SSC MAINS (MATHS) MOCK TEST-1 (SOLUTION)

1. (B) Order of surds are 4, 3, 2. LCM of 4, 3 and 2 is 12 . So, convert each surd into a surd of order 12

$$
\begin{aligned}
& \sqrt[4]{10}=\sqrt[12]{(10)^{3}}=\sqrt[12]{1000} \\
& \sqrt[3]{6}=\sqrt[12]{(6)^{4}}=\sqrt[12]{1296} \\
& \sqrt{3}=\sqrt[12]{(3)^{6}}=\sqrt[12]{729} \\
& \sqrt[3]{6}>\sqrt[4]{10}>\sqrt{3}
\end{aligned}
$$

2. (C) $x=\sqrt{72-\sqrt{72-\sqrt{72---\infty}}}$
$\Rightarrow x^{2}=72-\sqrt{72-\sqrt{72---\infty}}$
$\Rightarrow x^{2}=72-x$
$\Rightarrow \quad x^{2}+x-72=0$
$\Rightarrow x^{2}+9 x-8 x-72=0$
$\Rightarrow(x+9)(x-8)=0$
$\Rightarrow x=8,-9$
$y=\sqrt{20-\sqrt{20-\sqrt{20---\infty}}}$
$\Rightarrow y^{2}=20-\sqrt{20-\sqrt{20---\infty}}$
$\Rightarrow y^{2}=20-y$
$\Rightarrow y^{2}+y-20=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow y=4,-5$

$$
\text { Now } \frac{x}{y}=\frac{8}{4}=2
$$

3. $(\mathrm{A}) \quad$ Difference $=13 \frac{7}{66}-4 \frac{5}{66}$

$$
=(13-4)+\left(\frac{7}{66}-\frac{5}{66}\right)
$$

$=9+\frac{2}{66}=9 \frac{1}{33}$
Sum $=13 \frac{7}{66}+4 \frac{5}{66}=17 \frac{12}{66}=17 \frac{2}{11}$
\therefore The required answer $=17 \frac{2}{11}-9 \frac{1}{33}$

$$
\begin{aligned}
& =17 \frac{6}{33}-9 \frac{1}{33} \\
& =8 \frac{5}{33}
\end{aligned}
$$

Short cut
The required answer $=2 \times$ smaller value

$$
\begin{aligned}
& =2 \times 4 \frac{5}{66} \\
& =8 \frac{5}{33}
\end{aligned}
$$

4.(D) Let two digit number be $10 x+y$
$\therefore x+y=13$ \qquad (1)
$10 y+x=10 x+y-45$
or, $x-y=\frac{45}{9}=5$ \qquad
From eq ${ }^{\mathrm{n}}(1) \&(2)$

$$
x=\frac{13+5}{2}=9
$$

and $y=4$
\therefore The required number $=10 \times 9+4=94$
5.(B) The required remainder $=\mathrm{d}_{1} \times r_{2}+r_{1}$ where, $\mathrm{d}_{1}=$ the first divisor $=12$

$$
r_{1}=\text { the first remainder }=4
$$

$r_{2}=$ the second remainder $=6$
\therefore The required remainder $=12 \times 6+4$

$$
=76
$$

6.(B) LCM of 5 and $7=35$

Now, divide 300 by 35 and the quotient obtained is the required number of numbers. $300=\underline{8} \times 35+20$
Thus, there are 8 numbers.
7.(A) Let the middle number be x.

According to question,
$x-2+x+x+2=176 \times \frac{1}{4}-14$
$\Rightarrow \quad 3 x=44-14$
$\Rightarrow \quad x=10$
8.(D) The required answer $=13+23-5$

$$
=31
$$

9.(C) Let fraction be x / y

$$
\begin{align*}
& \text { Now } \frac{x+2}{y+3}=\frac{7}{9} \\
& \Rightarrow 9 x+18=7 y+21 \\
& \Rightarrow 9 x-7 y=3 \tag{1}
\end{align*}
$$

and $\frac{x-1}{y-1}=\frac{4}{5}$
$\Rightarrow 5 x-5=4 y-4$
$\Rightarrow 5 x-4 y=1$ \qquad
Now, equation (1) $\times 4-$ equation (2) $\times 7$

$$
\begin{align*}
& \Rightarrow \quad \begin{array}{c}
\quad x=5 \\
\text { and } y=6
\end{array} \tag{2}\\
& \therefore \frac{x}{y}=\frac{5}{6}
\end{align*}
$$

10.(C) Let number be x.
$44^{2}<x<45^{2}$
$\Rightarrow 1936<x<2025$
Number will be between 1936 and 2025. Since one part of the number is the square of 6 it means one factor is 36 \therefore LCM of 36 and $5=180$

Number will be a multiple of 180 i.e. 180 $\times 11=1980$
The only value which satisfies the condition is 1980.
11.(C) Let the three consecutive numbers be $x, x+1$ and $x+2$ respectively.
\therefore Difference between first and third number $=x+2-x=2$
12.(A) Let numbers be x, y, z.

Then $\frac{x}{y}=\frac{2}{3}$ and $\frac{y}{z}=\frac{5}{3}$
$\Rightarrow y=\frac{3}{2} x \Rightarrow z=\frac{3}{5} y=\frac{3}{5} \times \frac{3}{2} x$
$\Rightarrow z=\frac{9}{10} x$
$\therefore x+y+z=68$
$\Rightarrow x+\frac{3}{2} x+\frac{9}{10} x=68$
$\Rightarrow \frac{10 x+15 x+9 x}{10}=68$
$\Rightarrow 34 x=68 \times 10$
$\Rightarrow x=20$
So, second number $=\frac{3}{2} x=\frac{3}{2} \times 20=30$
13.(C) Number of one digit pages from 1 to $9=9$ Number two digit pages from 10 to $99=$ 90
Number of three digit pages from 100 to $200=101$
\therefore Total number of required figures
$=(9 \times 1)+(90 \times 2)+(101 \times 3)=492$
14.(A) Required number

$$
\begin{aligned}
& =\text { LCM of } \frac{4}{5}, \frac{3}{10} \text { and } \frac{12}{35} \\
& =\frac{\text { LCMof } 4,3, \text { and } 12}{\text { HCF of } 5,10 \text { and } 35} \\
& =\frac{12}{5}=2 \frac{2}{5}
\end{aligned}
$$

15.(B) LCM of $6,7,8,9$ and $10=2520$

The greatest number of six digits is 999999.

