Campus

KD Campus Pvt. Ltd

NDA MATHS MOCK TEST - 51 (SOLUTION)

1. (C) Sum of roots $=(m+n)+(m-n)$

$$
=2 m
$$

Product of roots $=(m+n)(m-n)$

$$
=m^{2}-n^{2}
$$

\therefore Quadratic equation is
$x^{2}-$ (Sum of roots) $x+$ Product of roots $=0$
$x^{2}-2 m x+\left(m^{2}-n^{2}\right)=0$
2. (C) Since α and β are the roots of
$x^{2}+p x-q=0$
$\therefore \alpha+\beta=-p, \alpha \beta=-q$
Again since γ, δ are the roots of $x^{2}-p x+r=0$
$\therefore \gamma+\delta=p, \gamma \delta=r$
$(\beta+\gamma)(\beta+\delta)=\beta^{2}+\beta \delta+\gamma \beta+\gamma \delta$
$=\beta^{2}+\beta(\delta+\gamma)+\gamma \delta$
$=\beta^{2}+\beta(p)+\gamma \delta$
$[\therefore \gamma+\delta=p$ and $\gamma \delta=r]$
$=\beta^{2}+\beta(-\alpha-\beta)+r$

$$
[\because P=-(\alpha+\beta)]
$$

$=\beta^{2}+(-\beta)(\alpha+\beta)+r$
$=\beta^{2}-\alpha \beta-\beta^{2}+r$
$=-\alpha \beta+r$
$=-(-q)+r$
$=q+r$
Hence, $(\beta+\gamma)(\beta+\delta)=q+r$
3. (B) Since, the sum of cubes of first n natural
numbers $=\left[\frac{n(n+1)}{2}\right]^{2}$
and the sum of squares of first n natural
numbers $=\frac{n(n+1)(2 n+1)}{6}$
\therefore The sum of cubes of first 20 natural numbers

$$
=\left[\frac{20(20+1)}{2}\right]^{2}
$$

$$
\begin{aligned}
& =\left(\frac{20 \times 21}{2}\right)^{2} \\
& =(10 \times 21)^{2} \\
& =44100
\end{aligned}
$$

and the sum of squares of first 20 natural
numbers $=\frac{20(20+1)(2 \times 20+1)}{6}$

$$
=\frac{20 \times 21 \times 41}{6}=2870
$$

4. (B) Statement I

$$
\begin{aligned}
\text { LHS }= & \left(\omega^{10}+1\right)^{7}+\omega \\
= & {\left[\left(\omega^{3}\right)^{3} \omega+1\right]^{7}+\omega \quad \quad\left[\because \omega^{3}=1\right] } \\
= & (\omega+1)^{7}+\omega \\
= & \left(-\omega^{2}\right)^{7}+\omega \\
& {\left[\because 1+\omega+\omega^{2}=0 \therefore 1+\omega=-\omega^{2}\right] } \\
= & -\omega^{14}+\omega=-\left(\omega^{3}\right)^{4} \omega^{2}+\omega \\
= & -\omega^{2}+\omega=(1+\omega)+\omega=1+2 \omega \neq 0
\end{aligned}
$$

\therefore Statement 1 is false.

Statement 2

LHS $=\left(\omega^{105}+1\right)^{10}$
$\left.=\left(\omega^{3}\right)^{35}+1\right]^{10} \quad\left[\because \omega^{2}=1\right]$
$=(1+1)^{10}$
$=2^{10}=p^{10}$ which is true for prime numbers 2 .
So, Statement 1 is false and Statement 2 is true.
5. (C) Given series is

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots \ldots
$$

Since, it is geometric progression, Here, First term $a=1$

$$
\text { Common ratio } \mathrm{r}=-\frac{1}{2}<1
$$

\therefore The sum of first eight terms of the series i.e. $\mathrm{S}_{8}=\frac{a\left(1-r^{8}\right)}{(1-r)}$
[by formula, $\mathrm{S}_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, where $r<1$]

$$
\begin{aligned}
& =\frac{1\left[1-\left(-\frac{1}{2}\right)^{8}\right]}{1-\left(-\frac{1}{2}\right)}=\frac{1-\frac{1}{256}}{1+\frac{1}{2}}=\frac{\frac{255}{256}}{\frac{3}{2}} \\
& =\frac{255}{256} \times \frac{2}{3}=\frac{85}{128}
\end{aligned}
$$

6. (D) There are 8 letters in word 'BASEBALL' in which $2 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~L}, 1 \mathrm{~S}$ and 1 E .
So, the number of permutations that can be formed from all the letters of the word 'BASEBALL'

$$
\begin{aligned}
& =\frac{8!}{2!2!2!} \\
& =\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1 \times 2 \times 1} \\
& =7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
& =42 \times 120=5040
\end{aligned}
$$

