mathrm{M}+14 \mathrm{~W}=16 \mathrm{M}+32 \mathrm{~W} \\
& 12 \mathrm{M}=18 \mathrm{~W} \\
& 2 \mathrm{M}=3 \mathrm{~W} \\
& \text { Wages of a man }=₹ 90
\end{aligned}
$$

So, wages of a woman $=90 \times \frac{2}{3}=₹ 60$
48. (B) Speed

So, actual distance $=\frac{30}{1} \times 2=60 \mathrm{kms}$
Time at which man start cycling

$$
=\frac{60}{1}=6 \text { hours i.e. } 7 \text { a.m. }
$$

If he reaches at 12 noon, then speed of man

$$
=\frac{60}{(12-7)}=12 \mathrm{kms} / \mathrm{hr}
$$

49. (B) Area of circle $=$ Area of triangle
$=\sqrt{\frac{7+24+25}{2} \times(28-7)(28-24)(28-25)}$
$=\sqrt{28 \times 21 \times 4 \times 3}=84 \mathrm{~cm}^{2}$
095552888
50. (C) Rise in level of field

Volume of sand
$=\overline{\text { Area of field }-2 \times \text { base area of hemisphere }}$

$$
=\frac{\frac{4}{3} \times \frac{22}{7} \times(2)^{3}}{22 \times 10-2 \times \frac{22}{7} \times(2)^{2}}=\frac{22(32) \times 7}{21 \times 22(70-8)}=\frac{16}{93}
$$

51. (A) Required number

$$
\begin{aligned}
& =10.5 \times 6+11.4 \times 6-11 \times 10.9 \\
& =11.5
\end{aligned}
$$

52. (B) ATQ,

Milk used in first year $=\frac{4080}{7.50}=544$ litres
Milk used in second year $=\frac{4080}{8}=510$ litres
Milk used in third year $=\frac{4080}{8.5}=480$ litres
Average price of milk $=\frac{4080 \times 3}{544+510+480}$

$$
=\frac{12240}{1534}=₹ 7.98
$$

53. (D) Let third number $=4 a$

Second number $=2 a$
First number $=a$
ATQ,

$$
\begin{aligned}
4 a+2 a+a & =42 \times 3 \\
a & =18
\end{aligned}
$$

Then, difference between largest and smallest number $=3 \times 18=54$
54. (A) 5 years ago, average age of P, Q and R
$=25$ years
7 years ago, average age of Q and R

$$
=20 \text { years }
$$

Present age of $R=(25+5) \times 3-(20+7) \times 2$

$$
=36 \text { years }
$$

55. (D) 4 years ago, average age of husband and wife $=27$ years
At present, average age of husband, wife and child = 21 years

$$
\begin{aligned}
\text { So, Age of child } & =21 \times 3-(27+4) \times 2 \\
& =1 \text { year }
\end{aligned}
$$

56. (B) Let average age of a player $=x$ ATQ,

$$
\begin{aligned}
& 11 \times x-(17+20)+(a+b)=11\left(x-\frac{2}{12}\right) \\
& 11 x-37+(a+b)=11 x-\frac{11}{6} \\
& a+b=37-\frac{11}{6}=\frac{211}{6}
\end{aligned}
$$

Average age of two players $=\frac{a+b}{2}=\frac{211}{6 \times 2}$

$$
=17 \text { years } 7 \text { months }
$$

57. (B) Total age of class of 15 students

$$
=30 \times 15=450 \text { years }
$$

Total age of class of 14 students

$$
=450-20=430 \text { years }
$$

Total age of class of 16 students

$$
=31 \times 15=465 \text { years }
$$

Age of two new students $=465-430$

$$
=35 \text { years }
$$

ATQ,
Age of younger newcomer $=\frac{35-5}{2}=15$ years
58. (C) A:B $=4: 9$
$\begin{array}{ll}\mathrm{A}: \mathrm{C} & =2: 3 \\ \mathrm{~A}: \mathrm{B}: \mathrm{C} & =4: 9: 6\end{array}$
$(A+B):(A+C)=(4+9):(4+6)$

$$
=13: 10
$$

59. (B) Salaries of A, B and C = A : B : C

Expenditure of A, B and C

$$
\begin{aligned}
& =\frac{20}{100} A: \frac{15}{100} B: \frac{25}{100} C \\
& =4 A: 3 B: 5 C
\end{aligned}
$$