Dividing 999999 by 2520 , we get 2079 as remainder. Hence the number divisible by 2520 is
999999-2079 = 997920
Since 6-4 $=2,7-5=2,8-6=2,9-7=2$, $10-8=2$
the remainder in each case is less than the divisor by 2 .
\therefore The required number $=997920-2$

$$
=997918
$$

16.(D) LCM of $3,5,6,8,10,12$, $=120$

Required number $=120 \mathrm{~K}+2 ; \mathrm{K}$ is a
positive integer.
13 $\begin{aligned} & \frac{117}{120} \\ & \frac{17}{3}\end{aligned}$

$$
120 \mathrm{~K}+2=(13 \times 9+3) \mathrm{K}+2
$$

$$
=(13 \times 9 \times K)+(3 K+2)
$$

For every value of $\mathrm{K},(13 \times 27 \times \mathrm{K})$ is always divisible by 13.
Pulting value of K equal to $1,2,3,4$, --etc. in succession, we find that number8. Least value of K which will make (3 K +2)divisible by 13 is 8 .
\therefore The required number $=120 \times 8+2$

$$
=960+2
$$

$$
=962
$$

17.(B)

1 ₹ $\quad 50-\mathrm{P}$ 25-P
Number of
coins $1: 1$: 1
Value $\quad 1: \frac{1}{2}: \frac{1}{4}$
$=\frac{7}{4} \rightarrow 43.75$
$\therefore 1 \rightarrow 25$
18.(B)

19.(C) 5 leaps of hound $=6$ leaps of hare.
$\therefore 7$ leaps of hound $=\frac{6}{5} \times 7$ leaps of hare
\therefore rate of hound : rate of hare $=\frac{42}{5}: 8$

$$
=21: 20
$$

20.(B)

(7-8) \rightarrow (4000-1000)
$1 \rightarrow 3000$
\therefore A's income $=7 \times 3000=21000$
B's income $=2 \times 3000=6000$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
21.(B)

Let after t time
$\frac{21-3 \mathrm{t}}{21-7 \mathrm{t}}=\frac{3}{1}$
$\Rightarrow 21-3 \mathrm{t}=63-21 \mathrm{t}$
$\Rightarrow 21-3 \mathrm{t}=63-21 \mathrm{t}$
$\Rightarrow \quad 18 \mathrm{t}=42$
$\Rightarrow \quad \mathrm{t}=\frac{42}{18} \mathrm{hrs}$
$\Rightarrow \quad \mathrm{t}=2 \mathrm{hr} 20 \mathrm{~min}$

Last year Present Year

Laxman	4	$:$	$\Rightarrow 3: 15 / 4$
Gopal	2	$:$	3

Laxman Gopal
Present year $\frac{15}{4}: 6$
$\Rightarrow \quad 5 \quad: \quad 8$
Laxman's Salary $=\frac{5}{5+8} \times 4160$
= ₹ 1600
23. (A) B's profit $=₹ \frac{235-45}{2}=₹ 95$

A's profit = ₹ $95+45$ = ₹ 140
A's profit per month $=₹ \frac{140}{3}$
B's profit per month $=₹ \frac{95}{4}$
Their capitals are proportional to their profit,
A's capital : B captital $=\frac{140}{3}: \frac{95}{4}$

$$
\text { = } 112: 57
$$

Difference between their capitals
$=112-57=55$, but the actual difference is 500 .
\therefore A's capital $=112 \times \frac{550}{55}=₹ 1120$
24.(A) Houses containing only one person
$=100-40=60 \%$
Houses containing only a male
$=60 \times \frac{20}{100}=12 \%$
Houses containing only one female = $60-12$ = 48%
25. (D) Present age of husband and wife $=2 \times 23+2 \times 5=56$ years Present age of husband, wife and child $=3 \times 20=60$ years
Present age of child $=(60-56)=4$ years
26. (B) Let son's age be x, then Kamla's age $=10 x$ years
Kamla's age at the time of marriage $=(10 x-6)$ years.
$\therefore 10 x=\frac{5}{4}(10 x-6)$
or $40 x=50 x-30$
or $x=3$ years.
27.(D) Let Marked price $=x$
and cost price $=y$
$x \times \frac{15}{16} \times \frac{96}{100}=y \times \frac{135}{100}$
$\frac{x}{y}=\frac{3}{2}$
Required $\%=\frac{3-2}{2} \times 100=50 \%$
28.(C)

$\mathrm{Ir}^{\text {a }}$ month		
onth	1000	

1000
On this he gets
$(1300-900=400)$
$1000 \times \frac{b}{100}=400$
$\Rightarrow \mathrm{b}=40 \%$
In $\mathrm{I}^{\text {st }}$ month $\frac{40}{100} \times 2000=800$
$\frac{a}{100} \times 1000=100$
$\Rightarrow a=\frac{100}{1000} \times 100=10 \%$
29. (B) Ratio of parts

$$
\begin{aligned}
& =\frac{1}{100+2 \times 5}: \frac{1}{100+3 \times 5}: \frac{100}{100+4 \times 5} \\
& =\frac{1}{110}: \frac{1}{115}: \frac{1}{120} \\
& =276: 264: 253=793 \xrightarrow{\times 10} 7930
\end{aligned}
$$

Difference between greatest and smallest
$=276$ - 253
$=23(\times 10)=₹ 230$
30. (A) Let amount lent at $5 \%=x$

$$
\frac{5}{100} \times x+\frac{4}{100} \times(2000-x)=92
$$

$$
\Rightarrow \frac{x}{100}+80=92
$$

$\Rightarrow x=₹ 1200$
31.(B) SI for 2 years = ₹ 200

SI for 1 year = ₹ 100
CI for 2 years
$=$ SI for 2 years + Interest on $1^{\text {st }}$ year's SI