7. (D) $\mathrm{R}=[x: x$ is a set of all children of a same father]
(i) Reflexive Let p be the child of same father.
$\therefore p R p$ is a reflexive.
(ii) Symmetry Let p and q be the children of same father.
$\therefore q$ and p be the children of same father.
$\therefore R$ is symmetric.
(iii) Transitive Let p and q be children of same father and q and r be the children of same father.
$\therefore p$ and r be the children of same father R.
$\therefore R$ is transitive.
$\because R$ have all three properties such that reflexive, symmetry and transitive, so R is an equivalence relation.
8. (B) Since, the roots of the quadratic equation $3 x^{2}-5 x+p=0$ are real and unequal.
\therefore Discriminant >0.
$\Rightarrow b^{2}-4 a c>0$
$\Rightarrow(-5)^{2}-4(3)(p)>0($ here, $b=-5, a=3, c=p)$
$\Rightarrow 25-12 p>0 \Rightarrow 25>12 p$
$\Rightarrow 12 p<25 \Rightarrow p<\frac{25}{12}$
9. (D) $(1011)_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ $=8+0+2+1=11$
10. (A) For integer part of 57.375 i.e. $(57)_{10}$

2	57	
2	28	1
2	14	0
2	7	0
2	3	1
	1	1

$\therefore(57)_{10}=(111001)_{2}$
For after decimal part of 57.375 i.e., (0.375) ${ }_{10}$

Now,
Binary
$0.375 \times 2=0.750$
$0.75 \times 2=1.5 \quad 1$
$0.5 \times 2=1.0 \quad 1$
$(0.375)_{10}=(0.011)_{2}$
$\therefore(57.375)_{10}=(111001.011)_{2}$
11. (B) $\left(\log _{3} x\right)\left(\log _{x} 2 x\right)\left(\log _{2 x} y\right)=\log _{x} x^{2}$
$\Rightarrow \frac{\log x}{\log 3} \times \frac{\log 2 x}{\log x} \times \frac{\log y}{\log 2 x}=\frac{\log x^{2}}{\log x}$
$\left(\because \log _{b} a=\frac{\log a}{\log b}\right)$
$\Rightarrow \frac{\log y}{\log 3}=\frac{2 \log x}{\log 2 x} \quad\left[\because \log a^{b}=b \log a\right]$
$\Rightarrow \log y=2 \log 3$
$\Rightarrow \log y=\log 3^{2} \quad[\because \log m=\log n \Rightarrow m=n]$
$\Rightarrow \log y=\log 9$
$\Rightarrow \quad y=9$
12. (A) Given relation is

$$
\begin{aligned}
\mathrm{R}= & \{(1,2),(1,3),(2,1),(1,1),(2,2), \\
& (3,3),(2,3)\}
\end{aligned}
$$

and $P=\{1,2,3\}$
(i) Reflexive If $a R a, \forall a \in P$.

Then, R is reflexive.
In $R, 1 R 1,2 R 2$ and $3 R 3$ where $1,2,3 \in P$. $\therefore R$ is reflexive.
(ii) Symmetry If $a R b \Rightarrow b R a$, where $a, b \in P$. Then R is symmetry.
In $R, 1 R 3 \nRightarrow 3 R 1$ and $2 R 3 \nRightarrow 3 R 2$
$\therefore R$ is not symmetry.
(iii) Transitive If $a R b$ and $b R c \Rightarrow a R c$
where $a, b, c \in P$.
Then, R is transitive.
In $R, 1 R 2$ and $2 R 3 \Rightarrow 1 R 3$
and $1 R 2$ and $2 R 1 \Rightarrow 1 R 1$
$\therefore R$ is transitive.

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
13. (D) Given $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$

$$
\begin{aligned}
& =(i+1) \sum_{n=1}^{13}\left(i^{n}\right)=(i+1)\left(i+i^{2}+\ldots+i^{12}\right) \\
& =(i+1)\left\{\frac{i\left(1-i^{13}\right)}{(1-i)}\right\}=\frac{\left(i^{2}+i\right)\left\{1-\left(i^{2}\right)^{6} i\right\}}{(1-i)} \\
& {\left[\because i^{2}=-1\right]} \\
& =\frac{(i-1)}{(1-i)}(1-i)=(i-1)
\end{aligned}
$$

Explanation (Q.No. 14-15):