ATQ,

$$
\begin{aligned}
4 \mathrm{~A}: 3 \mathrm{~B}: 5 \mathrm{C} & =8: 9: 20 \\
\mathrm{~A}: \mathrm{B}: \mathrm{C} & =2: 3: 4
\end{aligned}
$$

Salary of $A=\frac{2}{2+3+4} \times 72000=₹ 16000$
60. (B) Let ratio of pair of black and brown socks

$$
=4: x
$$

Ratio of price of black and brown socks

$$
=2: 1
$$

Cost of black and brown socks $=8+x$
If number of pair interchanged then cost of socks $=2 x+4$
ATQ,

$$
\begin{aligned}
(8+x) \times 1.5 & =2 x+4 \\
0.5 x & =8 \\
x & =16
\end{aligned}
$$

Ratio of black and brown socks $=4: 16$

$$
=1: 4
$$

61. (A)

Sulphuric: water acid

Container) ${ }_{1}$	3	$2)_{\times 6} \Rightarrow$	18:12
Container) ${ }_{2}$	7	3) $)_{\times 3} \Rightarrow$	21:9
Container) ${ }_{3}$	11	4) ${ }_{\times 2} \Rightarrow$	22:8

Ratio of sulphuric acid to water $=61: 29$
62. (B)

For first 4 months
For next 4 months
For last 4 months

\mathbf{A}	$:$	\mathbf{B}	$:$
\mathbf{C}			
50000×4	$:$	45000×4	$:$
25000×4	$:$	45000×4	$:$
25000×4	$:$	22500×4	$:$
400000	$:$	450000	$:$

Required ratio $=40: 45: 28$
63. (D) ATQ,

Percentage of students playing both game

$$
=(40+50)-(100-18)=8 \%
$$

64. (D) ATQ,

Percentage of students passed in both the subjects $=60+70-(100-20)=50 \%$
So, total number of candidates passed

$$
=\frac{100}{50} \times 2500=5000
$$

65. (D)
66. (A)

If person gets profit of 20%, selling price

$$
=200 \times \frac{120}{100}=₹ 240
$$

Toffees sold in ₹ $240=198$
So, toffees sold in ₹ $10=\frac{198}{240} \times 10=8.25$
67. (C) ATQ,

Seller loses $=900 \times\left[16-\left(8+8-\frac{8 \times 8}{100}\right)\right] \times \frac{1}{100}$

$$
=900 \times \frac{64}{10000}=₹ 5.76
$$

68. (A) Cost price of one chair

$$
=₹\left(600 \times \frac{85}{100} \times \frac{80}{100}\right)=₹ 408
$$

Expense of transportation $=₹ 28$
Actual cost price $=₹ 436$
Selling price $=₹ 545$
Profit percentage $=\frac{545-436}{436} \times 100=25 \%$
69. (C)

$$
\text { Principal = ₹ } 800
$$

Amount after 3 years = ₹ 956
Amount if rate of interest is increased by 4\%

$$
=956+\frac{800 \times 4 \times 3}{100}=₹ 1052
$$

70. (C) ATQ,

Percent of interest paid

$$
=6 \times 3+9 \times 5+13 \times 3=102 \%
$$

So, money borrowed $=\frac{8160}{102} \times 100=₹ 8000$
71. (B) $\quad(\mathrm{A}+\mathrm{C}): \mathrm{B} \quad 3: 1)_{\times 3}=9: 3$

$$
(\mathrm{A}+\mathrm{B}): \mathrm{C} \quad 2: 1)_{\times 4}=8: 4
$$

Let total units of work $=12 \times 10=120$ units
Units of work done by A, B and C