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=200+\frac{100 \times 20}{100}=₹ 220$
32.(C)

$$
900=P \times \frac{6}{100} \times 3
$$

$\Rightarrow \mathrm{P}=₹ 5000$
$C I=5000\left(1+\frac{6}{100}\right)^{3}-5000=955.08$
Difference $=955.08-900=₹ 55.08$
33.(D) Payment is quarterly, so $r=4 \%$, $\mathrm{t}=8$ years

$$
\begin{aligned}
\text { Required answer } & =\frac{100 \times 2280}{100 \times 8+\frac{8 \times 7 \times 4}{2}} \\
& =\frac{2280 \times 100}{912} \\
& =₹ 250
\end{aligned}
$$

34.(A) $\quad 20 \%=\frac{1}{5}$

$$
\begin{array}{cc}
\mathrm{P} & \mathrm{~A} \\
180=5_{\times 36} & \sigma_{\times 36} \\
150=25_{\times 6} & 36_{\times 6} \\
\underline{125}=125 & 216 \xrightarrow{\times 10} 2160 \\
455 \xrightarrow{\times 10} 4550
\end{array}
$$

Total interest $=2160 \times 3-4550$

$$
\text { = ₹ } 1930
$$

35.(A) I

$$
\mathrm{I}^{\mathrm{St}}=2 \mathrm{Kg}
$$

$$
2^{\text {nd }}=42 \mathrm{Kg}
$$

36.(B) After taking out 20 litres of mixture

A : B
$3: 2$
A: B
$\begin{array}{llll}3 & : & 2 & \text { J } \\ 1_{\times 3} & : & 4_{\times 3}\end{array} \xrightarrow{\times 2} 20$
Make A equal because it is not changing. Mixture's initial quantity $=(3+2) \times 2+20$

$$
=30
$$

A's quantity $=\frac{3}{5} \times 30=18$ Litre
37.(B)

$$
\frac{A+C}{B}=\frac{2}{1} \times 4=4=\frac{8}{4}
$$

$$
\frac{\mathrm{A}+\mathrm{B}}{\mathrm{C}}=\frac{3}{1} \times 3=\frac{3}{3}
$$

$\Rightarrow B=4, C=3, A=5$
$(A+B+C)$'s 1 day work $=4+3+5=12$ unit
12 day's work $=12 \times 12=144$ unit

A will take $\frac{144}{5}=28 \frac{4}{5}$ days
B will take $\frac{144}{4}=36$ days
C will take $\frac{144}{3}=48$ days
38.(A) A is 4 times as fast as B.

It means if A does a work in 1 day then B will do in 4 days.

39.(B) Required time $=\sqrt{4 \times 9}$

$$
=6 \text { minutes }
$$

40.(B) Total time $=\frac{54}{18}+53 \times \frac{18}{60}$

$$
=3 \text { hours }+15 \text { hours } 54 \mathrm{~min}
$$

$=18$ hours 54 min
41.(C)

Time taken by A to reach R from $\mathrm{P}=$ Time taken by B to reach Q and return from Q to R
$\Rightarrow \frac{x}{5}=\frac{22}{6}+\frac{22-x}{6}$
$\Rightarrow \frac{x}{5}+\frac{x}{6}=\frac{22}{6}+\frac{22}{6}$
$\Rightarrow \frac{11 x}{30}=\frac{22}{3}$
$\Rightarrow x=20 \mathrm{~km}$
42.(B) $\frac{4}{5}$ of total time in train $=4$ hours
\therefore Total time in train $=4 \times \frac{5}{4}=5$ hours
Total time spent in air $=8-5=3$ hours
By air, in 4 hrs distance travelled
$=400 \mathrm{Km}$
\therefore in 3 hours, distance travelled $=\frac{400}{4} \times 3$
$=300 \mathrm{Km}$
Distance covered by train $=400-300$

$$
=100 \mathrm{~km}
$$

So, the required ratio $=300: 100$

$$
=3: 1
$$

43.(B) Let original speed be $x \mathrm{~km} /$ hour.
$\frac{35}{x-2}=\frac{35}{x}+2$
$\Rightarrow 35\left[\frac{1}{x-2}-\frac{1}{x}\right]=2$
$\Rightarrow 35\left[\frac{x-x+2}{x(x-2)}\right]=2$
$\Rightarrow 35=x(x-2)$
$\Rightarrow x=7 \mathrm{Km} /$ hour
44. (A) Let distance between Delhi and Kanpur is x. Let train leaving from Delhi is A and from Kanpur is B.

A's speed $=\frac{x}{10 \mathrm{am}-5 \mathrm{am}}=\frac{x}{5} \mathrm{Km} /$ hour B's speed $=\frac{x}{2 \mathrm{pm}-7 \mathrm{am}}=\frac{x}{7} \mathrm{Km} /$ hour
Distance covered by A till $7 \mathrm{am}=\frac{2 x}{5} \mathrm{Km}$
Remaining Distance $=x-\frac{2 x}{5}=\frac{3 x}{5} \mathrm{Km}$
Relative speed $=\frac{x}{5}+\frac{x}{7}=\frac{12 x}{35} \mathrm{Km} /$ hour Time taken by both trains to cover the distance

$$
=\frac{\frac{3}{5} x}{\frac{12 x}{35}}=\frac{7}{4} \text { hours }=1 \text { hours } 45 \mathrm{~min}
$$

\therefore The two trains will meet at $7 \mathrm{am}+$ 1hour 45 min
$=8: 45 \mathrm{am}$
45.(C) $\tan 2 \mathrm{~A}=\tan (\mathrm{A}+\mathrm{B}+\mathrm{A}-\mathrm{B})$
$=\frac{\tan (\mathrm{A}+\mathrm{B})+\tan (\mathrm{A}-\mathrm{B})}{1-\tan (\mathrm{A}+\mathrm{B}) \tan (\mathrm{A}-\mathrm{B})}$
$=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}$
$=\frac{5}{5}=1=\sin 90^{\circ}$
46.(D) Take $\theta=45^{\circ}$
$x=1+1=2$
$y=\sqrt{2}-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}$
$\left(x^{2} y\right)^{2 / 3}-\left(x y^{2}\right)^{2 / 3}$
$=\left(4 \times \frac{1}{\sqrt{2}}\right)^{2 / 3}-\left(2 \cdot \frac{1}{2}\right)^{2 / 3}$

$$
\begin{aligned}
& =(2 \times \sqrt{2})^{2 / 3}-(1)^{2 / 3} \\
& =2-1 \\
& =1
\end{aligned}
$$