Let the first term of an AP is a and common difference is d.
Given, $S_{10}=120$ and $S_{20}=440$

$$
\begin{array}{ll}
\because & \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\therefore & \mathrm{S}_{10}=\frac{10}{2}[2 a+(10-1) d] \\
\Rightarrow & 120=5(2 a+9 d) \\
\Rightarrow & 2 a+9 d=24 \tag{i}
\end{array}
$$

$$
\begin{align*}
& \text { and } \left.\quad \mathrm{S}_{20}=\frac{20}{2}[2 a+10-1) d\right] \\
& \Rightarrow \quad 440=10(2 a+19 d) \\
& \Rightarrow \quad 2 a+19 d=44 \tag{ii}
\end{align*}
$$

On subtracting eqn (i) from eqn. (ii), we get

$$
\begin{array}{rlrl}
& & 10 d & =20 \\
\Rightarrow & d & =2
\end{array}
$$

On putting the value of d in Eq. (i), we get

$$
\begin{array}{rlrl}
& & 2 a+9(2) & =24 \\
\Rightarrow & 2 a+18 & =24 \\
\Rightarrow & & 2 a & =6 \\
\Rightarrow & & a & =3
\end{array}
$$

14. (B)
15. (B)
16. (B) Since, a non-empty set A has an elements therefore its power set contains 2^{n} elements because power set have same element as number of subsets of set A.
17. (B) Given,
$\mathrm{A}=\{x \in W$, the set of whole numbers and $x<3\}$
$=\{0,1,2\}$
$\mathrm{B}=\{x \in N$, the set of natural numbers and $2 \leq x<4\}$
$=\{2,3\}$
$\mathrm{C}=\{3,4\}$
$\mathrm{A} \cup \mathrm{B}=\{0,1,2,3\}$
$(A \cup B) \times C=\{0,1,2,3\} \times\{3,4\}$

$$
\begin{aligned}
= & \{(0,3),(0,4),(1,3),(1,4), \\
& (2,3),(2,4),(3,3),(3,4)\}
\end{aligned}
$$

Required number of elements containing by $(A \cup B) \times C$ is 8 .
18. (C) $\frac{\sqrt{2}+i}{\sqrt{2}-i}=\frac{\sqrt{2}+i}{\sqrt{2}-i} \times \frac{\sqrt{2}+i}{\sqrt{2}+i}$

$$
\begin{aligned}
& =\frac{(\sqrt{2}+i)^{2}}{(\sqrt{2})^{2}+(i)^{2}}=\frac{2+i^{2}+2 \sqrt{2} i}{2-i^{2}} \\
& =\frac{2-1+2 \sqrt{2} i}{2-(-1)}=\frac{1+2 \sqrt{2} i}{3}
\end{aligned}
$$

$$
\therefore \frac{\sqrt{2}+i}{\sqrt{2}-i}=\frac{1+2 \sqrt{2} i}{3}
$$

$$
\Rightarrow \frac{\sqrt{2}+i}{\sqrt{2}-i}=\frac{1}{3}+\frac{2 \sqrt{2}}{3} i
$$

$$
\Rightarrow\left|\frac{\sqrt{2}+i}{\sqrt{2}-i}\right|=\left|\frac{1}{3}+\frac{2 \sqrt{2}}{3} i\right|
$$

$$
=\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2 \sqrt{2}}{3}\right)^{2}}
$$

$$
=\sqrt{\frac{1}{9}+\frac{8}{9}}=\sqrt{\frac{9}{9}}=1
$$

Alternate method

We know that
If Z_{1} and Z_{2} are two complex numbers.
Then, $\left|\frac{Z_{1}}{Z_{2}}\right|=\left|\frac{Z_{1}}{Z_{2}}\right|$, Provided $Z_{2} \neq 0$

$$
\therefore\left|\frac{\sqrt{2}+i}{\sqrt{2}-i}\right|=\frac{|\sqrt{2}+i|}{|\sqrt{2}-i|}=\frac{\sqrt{2+1}}{\sqrt{2+1}}=\frac{\sqrt{3}}{\sqrt{3}}=1
$$

