

Ph: 09555108888, 09555208888

EXAMPLE Form
EXAMPLE STATION, OPOSITE MUKHERIE NAGAR POLICE STATION, DELH-110009

$$\Rightarrow (x + y + \pi) \begin{vmatrix} 1 & 0 & 0 \\ x & z - x & z - x \end{vmatrix}$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} x + y & x + y - 2x \\ x - x & z - x \end{vmatrix}$$

$$(:, C, -, C, -, C, ., C, -, C, -2C, 0)$$
Expand with respect to R,

$$\Rightarrow (x + y + \pi) \begin{vmatrix} x + y & x + y - 2x \\ x - x & z - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x & -x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x - x \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x + x + \pi \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x + x + \pi \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \begin{vmatrix} -x \\ x + x + \pi \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) \end{vmatrix} = 0$$

$$\Rightarrow (x + y + \pi) =$$

Campus **KD Campus Pvt. Ltd** 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009 60. (D) Equation of plane passing through (1, -3, 1)Since, the line formed intersected by planes and the direction cosines of whose normal and the normal of the plane are perpendicu-(1, -3, 1) is lar, then 1(x - 1) - 3(y + 3) + 1(z - 1) = 0by taking option (a) $\Rightarrow x - 3y + z - 11 = 0$ $-1(1 + \lambda) + 3(\lambda - 1) + 3(2 - \lambda) = 0$ $\Rightarrow -1 - \lambda + 3\lambda - 3 + 4 - 2\lambda = 0$ $\Rightarrow \frac{x}{11} - \frac{y}{11/3} + \frac{z}{11} = 0$ (intercept from) 0 = 065. (B) Given ellipse is $\frac{x^2}{160} + \frac{y^2}{25} = 1$ The above plane intercept the x-axis at a distance of 11. 61. (A) $\therefore l^2 + m^2 + n^2 = 1$ $e = \sqrt{1 - \frac{25}{169}} = \frac{12}{13} \qquad \left(\because e = \sqrt{1 - \frac{b^2}{a^2}} \right)$ i.e., $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 1$ $\Rightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \theta + 1$ $[:: (\alpha = \beta), (\gamma = \theta)]$ (i) Also, $\sin^2\theta = 2\sin^2\alpha$ (given) Also, ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ \Rightarrow 1 - cos² θ = 2 (1 - cos² α) $\Rightarrow \cos^2\theta = 2\cos^2 \alpha - 1$ \therefore From Eq. (i), $e = \sqrt{1 - \frac{b^2}{a^2}}$ (:: According to the ques- $2\cos^2\alpha + (2\cos^2\alpha - 1) = 1$ $\Rightarrow 4 \cos^2 \alpha = 2 \Rightarrow \cos^2 \alpha = \frac{1}{2}$ tion) $\frac{12}{13} = \sqrt{1 - \frac{b^2}{c^2}}$ $\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{2}} \Rightarrow \alpha = \frac{\pi}{4}, \frac{3\pi}{4}$ $\Rightarrow \frac{b^2}{a^2} = 1 - \frac{144}{169} = \frac{25}{169} \Rightarrow \frac{a}{b} = \frac{13}{5}$ 62. (C) let the point (x_1, y_1) be equidistant from the given points. $\therefore \sqrt{[x_1 - (m+n)]^2 + [y_1 - (n-m)]^2}$ 66. (C) The projection of b on a = $\frac{a.b}{|\hat{a}|} = \hat{a}.b$ $=\sqrt{[x_1 - (m - n)]^2 + [y_1 - (n + m)]^2}$ $[:: |\hat{a}| = 1]$ $\Rightarrow x_{1}^{2} + (m + n)^{2} - 2x_{1}(m + n) + y_{1}^{2} + (n - m)^{2} -$ 67. (A) By taking option (a). $2y_1(n-m)$ $= x_{1}^{2} + (m-n)^{2} - 2x_{1}(m-n) + y_{1}^{2} + (n+m)^{2}$ Condition of perpendicularity a.b = 0 $-2y_{1}(n+m)$ $\pm \frac{(3i+4j)}{5} \cdot (4i-3+k) = \frac{1}{5}(12-12) = 0$ $\Rightarrow 2x_1(m-n-m-n) + 2y_1(n+m-n+m) = 0$ $\Rightarrow -4x_1n + 4y_1m = 0 \Rightarrow my_1 = nx_1$ 68. (D) Let $r_1 = bi - aj$ Hence, locus of the point is Condition of perpendicularity a.b = 0nx = myNow, $r_1 \cdot r = (bi - aj)$. (ai + bj) 63. (C) Given the centre of sphere to be (6, -1, 2)=ab - ab = 0 \therefore Radius = Perpendicular distance to the 69. (D) Given, a = 2i - 3j + 4kplane from the centre Also, b = ma= m(2i - 3j + 4k):. Radius = $\left[\frac{2(6) - 1(-1) + 2(2) - 2}{\sqrt{4 + 1 + 4}}\right] = \frac{15}{3} = 5$ As b is a unit vector. Now, $|2i-2j+4k| = \sqrt{4+9+16} = \sqrt{29}$ \therefore Equation of sphere is $(x-6)^2 + (y+1)^2 + (z-2) = 5^2$ Therefore, m should be $\frac{1}{\sqrt{29}}$ (: |b|=1) $\Rightarrow x^2 + y^2 + z^2 - 12x + 2y - 4z + 16 = 0$ 64. (A) The intersection of the given plane is 70. (A) Since, $(\lambda a + b)$. $(a - \lambda b) = 0$ (given) $x - y + 2z - 1 + \lambda (x + y - z - 3) = 0$ $\Rightarrow \lambda |a|^2 + (1-\lambda^2)a.b - \lambda |b|^2 = 0$ $\Rightarrow x (1+\lambda) + y (\lambda-1) + z (2-\lambda) - 3\lambda - 1 = 0$ $\Rightarrow (1 - \alpha^2) |\mathbf{a}| |\mathbf{b}| \cos 60^0 = 0 \quad (\because |\mathbf{a}| = |\mathbf{b}|)$ Direction ratios of normal to the above plane is $(1 + \lambda, \lambda - 1, 2 - \lambda)$ $\Rightarrow \lambda = +1$ or $\lambda = 1$ (given $\theta = 60^{\circ}$) Ph: 09555108888, 09555208888