47.(D) $\quad z=\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x-\sqrt{1-\sin x}}}$
$\Rightarrow z=\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})}$
$\times \frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})}$
$\Rightarrow z=\frac{1+\sin x+1-\sin x+2 \sqrt{1+\sin x} \times \sqrt{1-\sin x}}{1+\sin x-1+\sin x}$
$\Rightarrow z=\frac{2+2 \sqrt{1+\sin x} \times \sqrt{1-\sin x}}{2 \sin x}$
$\Rightarrow z=\frac{1+\sqrt{1-\sin ^{2} x}}{\sin x}$
$\Rightarrow z=\frac{1+\sqrt{\cos ^{2} x}}{\sin x}$
$\Rightarrow z=\frac{1+\cos x}{\sin x}$
$\Rightarrow z=\operatorname{cosec} x+\cot x$
48.(A) $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$
$\Rightarrow \frac{\sin (x+y)+\sin (x-y)}{\sin (x+y)-\sin (x-y)}=\frac{a+b+a-b}{a+b-a+b}$
$\Rightarrow \frac{\sin x \cos y+\cos x \sin y+\sin x \cos y-\cos x \sin y}{\sin x \cos y+\cos x \sin y-\sin x \cos y+\cos x \sin y}$

$$
=\frac{a}{b}
$$

$\Rightarrow \frac{\sin x \cos y}{\cos x \sin y}=\frac{a}{b}$
$\Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b}$
49. (D) $2 \operatorname{cosec} \theta=y+\frac{1}{y}$

$$
\cot \theta=\sqrt{\operatorname{cosec}^{2} \theta-1}
$$

$\Rightarrow \cot \theta=\sqrt{\frac{1}{4}\left(y+\frac{1}{y}\right)^{2}-1}$
$\Rightarrow \cot \theta=\frac{1}{2} \sqrt{y^{2}+\frac{1}{y^{2}}+2-4}$
$\Rightarrow \cot \theta=\frac{1}{2} \sqrt{y^{2}+\frac{1}{y^{2}}-2}$
$\Rightarrow \cot \theta= \pm \frac{1}{2}\left(y-\frac{1}{y}\right)$
50.(C) $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\operatorname{Sec} A)$

Put $A=45^{\circ}$,
$\left(1+\cot 45^{\circ}-\operatorname{cosec} 45^{\circ}\right)\left(1+\tan 45^{\circ}+\sec \right.$
45°)
$=(1+1-\sqrt{2})(1+1+\sqrt{2})$
$=(2-\sqrt{2})(2+\sqrt{2})$
$=4-2$
$=2$
51.(C) $3 \sin 2 \theta=2 \sin 3 \theta$
3.2. $\sin \theta \cdot \cos \theta=2\left(3 \sin \theta-4 \sin ^{3} \theta\right)$
$\Rightarrow 3 \cos \theta=3-4 \sin ^{2} \theta$
$\Rightarrow 3 \cos \theta+1=4 \cos ^{2} \theta$
$\Rightarrow 4 \cos ^{2} \theta-3 \cos \theta-1=0$
$\Rightarrow 4 \cos ^{2} \theta-4 \cos \theta+\cos \theta-1=0$
$\Rightarrow 4 \cos \theta(\cos \theta-1)+1(\cos \theta-1)=0$
$\Rightarrow(4 \cos \theta+1)(\cos \theta-1)=0$
$\Rightarrow \cos \theta=1$ or $-\frac{1}{4}$
52.(D) $x=\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+---$

$$
+\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ}
$$

$\therefore \quad \sin ^{2} 5^{\circ}+\sin ^{2} 85^{\circ}=1$
$\sin ^{2} 10^{\circ}+\sin ^{2} 80^{\circ}=1$
$\sin ^{2} 45^{\circ}=\frac{1}{2}$
$\sin ^{2} 90^{\circ}=1$
So, $x=8+\frac{1}{2}+1$
$\Rightarrow x=9 \frac{1}{2}$
53. (A)

$\tan \theta=\frac{h}{160}$
$\tan 2 \theta=\frac{h}{60}$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\Rightarrow \frac{h}{60}=\frac{2 \times \frac{h}{160}}{1-\left(\frac{h}{160}\right)^{2}}$
$\Rightarrow \frac{80}{60}=\frac{1}{1-\left(\frac{h}{160}\right)^{2}}$
$\Rightarrow \quad 1-\left(\frac{h}{160}\right)^{2}=\frac{60}{80}$
$\Rightarrow \quad\left(\frac{h}{160}\right)^{2}=\frac{1}{4}$
$\Rightarrow \quad \frac{h}{160}=\frac{1}{2}$
$\Rightarrow \quad h=80 \mathrm{~m}$
54.(B) Let speeds are $5 x$ and $9 x \mathrm{~m} / \mathrm{s}$ length of $\mathrm{I}^{\text {st }}$ train $=5 x \times 5=25 x \mathrm{~m}$ length of $\mathrm{II}^{\text {nd }}$ train $=9 x \times 5=45 x \mathrm{~m}$ Time to cross each other
$=\frac{\text { Sumof lengths }}{\text { Sumof speeds }}=\frac{25 x+45 x}{5 x+9 x}$
$=\frac{70 x}{14 x}$
$=5 \mathrm{sec}$
55. (A)
\qquad
I can row from P to R in 4 hours.
$\therefore \mathrm{I}$ can row from P to Q in 2 hours.
I can row from P to Q and back in 10 hours.
\therefore I can row from Q to P in $(10-2)$
= 8 hours
Hence in rowing with the current, I takes 2 hours and in rowing against the current, I takes 8 hours. The distance is same, therefore, 'down rate' and the 'up rate' are inversely proportional to the times.
\therefore down rate : up rate $=8: 2=4: 1$
\therefore speed of boat in still water : speed of river
$=4+1: 4-1$
$=5: 3$
56. (C)