19. (A) The number of diagonals which can be drawn by joining the angular points of a polygon of 100 sides $={ }^{100} C_{2}-100$

$$
\begin{aligned}
& =\frac{100!}{2!98!}-100 \\
& =\frac{100 \times 99 \times 98!}{2 \times 98!}-100 \\
& =50 \times 99-100 \\
& =4950-100 \\
& =4850
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
20. (A) Let the angles of triangles are $a, a+d$ and $2+2 d$.
Given, $a=30^{\circ}$
$\because a+a+d+a+2 d=180^{\circ}$
$\therefore \quad 3 a+3 d=180^{\circ}$
$\Rightarrow \quad 3 \times 30^{\circ}+3 d=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+3 d=180^{\circ}$
$\Rightarrow \quad 3 d=90^{\circ}$
$\Rightarrow \quad d=30^{\circ}$
\therefore Angles of triangle are $30^{\circ}, 60^{\circ}$ and 90°.
Hence, greatest angle $=90^{\circ}=\frac{\pi}{2}$
21. (D) If each element in a row of a determinant is multiplied by the same factor r, then the value of the determinant is multiplied by r.
22. (C) We know that by the property of diagonal matrix.
At A = Diagonal $\left(a_{1}, a_{2}, a_{3}\right)$
Then, $\mathrm{A}^{-1}=$ Inverse of A
$=$ Diagonal $\left(a_{1}^{-1}, a_{2}^{-1}, a_{3}^{-1}\right)$
$=$ Diagonal $\left(\frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}\right)$
Hence, the inverse of diagonal matrix is a diagonal matrix.
23. (C) The transpose of any matrix A is obtained by interchange the row into corresponding column. So, B is the transpose of A.
24. (B)
$\left[\begin{array}{l}x \\ x \\ y\end{array}\right]+\left[\begin{array}{l}y \\ y \\ z\end{array}\right]+\left[\begin{array}{l}z \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}10 \\ 5 \\ 5\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{l}
x+y+z \\
x+y+0 \\
y+z+0
\end{array}\right]=\left[\begin{array}{c}
10 \\
5 \\
5
\end{array}\right]
$$

$$
\begin{equation*}
\Rightarrow \quad x+y+z=10 \tag{i}
\end{equation*}
$$

$x+y=5$

$$
\begin{equation*}
y+z=5 \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (iii), we get
$\Rightarrow \quad x+(5)=10 \Rightarrow x=5$
On putting the vlaue of x in Eq. (ii), we get

$$
\begin{aligned}
5+y & =5 \\
y & =0
\end{aligned}
$$

25. (D) From option (D), we have
$\mathrm{C}=\mathrm{A} \cos \alpha+\mathrm{B} \sin \alpha$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cos \alpha+\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \sin \alpha
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos \alpha & 0 \\
0 & \cos \alpha
\end{array}\right]+\left[\begin{array}{cc}
0 & \sin \alpha \\
-\sin \alpha & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\mathrm{C}
\end{aligned}
$$

Hence, (D) is the correct option.
26. (C)
27. (D) $\left|\begin{array}{ccc}1+\omega & \omega^{2} & \omega \\ 1+\omega^{2} & \omega & \omega^{2} \\ \omega+\omega^{2} & \omega & \omega^{2}\end{array}\right|$

Apply $\mathrm{C}_{1}+\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}$.
$=\left|\begin{array}{ccc}1+\omega+\omega^{2} & \omega^{2} & \omega \\ 1+\omega^{2}+\omega & \omega & \omega^{2} \\ \omega+\omega^{2}+\omega & \omega & \omega^{2}\end{array}\right|$
$=\left|\begin{array}{ccc}0 & \omega^{2} & \omega \\ 0 & \omega & \omega^{2} \\ -1+\omega & \omega & \omega^{2}\end{array}\right| \quad \because 1+\omega+\omega^{2}=0$
$=(-1+\omega)\left|\begin{array}{cc}\omega^{2} & \omega \\ \omega & \omega^{2}\end{array}\right|$
$=(-1+\omega)\left(\omega^{4}-\omega^{2}\right)$
$=(-1+\omega)\left(\omega^{3} . \omega-\omega^{2}\right)$
$=(-1+\omega)\left(\omega-\omega^{2}\right)$
$=-\omega+\omega^{2}+\omega^{2}-\omega^{3}$
$=-\omega+2 \omega^{2}-1$
$=-(1+\omega)+2 \omega^{2}$
$=3 \omega^{2}$
28. (C) In the word GARDEN, all the letters are different.
\therefore The no. of ways to arrange the letters of this word $=6!=720$
\because Vowels are in alphabetical order.
\therefore The no. of arrangments $=\frac{6!}{2}=\frac{720}{2}=360$
29. (C) $x+2=0 \Rightarrow x=-2$

Again,

$$
x^{2}+2 x=0
$$

$\Rightarrow x(x+2)=0$
$\Rightarrow x=0,-2$
Also,

$$
x^{2}+x-2=0
$$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow x^{2}+2 x-x-2=0$
$\Rightarrow x(x+2)-(x+2)=0$
$\Rightarrow(x-1)(x+2)=0$
$\Rightarrow x=1,-2$
From the above solutions, we conclude that for $x=-2, \mathrm{~V}=\mathrm{R}=\mathrm{S}$.
30. (B)