$$
=5,3 \text { and } 4
$$

So, time required by $A=\frac{120}{5}=24$ days

$$
=₹ 612
$$

72. (A) Marked price of table $=₹ 800$

Cost price of table $=800 \times \frac{90}{100} \times \frac{85}{100}$

$$
\text { = ₹ } 612
$$

Expense on transportation $=₹ 13$
Actual cost price $=₹(612+13)=₹ 625$
Selling price $=₹ 875$
$\begin{aligned} \text { Profit percentage } & =\frac{875-625}{625} \times 100 \\ & =40 \%\end{aligned}$
73.(A) $\tan 15^{\circ}=2-\sqrt{3}$
$\tan 15^{\circ} \cdot \cot 75^{\circ}+\tan 75^{\circ} \cdot \cot 15^{\circ}$
$=\tan ^{2} 15^{\circ}+\tan ^{2} 75^{\circ}$
$=(2-\sqrt{3})^{2}+\left(\frac{1}{2-\sqrt{3}}\right)^{2}$
$=(2-\sqrt{3})^{2}+(2+\sqrt{3})^{2}$

$$
=2\left(2^{2}+\sqrt{3}^{2}\right)=2 \times 7=14
$$

74. (A) $2 \operatorname{cosec}^{2} 23^{\circ} \cot ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}-\sin ^{2} 67^{\circ}$
$-2 \cot ^{2} 67^{\circ}$
$=2 \times \frac{1}{\sin ^{2} 23^{\circ}} \times \frac{\cos ^{2} 67^{\circ}}{\sin ^{2} 67^{\circ}}-\left(\sin ^{2} 23^{\circ}+\sin ^{2} 67^{\circ}\right)$
$-2 \cot ^{2} 67^{\circ}$
$=2 \times \frac{1}{\cos ^{2} 67^{\circ}} \times \frac{\cos ^{2} 67^{\circ}}{\sin ^{2} 67^{\circ}}-(1)-2 \cot ^{2} 67^{\circ}$
$=2 \operatorname{cosec}^{2} 67^{\circ}-2 \cot ^{2} 67^{\circ}-1$
$=2\left(\operatorname{cosec}^{2} 67^{\circ}-\cot ^{2} 67^{\circ}\right)-1$
$=2-1=1$
75. (B) $\sin 3 \theta=\cos \left(\theta-2^{\circ}\right)=\sin \left(90^{\circ}-\theta+2^{\circ}\right)$
$\sin 3 \theta=\sin \left(92^{\circ}-\theta\right)$
$3 \theta=92^{\circ}-\theta$
$4 \theta=92^{\circ} \Rightarrow \theta=23^{\circ}$
76. (C) ATQ,
$(x+5)^{\circ}+(2 x-5)^{\circ}+(3 x+5)^{\circ}=180^{\circ}$

$$
(6 x+7)^{\circ}=180^{\circ}
$$

$$
x=\frac{180-7}{6}=29
$$

77. (B) ATQ,

$$
A B=A C-B C=(36-24) m=12 m
$$

$$
\mathrm{AE}=\frac{\mathrm{AB}}{\sin 60^{\circ}}=\frac{12}{\sqrt{3}} \times 2=8 \sqrt{3} \mathrm{~m}
$$

78. (C)

In $\triangle \mathrm{BCD}$

$$
\frac{\mathrm{BC}}{\mathrm{BD}}=\cot 60^{\circ} \Rightarrow \mathrm{BC}=\frac{1}{\sqrt{3}} \times 5000 \mathrm{~m}
$$

In $\triangle \mathrm{ABC}$

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 45^{\circ} \Rightarrow \mathrm{AB}=\frac{1}{\sqrt{3}} \times 5000 \mathrm{~m}
$$

Then, distance between aeroplanes (AD)
$=\left(5000-\frac{5000}{\sqrt{3}}\right)=5000\left(1-\frac{1}{\sqrt{3}}\right) \mathrm{m}$
79. (C)