B
$90_{\times 10}$

C
$100_{\times 9} \quad 90_{\times 9}=810$ (make B equal)
In 1000 m race, A can beat C by $1000-810=190 \mathrm{~m}$.
In 100 m race, A can beat C by 19 m

Campus

K D Campus Pvt. Ltd

57.(C) $x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}}$
$\Rightarrow x=\sqrt{\frac{(\sqrt{5}+1)^{2}}{5-1}}=\sqrt{\frac{(\sqrt{5}+1)^{2}}{4}}=\frac{\sqrt{5}+1}{2}$
Now, $\quad 5 x^{2}-5 x-1$

$$
\begin{aligned}
& =5\left(\frac{\sqrt{5}+1}{2}\right)^{2}-5\left(\frac{\sqrt{5}+1}{2}\right)-1 \\
& =5 \frac{(5+1+2 \sqrt{5})}{4}-5\left(\frac{\sqrt{5}+1}{2}\right)-1 \\
& =\frac{15+5 \sqrt{5}-5 \sqrt{5}-5-2}{2} \\
& =4
\end{aligned}
$$

58.(C) $\quad x^{x \sqrt{x}}=(x \sqrt{x})^{x}$

$$
\begin{aligned}
& \Rightarrow x^{x^{3 / 2}}=\left(x^{\frac{3}{2}}\right)^{x} \\
& \Rightarrow x^{x^{3 / 2}}=x^{\frac{3}{2} x}
\end{aligned}
$$

By comparing

$$
\begin{aligned}
& x^{\frac{3}{2}}=\frac{3}{2} x \\
& \Rightarrow x^{\frac{1}{2}}=\frac{3}{2} \\
& \Rightarrow x=\frac{9}{4}
\end{aligned}
$$

59.(B) $x=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \therefore \sqrt{1+x}=\sqrt{1+\frac{\sqrt{3}}{2}}=\sqrt{\frac{2+\sqrt{3}}{2} \times \frac{2}{2}} \\
& ==\sqrt{\frac{4+2 \sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}+1)^{2}}{4}} \\
& \quad \Rightarrow \sqrt{1+x}=\frac{\sqrt{3}+1}{2} \\
& \therefore \sqrt{1-x}=\sqrt{1-\frac{\sqrt{3}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2} \times \frac{2}{2}} \\
& =\sqrt{\frac{4-2 \sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}-1)^{2}}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sqrt{1-x}=\frac{\sqrt{3}-1}{2} \\
& \therefore \frac{\sqrt{1+x}}{1+\sqrt{1+x}}+\frac{\sqrt{1-x}}{1-\sqrt{1-x}}
\end{aligned}
$$

$$
=\frac{\frac{\sqrt{3}+1}{2}}{1+\frac{\sqrt{3}+1}{2}}+\frac{\frac{\sqrt{3}-1}{2}}{1-\frac{\sqrt{3}-1}{2}}
$$

$$
=\frac{\sqrt{3}+1}{\sqrt{3}+3}+\frac{\sqrt{3}-1}{3-\sqrt{3}}
$$

$$
=\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}
$$

$$
=\frac{2}{\sqrt{3}}
$$

60.(C) $\sqrt{x}=\sqrt{3}-\sqrt{5}$

$$
x=3+5-2 \cdot \sqrt{3} \cdot \sqrt{5}
$$

$$
\Rightarrow x=8-2 \sqrt{15}
$$

Now, $\quad x^{2}-16 x+6$

$$
\begin{aligned}
& =(8-2 \sqrt{15})^{2}-16(8-2 \sqrt{15})+6 \\
& =64+60-32 \sqrt{15}-128+32 \sqrt{15}+6 \\
& =2
\end{aligned}
$$

61.(B) If $x^{2}=y+z, y^{2}=z+x, z^{2}=x+y$

$$
\begin{aligned}
& \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1} \\
& =\frac{x}{x^{2}+x}+\frac{y}{y^{2}+y}+\frac{z}{z^{2}+z} \\
& =\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}
\end{aligned}
$$

(from given condition)

$$
=1
$$

62.(B) $\frac{b-c}{a}+\frac{a+c}{b}+\frac{a-b}{c}=1$

$$
\Rightarrow \frac{b-c}{a}+\frac{a-b}{a}=1-\frac{a+c}{b}
$$

$$
\Rightarrow \quad \frac{b c-c^{2}+a^{2}-a b}{a c}=\frac{b-a-c}{b}
$$

$$
\Rightarrow \quad \frac{b c-a b+a^{2}-c^{2}}{a c}=\frac{(a+c-b)}{b}
$$

$$
\Rightarrow \frac{-b(a-c)+(a-c)(a+c)}{a c}=-\frac{(a+c-b)}{b}
$$

$$
\Rightarrow \frac{a-c}{a c}=-\frac{1}{b}
$$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& \Rightarrow \frac{1}{c}-\frac{1}{a}=-\frac{1}{b} \\
& \Rightarrow \frac{1}{a}=\frac{1}{b}+\frac{1}{c}
\end{aligned}
$$

63.(A) Check through options.

When $x=(a+b+c)^{2}$

$$
\begin{aligned}
& \frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b} \\
& = \\
& +\frac{(a+b+c)^{2}-a^{2}}{b+c}+\frac{(a+b+c)^{2}-b^{2}}{c+a} \\
& +\frac{(a+b+c)^{2}-c^{2}}{a+b} \\
& =\frac{(2 a+b+c)(b+c)}{(b+c)}+\frac{(a+2 b+c)(a+c)}{c+a} \\
& +\frac{(a+b+2 c)(a+b)}{a+b} \\
& =2 a+b+c+a+2 b+c+a+b+2 c \\
& =4(a+b+c)
\end{aligned}
$$