Given:-

$$
\begin{aligned}
& f=0, d=4, g=0 \\
\because \quad & a+d+f+g=10 \\
& a+4+0+0=10 \\
\Rightarrow \quad & a=6
\end{aligned}
$$

Again

$$
b+d+g+e=9
$$

$$
b+4+0+e=9
$$

$$
b+e=5
$$

Also, $a+d+b+c+e=20$
$\Rightarrow 6+4+5+c=20$
$\Rightarrow+$

$$
c=20-15=5
$$

Now,

$$
\begin{aligned}
c+e & =7 \\
5+e & =7 \\
\mathrm{e} & =7-5=2
\end{aligned}
$$

31. (A) Since, α and γ be the roots of $\mathrm{A} x^{2}-4 x+1=0$ $\therefore \alpha+\gamma=\frac{4}{A}$ and $\alpha \gamma=\frac{1}{A}$
And β and δ be the roots of $\mathrm{B} x^{2}-6 x+1=0$
$\therefore \quad \beta+\delta=\frac{6}{B}$ and $\beta \delta=\frac{1}{B}$
Also, α, β, and δ are in HP.
$\therefore \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ and $\frac{1}{\delta}$ are in AP.
$\Rightarrow \frac{1}{\beta}-\frac{1}{\alpha}=\frac{1}{\delta}-\frac{1}{\gamma}$
$\Rightarrow \frac{1}{\beta}-\frac{1}{\delta}=\frac{1}{\alpha}-\frac{1}{\gamma}$
$\Rightarrow \frac{\delta-\beta}{\alpha \beta}=\frac{\gamma-\alpha}{\alpha \gamma}$
$\Rightarrow \frac{\sqrt{(\delta+\beta)^{2}-4 \alpha \delta}}{\beta \delta}=\frac{\sqrt{(\gamma+\alpha)^{2}-4 \alpha \gamma}}{\alpha \gamma}$
$\Rightarrow \frac{\sqrt{\frac{36}{B^{2}}-\frac{4}{B}}}{\frac{1}{B}}=\frac{\sqrt{\frac{16}{A^{2}}-\frac{4}{A}}}{\frac{1}{A}}$
$\Rightarrow \sqrt{36-4 B}=\sqrt{16-4 A}$
$\Rightarrow 36-4 \mathrm{~B}=16-4 \mathrm{~A}$
$\Rightarrow 4 \mathrm{~A}-4 \mathrm{~B}=-20$
$\Rightarrow \mathrm{A}-\mathrm{B}=-5$
$\Rightarrow-\mathrm{A}+\mathrm{B}=5$
It is possible if $\mathrm{A}=3$ and $\mathrm{B}=8$.
32. (C) The given system of equation is

$$
\begin{aligned}
& k x+y+z=k-1 \\
& x+k y+z=k-1 \\
& x+y+k z=k-1
\end{aligned}
$$

$\therefore \mathrm{A}=\left[\begin{array}{lll}k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{ll}k & -1 \\ k & -1 \\ k & -1\end{array}\right]$
$\mathrm{C}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
Now,

$$
|\mathrm{A}|=\left|\begin{array}{ccc}
k & 1 & 1 \\
1 & k & 1 \\
1 & 1 & k
\end{array}\right|
$$

Expanding along R_{1}
$=k\left(k^{2}-1\right)-1(k-1)+1(1-k)$
$=k^{3}-k-k+1+1-k$
$=k^{3}-3 k+2$
The given system of equations has no solution, if $|\mathrm{A}|=0$
$\Rightarrow k^{3}-3 k+2=0$
$\Rightarrow(k-1)^{2}(k+2)=0$
$\Rightarrow k=1$ or $k=-2$
33. (B) We know that the largest side has the greatest angle opposite it.
$\therefore \quad a=6 \mathrm{~cm}, b=10 \mathrm{~cm}$ and $c=14 \mathrm{~cm}$
$\therefore \quad \cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ [By cosine rule]

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& =\frac{36+100-196}{2 \times 6 \times 10} \\
& =-\frac{1}{2}=\cos 120^{\circ} \\
\angle C & =120^{\circ}
\end{aligned}
$$

34. (C) From the figure, it is clear that

Alternative:-

$$
\begin{aligned}
(\mathrm{X}-\mathrm{Y})^{\prime} & =\left(\mathrm{X} \cap \mathrm{Y}^{\prime}\right)^{\prime} \\
& =\mathrm{X}^{\prime} \cup\left(\mathrm{Y}^{\prime}\right)^{\prime} \\
& =\mathrm{X}^{\prime} \cup \mathrm{Y}
\end{aligned}
$$