Ph: 09555108888, 09555208888

15

Campus KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA	MATHS MOCK TE	ST - 51 (A	ANSWER KEY)
1. (C)	31. (A)	61. (A)	91. (C)
2. (C)	32. (C)	62. (C)	92. (B)
3. (B)	33. (B)	63. (C)	93. (C)
4. (B)	34. (C)	64. (A)	94. (C)
5. (C)	35. (C)	65. (B)	95. (B)
6. (D)	36. (C)	66. (C)	96. (B)
7. (D)	37. (D)	67. (A)	97. (B)
8. (B)	38. (A)	68. (D)	98. (C)
9. (D)	39. (D)	69. (D)	99. (C)
10. (A)	40. (D)	70. (A)	100. (B)
11. (B)	41. (A)	71. (C)	101. (D)
12. (A)	42. (B)	72. (B)	102. (C)
13. (D	43. (A)	73. (C)	103. (A)
14. (B)	44. (C)	74. (C)	104. (A)
15. (B)	45. (A)	75. (D)	105. (B)
16. (B)	46. (C)	76. (C)	106. (D)
17. (B)	47. (A)	77. (D)	107. (C)
18. (C)	48. (C)	78. (B)	108. (D)
19. (A)	49. (D)	79. (C)	109. (A)
20. (A)	50. (D)	80. (B)	110. (B)
21. (D)	51. (D)	81. (A)	111. (C)
22. (C)	52. (*)	82. (D)	112. (B)
23. (C)	53. (B)	83. (C)	113. (D)
24. (B)	54. (C)	84. (C)	114. (C)
25. (D)	55. (C)	85. (D)	115. (B)
26. (C)	56. (B)	86. (A)	116. (A)
27. (D)	57. (A)	87. (D)	117. (C)
28. (C)	58. (C)	88. (C)	118. (A)
29. (C)	59. (B)	89. (C)	119. (C)
30. (B)	60. (D)	90. (D)	120. (C)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact : 9313111777

Ph: 09555108888, 09555208888

16