64.(C) Let numbers be $17 x$ and $17 y$, where x and y are co-primes.
LCM of $17 x$ and $17 y=17 x y$
According to the question,
$17 x y=714$
$\Rightarrow x y=42=6 \times 7$
$\Rightarrow x=6$ and $y=7$
or $x=7$ and $y=6$
\therefore First number $=17 x=17 \times 6=102$
Second number $=17 x=17 \times 7=119$
\therefore Sum of numbers $=102+119=221$
65.(C)
$x=\sqrt{30+\sqrt{30+\sqrt{30+}}} \cdots$
$x^{2}=30+\sqrt{30+\sqrt{30+}} \cdots$
$\Rightarrow x^{2}=30+x$
$\Rightarrow x^{2}-x-30=0$
$\Rightarrow x^{2}-6 x+5 x-30=0$
$\Rightarrow(x-6)(x+5)=0$
$x=6$, because $x=-5$ can't be considered
66.(A) $4^{61}+4^{62}+4^{63}+4^{64}$
$=4^{61}\left(1+4+4^{2}+4^{3}\right)$
$=4^{61}(1+4+16+64)$
$=4^{61} \times 85$ which is divisible by 17 .
67. (A)

$$
\begin{aligned}
& x-y=\frac{x+y}{7}=\frac{x y}{4}=\mathrm{K} \\
& \Rightarrow x-\mathrm{y}=\mathrm{K} \\
& x+y=7 \mathrm{~K} \\
& \therefore(x+y)^{2}-(x-y)^{2}=49 \mathrm{~K}^{2}-\mathrm{K}^{2} \\
& \Rightarrow \quad 4 x \mathrm{y}=48 \mathrm{~K}^{2} \\
& \Rightarrow \quad 16 \mathrm{~K}=48 \mathrm{~K}^{2} \\
& \Rightarrow \quad \mathrm{~K}=\frac{1}{3} \\
& \Rightarrow \quad x y=4 \mathrm{~K}=\frac{4}{3}
\end{aligned}
$$

68. (B)

$\%$ of boys in class $=\frac{3}{3+2} \times 100=60 \%$
69.(B) Percentage of families having either a cow or a buffalo or both $=60+30-15=75 \%$ It means 25% of families do not have either a cow or a buffalo
\therefore Required number of families
$=25 \%$ of 96
$=96 \times \frac{25}{100}$
$=24$
69. (D) Let total votes $=100$

$55 \%-45 \%=10 \%$ of $96 \rightarrow 240$

$$
\begin{aligned}
100 & \rightarrow \frac{240}{96 \times 10} \times 100 \times 100 \\
& =2500 \text { votes }
\end{aligned}
$$

71.(B) Ratio of capital investment

A	$:$	B	$:$	C
25,000	$:$	30,000	$:$	15,000
5	$:$	6	$:$	3

Let total profit be 100 .
A get 30% for management
Remaining profit $=70 \%$
A's share $=30+70 \times \frac{5}{14}=55 \%$
$(B+C)$'s share $=100-55=45 \%$
When, difference 55-45=10, then total profit $=100$
When difference ₹ 200 , then total profit
$=100 \times 20$
= ₹ 2000
72.(A) $15000 \xrightarrow[\substack{\text { or } \\ 3000}]{-20 \%} 12000 \xrightarrow[\substack{\text { or } \\ 1200}]{-\frac{10 \%}{1200}} 10,800$
$\xrightarrow[1080]{-10 \%} ₹ 9720$
73.(B) Present worth $=P\left(1-\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$

Campus

K D Campus Pvt. Ltd

$=62500\left(1-\frac{4}{100}\right)^{2}$
$=62500\left(1-\frac{1}{25}\right)^{2}$
$=62500 \times \frac{24 \times 24}{25 \times 25}$
= ₹ 57600
74.(A) According to question,

$$
1 \mathrm{M}=2 \mathrm{~W}=4 \mathrm{~B}
$$

$$
\mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}
$$

$(1 \mathrm{M}+1 \mathrm{~W}+1 \mathrm{~B}) \times 7=1 \mathrm{~B} \times \mathrm{D}_{2}$ $\Rightarrow(4 \mathrm{~B}+2 \mathrm{~B}+1 \mathrm{~B}) \times 7=1 \mathrm{~B} \times \mathrm{D}_{2}$
$\Rightarrow \mathrm{D}_{2}=49$ day
75.(D)

$\triangle \mathrm{OCD}$ is equilateral triangle.

$$
\angle \mathrm{COD}=60^{\circ}
$$

$\therefore \angle \mathrm{CBD}=30^{\circ}$ (Property)
$\because \angle \mathrm{ACB}=90^{\circ}$
$\therefore \angle \mathrm{BCP}=180^{\circ}-90^{\circ}$
In $\triangle \mathrm{CBP}$

$$
\begin{aligned}
& \angle \mathrm{BCP}+\angle \mathrm{CBP}+\angle \mathrm{CPB}=180^{\circ} \\
& \Rightarrow 90^{\circ}+30^{\circ}+\angle \mathrm{CPB}=180^{\circ} \\
& \Rightarrow \angle \mathrm{CPB}=60^{\circ} \\
& \text { and } \angle \mathrm{APB}=60^{\circ}
\end{aligned}
$$

76.(C)

If area $\Delta \mathrm{ATM}=1$,
then area $\triangle \mathrm{AMN}=2$
\therefore area $\mathrm{ABPM}=8$
area $\triangle M N P=8-2-2=4$
area $\triangle \mathrm{MTP}=2$
Δ ATM : Δ TMP $=1: 2$
77.(C)

$\Delta \mathrm{AVT} \sqcup \triangle \mathrm{ADM}$
$\frac{\mathrm{AV}}{\mathrm{AD}}=\frac{\mathrm{AT}}{\mathrm{AM}}$
$\frac{1}{2}=\frac{6}{\mathrm{AM}}$
$\Rightarrow \mathrm{AM}=12$
$\therefore \mathrm{TM}=6$
$\Delta \mathrm{CDM} \sqcup \Delta \mathrm{CBT}$

$$
\begin{aligned}
\frac{\mathrm{CD}}{\mathrm{BD}} & =\frac{\mathrm{CM}}{\mathrm{TM}} \\
\Rightarrow & \frac{1}{1}=\frac{\mathrm{CM}}{6} \\
\Rightarrow \mathrm{CM} & =6 \\
\therefore \mathrm{TC} & =\mathrm{CM}+\mathrm{TM} \\
& =6+6=12
\end{aligned}
$$

78. (*)
79.(B)