35. (C) We know that area of $\triangle \mathrm{ABC}$ whose sides are a, b and c are

$$
\begin{aligned}
\Delta & =\frac{c^{2} \sin A \cdot \sin B}{2 \sin C} \\
& =\frac{a^{2} \sin B \cdot \sin C}{2 \sin A} \\
& =\frac{b^{2} \sin C \cdot \sin A}{2 \sin B}
\end{aligned}
$$

where $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
So, finding the area of $\triangle A B C$, angles A, B and side C are required.
36. (C) Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
$\therefore \mathrm{AB}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]=\left[\begin{array}{cc}a & 2 b \\ 3 a & 4 b\end{array}\right]$ and $\mathrm{BA}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}a & 2 a \\ 3 b & 4 b\end{array}\right]$
If $\mathrm{AB}=\mathrm{BA}$

$$
\Rightarrow\left[\begin{array}{cc}
a & 2 b \\
3 a & 4 b
\end{array}\right]=\left[\begin{array}{cc}
a & 2 a \\
3 b & 4 b
\end{array}\right] \Rightarrow a=b
$$

From the above it is clear that there exist infinitely B such that $A B=B A$.
37. (D) $M=\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k\end{array}\right]$

Now $|\mathrm{M}|=\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k\end{array}\right]=k(3-8)=-5 k$
If $k \neq 0$, then inverse of M exists.
Thus, statement A implies B as well as B implies A.
38. (A) $\because 2^{x}+3^{y}=17$
and $2^{x+2}-3^{y+1}=5$

$$
2^{x} \cdot 4-3.3^{y}=5
$$

From Eqs. (i) and (ii),

$$
\begin{aligned}
& 2^{x}=8 \text { and } 3^{y}=9 \\
& x=3 \text { and } y=2
\end{aligned}
$$

39. (D) $\because \mathrm{P}(32,6)=\mathrm{k} \mathrm{C}(32,6)$

$$
\begin{aligned}
& \Rightarrow \frac{32!}{26!}=\mathrm{k} \times \frac{32!}{6!.26!} \\
& \Rightarrow \mathrm{k}=6!=720
\end{aligned}
$$

40. (D) $\because \frac{\sqrt{3}+i}{1+\sqrt{3} i}=\frac{(\sqrt{3}+i)(1-\sqrt{3} i)}{(1+\sqrt{3} i)(1-\sqrt{3} i)}$

$$
=\frac{\sqrt{3}-3 i+i+\sqrt{3}}{1+3}
$$

$$
=\frac{2 \sqrt{3}-2 i}{4}=\frac{\sqrt{3}-i}{2}
$$

41. (A) $\because(0.1101)_{2}=1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-4}$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{4}+\frac{1}{16}=\frac{13}{16} \\
& =(0.8125) 10
\end{aligned}
$$

Hence, $(0.8125)_{10}=(0.1101)_{2}$

Alternative Method

$$
\begin{array}{rlrl}
0.8125 \times 2 & =1.625 & 1 \\
0.625 \times 2 & =1.25 & 1 \\
0.25 \times 2 & =0.50 & 0 \\
0.5 \times 2 & =1.0 & 1 \\
\Rightarrow(0.8125)_{10} & =(0.1101)_{2} & &
\end{array}
$$

42. (B) $\left|\begin{array}{lll}x & y & y+z \\ z & y & x+y \\ x & z & z+x\end{array}\right|=0$

$$
\Rightarrow\left|\begin{array}{ccc}
x+y+z & x+y+z & 2(x+y+z) \\
z & y & x+y \\
x & z & z+x
\end{array}\right|=0
$$

$$
\left(\because \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)
$$

$$
\Rightarrow(x+y+z)\left|\begin{array}{ccc}
1 & 1 & 2 \\
z & y & x+y \\
x & z & z+x
\end{array}\right|=0
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow(x+y+z)\left|\begin{array}{ccc}1 & 0 & 0 \\ z & -z+y & x+y-2 z \\ x & z-x & z-x\end{array}\right|=0$
$\left(\because \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-2 \mathrm{C}_{1}\right)$
Expand with respect to R_{1}
$\Rightarrow(x+y+z)\left|\begin{array}{cc}z+y & x+y-2 z \\ z-x & z-x\end{array}\right|=0$
$\Rightarrow(x+y+z)(-z+y-x-y+2 z)=0$
$\Rightarrow \quad x+y=-z$ or $z=x$
43. (A) Let $\Delta=\left|\begin{array}{lll}k & b+c & b^{2}+c^{2} \\ k & c+a & c^{2}+a^{2} \\ k & a+b & a^{2}+b^{2}\end{array}\right|$