If
then,

So, $\quad \triangle \mathrm{APQ} \cong \triangle \mathrm{ABC}$

$$
P Q \| B C
$$

So, $\triangle \mathrm{APQ}$ is an equilateral triangle

$$
\text { Area of } \triangle \mathrm{APQ}=\frac{\sqrt{3}}{4} \times(5)^{2}=\frac{25 \sqrt{3}}{4} \mathrm{~cm}^{2}
$$

80. (B)

ATQ,

$$
\begin{aligned}
& (\mathrm{AB})^{2}=(\mathrm{AE})^{2}+(\mathrm{BE})^{2} \\
& (\mathrm{BC})^{2}=(\mathrm{BE})^{2}+(\mathrm{CE})^{2} \\
& (\mathrm{CD})^{2}=(\mathrm{CE})^{2}+(\mathrm{ED})^{2} \\
& (\mathrm{DA})^{2}=(\mathrm{DE})^{2}+(\mathrm{AE})^{2}
\end{aligned}
$$

So,

$$
(\mathrm{AB})^{2}+(\mathrm{CD})^{2}=\mathrm{BC}^{2}+\mathrm{DA}^{2}
$$

81. (C)

In $\triangle \mathrm{PQR}$

$$
\begin{aligned}
\mathrm{PR} & =\sqrt{3^{2}+4^{2}}=5 \mathrm{~cm} \\
r \text { (radius) } & =\frac{\mathrm{PR}}{2}=\frac{5}{2}=2.5 \mathrm{~cm}
\end{aligned}
$$

82. (B)

As given, P and Q are mid points of AB and BC.

So, $\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
X and Y are mid points of $A D$ and CD Then,

$$
\begin{gathered}
\mathrm{DX}=\frac{\mathrm{AD}}{2} \\
\mathrm{DY}=\frac{\mathrm{CD}}{2} \\
\mathrm{XY}=\mathrm{DX}+\mathrm{DY}=\frac{\mathrm{AD}}{2}+\frac{\mathrm{CD}}{2}=\frac{\mathrm{AC}}{2} \\
\text { So, } \mathrm{XY}=\mathrm{PQ} \text { and } \mathrm{XY} \| \mathrm{PQ} \\
\text { So, } \quad \mathrm{PX}: \mathrm{QY}=1: 1
\end{gathered}
$$

83. (B) ATQ,

Volume of prism $=$ Area of base \times Height

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \times 12 \times 20 \\
& =1200 \mathrm{~cm}^{3}
\end{aligned}
$$

Density of material $=1200 \times \frac{6}{1000}=7.2 \mathrm{~kg}$ 84. (D) ATQ,

Area of the rectangular plot $=a b=108 \mathrm{~m}^{2}$
Perimeter of the rectangular plot $=2(a+b)$ $=48 \mathrm{~m}$
So,

$$
\begin{aligned}
a-b & =\sqrt{(a+b)^{2}-4 a b}=\sqrt{(24)^{2}-4 \times 108} \\
& =\sqrt{576-432}=\sqrt{144}=12 \mathrm{~m}
\end{aligned}
$$

Dimension of plots are

$$
\begin{aligned}
& =\frac{24+12}{2} \mathrm{~m} \text { and } \frac{24-12}{2} \mathrm{~m} \\
& =18 \mathrm{~m} \text { and } 6 \mathrm{~m}
\end{aligned}
$$

85. (D) The water level will drop by
$=\frac{\text { Volume of water }}{\text { Area of base of cylinder }}$
$=\frac{11 \text { litres }}{\frac{22}{7} \times\left(\frac{35}{2}\right)^{2} \mathrm{~cm}^{2}}=\frac{11 \times 1000}{\frac{22}{7} \times\left(\frac{35}{2}\right)^{2}} \mathrm{~cm}$
$=\frac{80}{7} \mathrm{~cm}=11 \frac{3}{7} \mathrm{~cm}$
86. (C) Length of cube $=\mathrm{HCF}$ of 6,9 and $12=3$ Least possible number of cubes will be

$$
=\frac{6 \times 9 \times 12}{3 \times 3 \times 3}=24
$$

87. (B) Ratio of radii of cylinder and cone $=\sqrt{3}: \sqrt{2}$ Ratio of heights of cylinder and cone $=\sqrt{2}: \sqrt{3}$ Volume of cylinder and cone

$$
\begin{aligned}
& =\pi(\sqrt{3})^{2} \times \sqrt{2}: \frac{\pi}{3}(\sqrt{2})^{2} \sqrt{3} \\
& =3 \sqrt{3}: \sqrt{2}
\end{aligned}
$$