$\mathrm{AB}=\mathrm{AC}$
D is mid point of $A C$

$$
\mathrm{AP} \times \mathrm{AB}=\mathrm{AD}^{2} \text { (Property) }
$$

$$
\mathrm{AP} \times \mathrm{AB}=\left(\frac{\mathrm{AB}}{2}\right)^{2}
$$

$$
\mathrm{AP}=\frac{\mathrm{AB}}{4}
$$

$$
\therefore \mathrm{PB}=\frac{3}{4} \mathrm{AB}
$$

$$
\mathrm{PB}: \mathrm{PA}
$$

$$
\Rightarrow \frac{3}{4} \mathrm{AB}: \frac{1}{4} \mathrm{AB}
$$

$$
\Rightarrow \quad 3: 1
$$

80.(C) $2 \sin \alpha+15 \cos ^{2} \alpha=7$
$\Rightarrow 2 \sin \alpha+15-15 \sin ^{2} \alpha=7$
$\Rightarrow 15 \sin ^{2} \alpha-2 \sin \alpha-8=0$
$\Rightarrow 15 \sin ^{2} \alpha-12 \sin \alpha+10 \sin \alpha-8=0$
$\Rightarrow 3 \sin \alpha(5 \sin \alpha-4)+2(5 \sin \alpha-4)=0$
$\Rightarrow(3 \sin \alpha+2)(5 \sin \alpha-4)=0$

$$
\begin{aligned}
& \Rightarrow \sin \alpha=\frac{4}{5} \\
& \Rightarrow \cot \alpha=\frac{3}{4}
\end{aligned}
$$

81. (D)

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{75}{a} \\
\sqrt{3} & =\frac{75}{a} \\
a & =\frac{75}{\sqrt{3}}=25 \sqrt{3}
\end{aligned}
$$

Area of regular hexagon $=6 \times \frac{\sqrt{3}}{4} \times a^{2}$

$$
\begin{aligned}
& =6 \times \frac{\sqrt{3}}{4} \times(25 \sqrt{3})^{2} \\
& =5625 \cdot \frac{\sqrt{3}}{2} \mathrm{~m}^{2}
\end{aligned}
$$

82. (B)

In Δ DEC
$\sin 30^{\circ}=\frac{\mathrm{EC}}{\mathrm{CD}}$
$\frac{1}{2}=\frac{\mathrm{EC}}{10}$
$\mathrm{EC}=5$
$\cos 30^{\circ}=\frac{\mathrm{ED}}{\mathrm{CD}}$
$\frac{\sqrt{3}}{2}=\frac{\mathrm{ED}}{10}$
$\mathrm{ED}=5 \sqrt{3}$
In $\triangle \mathrm{ECB}$
$\mathrm{EB}^{2}=\mathrm{BC}^{2}-\mathrm{EC}^{2}$
$\Rightarrow \mathrm{EB}^{2}=6^{2}-5^{2}$
$\Rightarrow \mathrm{EB}^{2}=36-25$
$\Rightarrow \mathrm{EB}^{2}=11$
$\Rightarrow \mathrm{EB}=\sqrt{11}$
$B D=E D+E B$
$\mathrm{BD}=5 \sqrt{3}+\sqrt{11}$
83. (B) Let sides be $4 x, 5 x, 6 x$.

$$
\begin{aligned}
& \text { inradius }=\frac{\Delta}{\mathrm{S}} \\
& \mathrm{~S}=\frac{4 x+5 x+6 x}{2}=\frac{15 x}{2} \\
& \Rightarrow 4=\frac{\Delta}{\frac{15}{2} x} \\
& \Rightarrow \Delta=30 x
\end{aligned}
$$

Smallest altitude will be on the longest side Area of $\Delta=\frac{1}{2} \times h \times 6 x$
$\Rightarrow 30 x=\frac{1}{2} \times h \times 6 x$
$\Rightarrow h=10 \mathrm{~cm}$.
Read; "Height and base radius of the cone are same" of the question as "Height and base radius of the cone are respectively equal to the height and base radius of the cylinder"
84.(B)

$$
\begin{aligned}
& l=\sqrt{8^{2}+15^{2}} \\
& \Rightarrow l=\sqrt{64+225} \\
& \Rightarrow l=\sqrt{289} \\
& \Rightarrow l=17 \mathrm{~cm}
\end{aligned}
$$

Total surface area
$=\pi r^{2}+2 \pi r h+\pi r l$
$=\pi[64+2 \times 8 \times 15+8 \times 17]$
$=440 \pi \mathrm{~cm}^{2}$
85.(D)
$\mathrm{R}=5 \mathrm{~cm}$
$\mathrm{H}=25 \mathrm{~cm}$
$\triangle \mathrm{ABC} \sqcup \triangle \mathrm{ADE}$

$$
\begin{aligned}
& \frac{25-h}{r}=\frac{25}{5} \\
& \Rightarrow 25-h=5 r
\end{aligned}
$$

$\Rightarrow h=25-5 r$
Volume of frustrum $=\frac{1}{3} \pi h\left(\mathrm{R}^{2}+r^{2}+\mathrm{Rr}\right)$

$$
\begin{array}{rlrl}
& 110= & \frac{1}{3} \times \frac{22}{7} \times(25-5 r)\left(25+r^{2}+5 r\right) \\
\Rightarrow & & 21 \times 5 & =(25-5 r)\left(25+r^{2}+5 r\right) \\
\Rightarrow & 21 & =(5-r)\left(25+r^{2}+5 r\right) \\
\Rightarrow & 21 & =5^{3}-r^{3} \\
\Rightarrow & 21 & =125-r^{3} \\
\Rightarrow & & r^{3} & =104 \\
\Rightarrow & & r & =\sqrt[3]{104} \mathrm{~cm}
\end{array}
$$

86.(A)

$$
\Delta \mathrm{ABC} \sqcup \Delta \mathrm{EDC}
$$

$$
\frac{9}{4.5}=\frac{6+x}{x}
$$

$$
2 x=6+x
$$

$$
x=6
$$

$$
\mathrm{BC}=12 \mathrm{~m}
$$

$$
l=\mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}
$$

$$
=\sqrt{81+144}
$$

$$
=\sqrt{225}
$$

$$
=15 \mathrm{~m}
$$

Lateral surface area $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 12 \times 15 \\
& =565.7 \mathrm{~m}^{2}
\end{aligned}
$$

87.(B) Area covered by roller in one revolution
$=2 \pi r h$
$=2 \times \frac{22}{7} \times 0.7 \times 10$
$=44 \mathrm{~cm}^{2}$
Let total area be A

$$
\begin{aligned}
88 \% \text { of } \mathrm{A} & =1200 \times 44 \\
\mathrm{~A} & =\frac{1200 \times 44}{88} \times 100 \\
& =60,000 \mathrm{~cm}^{2}
\end{aligned}
$$

Total cost of levelling $=2.5 \times \mathrm{A}$

$$
=2.5 \times 60,000
$$

$$
\text { = ₹ } 150000
$$

88. (B) Let 1 Man can do 1 unit work in 1 day, then 50 men will do in 40 days $=50 \times 40=2000$ unit work.