Transpose of whole determinant

$$
\begin{aligned}
& =k\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+c & c+a & a+b \\
b^{2}+c^{2} & a+b & a^{2}+b^{2}
\end{array}\right| \\
& =k\left|\begin{array}{ccc}
1 & 0 & 0 \\
b+c & a-b & a-c \\
b^{2}+c^{2} & a^{2}-b^{2} & a^{2}-c^{2}
\end{array}\right| \\
& \left(\because C_{2} \rightarrow C_{2}-C_{1}: C_{3} \rightarrow C_{3}-C_{1}\right) \\
& =k\left|\begin{array}{ccc}
1 & 0 & 0 \\
b+c & a-b & a-c \\
b^{2}+c^{2} & (a-b)(a+b) & (a-c)(a+c)
\end{array}\right|
\end{aligned}
$$

Expand with respect R_{1}

$$
\begin{aligned}
& =k(a-b)(b-c)\left|\begin{array}{cc}
1 & 1 \\
a+b & a+c
\end{array}\right| \\
& =k(a-b)(a-c)(a+c-a-b) \\
& =k(a-b)(b-c)(c-a)
\end{aligned}
$$

But $\Delta=(a-b)(b-c)(c-a)$
On comparing
Thus, $k=1$
44. (C) Total number of proper subsets of a finite set with n elements $=2^{n}-1$.
(by propery)
45. (A) Since, $(x+a)$ is factor of

$$
\begin{array}{ll}
& x^{2}+p x+q \text { and } x^{2}+l x+m \\
\therefore \quad & a^{2}-a p+q=0 \\
\Rightarrow & \quad a^{2}-l a+m=0 \\
\Rightarrow \quad & (l-p) a=m-q \\
\Rightarrow & \frac{m-q}{l-p}(l \neq p)
\end{array}
$$

46. (C) We know that,

$$
[(\mathrm{A} \cup \mathrm{~B}) \cap \mathrm{C}]^{\prime}=(\mathrm{A} \cup \mathrm{~B})^{\prime} \cup \mathrm{C}^{\prime}
$$

$=\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \cup \mathrm{C}^{\prime}$
$=A^{\prime} \cap B^{\prime} \cup C^{\prime}$
(by De Morgan's Law)
47. (A) $\tan \left(-1575^{\circ}\right)=-\tan \left(4 \times 360^{\circ}+135^{\circ}\right)$

$$
\begin{aligned}
& =-\tan 135^{\circ} \\
& =-\tan \left(90^{\circ}+45^{\circ}\right) \\
& =\cot 45^{\circ}=1
\end{aligned}
$$

48. (C) $\because \operatorname{cosec}^{2} \theta=3 \sqrt{3} \cot \theta-5$
$\Rightarrow 1+\cot ^{2} \theta-3 \sqrt{3} \cot \theta+5=0$
$\left(\because \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\right)$
$\Rightarrow \cot ^{2} \theta-3 \sqrt{3} \cot \theta+6=0$
$\cot \theta=\frac{3 \sqrt{3} \pm \sqrt{27-24}}{2}$

$$
=\frac{3 \sqrt{3} \pm \sqrt{3}}{2}=2 \sqrt{3}, \sqrt{3}
$$

$\Rightarrow \cot \theta \neq 2 \sqrt{3}, \cot \theta=\sqrt{3}=\cot \frac{\pi}{6}$
$\Rightarrow \quad \theta=\frac{\pi}{6}$
49. (D) $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a$

On differentiating w.r.t. x , we get
$\frac{1}{2 \sqrt{1-x^{2}}}(-2 x)+\frac{1(-2 y)}{2 \sqrt{1-y^{2}}} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{x}{y} \sqrt{\frac{1-y^{2}}{1-x^{2}}}$
50. (D) Given, $x=\log t$ and $y=t^{2}-1$
$\Rightarrow 2 x=\log \mathrm{t}^{2}$
$\Rightarrow 2 x=\log (y+1) \Rightarrow \mathrm{e}^{2 \mathrm{x}}=y+1$
On differentiating w.r.t. x, twicely, we get
$\mathrm{e}^{2 \times 2} 2=\frac{d y}{d x}$
$\Rightarrow 4 \mathrm{e}^{2 x}=\frac{d^{2} y}{d x^{2}}$
At $t=1, x=0$
$\frac{d^{2} y}{d x^{2}}=4 \mathrm{e}^{2(0)}=4$
51. (D) An injective function means one-one. In option (D), $f(x)=-x$
For every values of x, we get a different value of f.
Hence, it is injective.
52. (*) Let $u=\log _{x} 5$ and $\mathrm{v}=\log _{5} x$