K D Campus Pvt. Ltd

88. (C) Area of required canvas $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 9.6 \times \sqrt{(9.6)^{2}+(2.8)^{2}} \\
& =\frac{22}{7} \times 9.6 \times 10 \\
& =301.7 \mathrm{~m}^{2}
\end{aligned}
$$

89. (D)

ATQ,

$$
\begin{aligned}
\mathrm{V}_{1}: \mathrm{V}_{2}: \mathrm{V}_{3} & =(1)^{3}:\left(2^{3}-1^{3}\right):\left(3^{3}-2^{3}\right) \\
& =1: 7: 19
\end{aligned}
$$

90. (B)

Required area $=\frac{\sqrt{3}}{4}(1+1)^{2}-\frac{60^{\circ} \times 3}{360^{\circ}}\left[\pi(1)^{2}\right]$ $=\left(\sqrt{3}-\frac{\pi}{2}\right) \mathrm{cm}^{2}$
91. (C) Number of horn produced in Nagpur plant

$$
=\frac{800000}{32} \times 3=75000
$$

92. (B) Required percentage $=\frac{28-25}{25} \times 100=12 \%$
93. (A) Required ratio $=3: 7$
94. (B) Required difference $=\frac{131250}{15} \times(28-20)$

$$
=70000
$$

95. (A) Required ratio $=30: 28$

$$
=15: 14
$$

96. (B) Required number $=\frac{4200}{2800}=1.5$
97. (A) Required percentage $=\frac{4200}{2100} \times 100$

$$
=200 \%
$$

98. (D)
99. (A) Required ratio $=3: 5$
100.(C)Average deficit

$$
\begin{aligned}
& \begin{array}{r}
2200+3100+2100+2800+2600 \\
+3600+4200+2600
\end{array} \\
= & \frac{2900}{}
\end{aligned}
$$

Required percentage $=\frac{3600}{2900} \times 100$

$$
=124.79 \%=125 \%
$$

SSC MAINS (MATHS) MOCK TEST-2 (ANSWER KEY)

(C)	11. (D)	21. (A)	31. (C)	41. (A)	51. (A)	61. (A)	71. (B)	81. (C)	91. (C)
2. (A)	12. (B)	22. (D)	32. (D)	42. (A)	52. (B)	62. (B)	72. (A)	82. (B)	92. (B)
3. (D)	13. (A)	23. (C)	33. (D)	43. (B)	53. (D)	63. (D)	73. (A)	83. (B)	93. (A)
4. (C)	14. (D)	24. (C)	34. (B)	44. (C)	54. (A)	64. (D)	74. (A)	84. (D)	94. (B)
5. (D)	15. (D)	25. (C)	35. (A)	45. (B)	55. (D)	65. (D)	75. (B)	85. (D)	95. (A)
6. (A)	16. (D)	26. (C)	36. (B)	46. (C)	56. (B)	66. (A)	76. (C)	86. (C)	96. (B)
7. (B)	17. (D)	27. (C)	37. (B)	47. (B)	57. (B)	67. (C)	77. (B)	87. (B)	97. (A)
8. (C)	18. (C)	28. (A)	38. (D)	48. (B)	58. (C)	68. (A)	78. (C)	88. (C)	98. (D)
9. (D)	19. (D)	29. (C)	39. (D)	49. (B)	59. (B)	69. (C)	79. (C)	89. (D)	99. (A)
10. (A)	20. (A)	30. (D)	40. (C)	50. (C)	60. (B)	70. (C)	80. (B)	90. (B)	100. (C)

Note : If your opinion differs regarding any answer please message the mock test and question no to 8860330003

For any issues related to Result Processing, kindly contact us on 9313111777.