Days	Men	Work
$1-10$	50	$50 \times 10=500$
$11-20$	45	$45 \times 10=450$
$21-30$	40	$40 \times 10=400$
$31-40$	35	$35 \times 10=350$
$41-50$	30	$30 \times 10=\underline{300}$

Total days $=50$
89. (A) Ratio of efficiency

A B C
4 : $2: 3$
Working together they will empty in
1 hours $=4+2+3$

$$
=9 \text { units }
$$

In 6 hours $40 \mathrm{~min}=\frac{20}{3}$ hours, they will empty $=\frac{20}{3} \times 9=60$ units

A will empty the pool in $\frac{60}{4}=15$ hours.
90.(C) If $x=a(\sin \theta+\cos \theta)$,

$$
\mathrm{y}=\mathrm{b}(\sin \theta-\cos \theta)
$$

Now,

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \\
& =(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2} \\
& =\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta+\sin ^{2} \theta \\
& \quad+\cos ^{2} \theta-2 \sin \theta \cos \theta \\
& =1+1 \\
& =2
\end{aligned}
$$

91.(C) Required answer
$=\frac{35 \times 30}{100}+\frac{35 \times 15}{100}+\frac{35 \times 15}{100}$
$=\frac{35}{100}(30+15+15)$
$=\frac{35 \times 60}{100}=21$ lakhs
92.(D) Percentage variation :

$$
\begin{aligned}
& \text { Model A } \Rightarrow \frac{40-30}{30} \times 100=33 \frac{1}{3} \% \\
& \text { Model B } \Rightarrow \frac{20-15}{15} \times 100=33 \frac{1}{3} \% \\
& \text { Model C } \Rightarrow \frac{15-20}{20} \times 100=-25 \%
\end{aligned}
$$

93. (A) Required difference
$=\frac{44 \times 20}{100}-\frac{35 \times 15}{100}$
$=\frac{880-525}{100}=\frac{355}{100}$ lakhs
$=355000$
94.(B) Required production
$=\frac{44 \times 30}{100}$ lakhs
$=1320000$
95.(C) Required answer

$$
\begin{aligned}
& =35 \times \frac{10}{100} \times \frac{15}{100}+44 \times \frac{10}{100} \times \frac{15}{100} \\
& =\frac{150}{10000} \times 79=1.1850 \text { lakhs } \\
& =118500
\end{aligned}
$$

96. (D)

$$
\begin{aligned}
100 \% & =360^{\circ} \\
1 \% & =\frac{360^{\circ}}{100} \\
10 \% & =\frac{360^{\circ} \times 10}{100}=36^{\circ}
\end{aligned}
$$

97. (B) 35% Total cost $=₹ 17500$
$\therefore 15 \%$ of total cost
$₹ \frac{17500 \times 15}{35}=₹ 7500$
98.(C) Difference in percent cost of 'binding and cutting charges' and 'royalty'
$=(18-15) \%=3 \%$
$\because 4 \%$ of total cost $=₹ 6000$
$\therefore 3 \%$ of total cost $=₹ \frac{6000 \times 3}{4}=₹ 4500$
99.(B) Difference in percent expenses on printing cost and advertisement charges
$=(35-18) \%=17 \%$
Now, $1 \%=3.6^{\circ}$

$$
\therefore 17 \%=3.6^{\circ} \times 17=61.2^{\circ}
$$

100.(B) The required percentage

$$
=\frac{10 \times 100}{35}=28.6 \% \text { (approx.) }
$$

SSC MAINS(MATHS) MOCK TEST-1 (ANSWER KEY)

1.	(B)	26.	(B)	51.	(C)		(C)
2.	(C)	27.	(D)	52.	(D)	77.	($\left.{ }^{(}\right)$
3.	(A)	28.	(C)	53.	(A)	78.	${ }^{*}$ (B)
4.	(D)	29.	(B)	54.	(B)	79.	(B)
5.	(B)	30.	(A)	55.	(A)	80.	(C)
6.	(B)	31.	(B)	56.	(C)	81.	(D)
7.	(A)	32.	(C)	57.	(C)	82.	(B)
8.	(B)	33.	(D)	58.	(C)	83.	(B)
9.	(C)	34.	(A)	59.	(B)	84.	(B)
10.	(C)	35.	(A)	60.	(C)	85.	(A)
11.	(C)	36.	(C)	61.	(B)	86.	(B)
12.	(A)	37.	(B)	62.	(B)	87.	(B)
13.	(C)	38.	(A)	63.	(A)	88.	(B)
14.	(A)	39.	(B)	64.	(C)	89.	(A)
15.	(B)	40.	(B)	65.	(C)	90.	(C)
16.	(D)	41.	(C)	66.	(A)	91.	(D)
17.	(B)	42.	(B)	67.	(A)	93.	(D)
18.	(B)	43.	(B)	68.	(B)	93. 94.	(B)
19.	(C)	44.	(A)	69.	(B)	95.	(B)
20.	(B)	45.	(C)	70.	(D)	96	(C)
21.	(B)	46.	(D)	71.	(B)	96.	(D)
22.	(A)	47.		72.	(A)	97.	(B)
23.	(A)	48.		73.	(B)	98.	(C)
24.	(A)	49.	(D)	74.		99.	(B)
25.	(D)	50.	(C)	75.		100	