Campus

KD Campus Pvt. Ltd

Then, $\frac{d u}{d x}=\frac{-\log 5}{(\log x)^{2}} \cdot \frac{1}{x}$
and $\frac{d v}{d x}=\frac{1}{x \log 5}$

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{d u / d x}{d v / d x}=\frac{\frac{-\log 5}{(\log x)^{2}} \times \frac{1}{x}}{\left(\frac{1}{\log 5}\right) \times \frac{1}{x}} \\
& =-\left(\frac{\log 5}{\log x}\right)^{2} \\
& =-\left(\log _{x} 5\right)^{2}
\end{aligned}
$$

53. (B) Given, $v=s+1$

$$
\begin{aligned}
& \Rightarrow \frac{d s}{d t}=s+1 \quad\left(\because v=\frac{d s}{d t}\right) \\
& \Rightarrow \int \frac{d S}{s+1}=\int d t \\
& \Rightarrow \log (\mathrm{~s}+1)=\mathrm{t} \\
& \text { At } s=9 \mathrm{~m}, t=\log (10) \mathrm{S} \\
& \Rightarrow t=(\log 10) \mathrm{S}
\end{aligned}
$$

54. (C) Given curve $y^{2}=-4 a x$

It is curve from the figure that the curve lies in the second and third quadrants.
55. (C) Given equation is

$$
\begin{aligned}
& x^{2+} 4 x+3+y^{2}-4 y=0 \\
\Rightarrow & (\mathrm{x}+2)^{2}+(\mathrm{y}-2)^{2}=2^{2}
\end{aligned}
$$

Here, we see that the circle touches both the axis.
56. (B) $\therefore \cos 60^{\circ}=\left|\frac{1 \times 1+1 \times(-1)+1 \times n}{\sqrt{1^{2}+1^{2}+1^{2}} \times \sqrt{1^{2}+1^{2}+n^{2}}}\right|$
$\left(\because \cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}}\right|\right)$

$$
\Rightarrow \frac{1}{2}=\frac{n}{\sqrt{3} \sqrt{2+n^{2}}} \Rightarrow 3\left(2+n^{2}\right)=4 n^{2}
$$

$$
\Rightarrow n^{2}=6 \Rightarrow n= \pm \sqrt{6} \Rightarrow n=\sqrt{6}
$$

57. (A) Given, $a x \cos \phi+b y \sin \phi-a b=0$

$$
\begin{aligned}
& \text { At point }\left(\sqrt{b^{2}-a^{2}}, 0\right) \\
& d_{1}=\left|\frac{a \sqrt{b^{2}-a^{2}} \cos \phi-a b}{\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}}\right|
\end{aligned}
$$

At point $\left(-\sqrt{b^{2}-a^{2}} .0\right)$
$d_{2}=\left|\frac{-a \sqrt{b^{2}-a^{2}} \cos \phi-a b}{\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}}\right|$
$\therefore d_{1} d_{2}=\left|\frac{\left[a^{2}\left(b^{2}-a^{2}\right) \cos ^{2} \phi-a^{2} b^{2}\right]}{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}\right|$
$=\left|-\frac{a^{2}\left(-b^{2} \sin ^{2} \phi-a^{2} \cos ^{2} \phi\right)}{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}\right|$
$=a^{2}$
58. (C) Mid-point of (p, q) and $(q,-p)$ is $\left(\frac{p+q}{2}, \frac{q-p}{2}\right)$ which is given $\left(\frac{r}{2}, \frac{s}{2}\right)$
$\therefore \frac{p+q}{2}=\frac{r}{2}$ and $\frac{q-p}{2}=\frac{s}{2}$
Now, length of segment $=\sqrt{(p-q)^{2}+(q+p)^{2}}$
$=\sqrt{s^{2}+r^{2}}$
59. (B) Equation of plane passing through ($1,-2$,
4) and the direction consines of whose nor$\mathrm{mal}(2,1,2)$ is
$2(x-1)+1(y+2)+2(z-4)=0$
$2 x+y+2 z-8=0$
Required distance

$$
\begin{aligned}
& =\left|\frac{2(3)+1(2)+2(3)-8}{\sqrt{4+1+4}}\right| \\
& \quad\left(\therefore \text { distance }=\left|\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}\right|\right) \\
& =\frac{6}{3}=2
\end{aligned}
$$

KD Campus Pvt. Ltd

 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-11000960. (D) Equation of plane passing through $(1,-3,1)$ and the direction cosines of whose normal $(1,-3,1)$ is
$1(x-1)-3(y+3)+1(z-1)=0$
$\Rightarrow x-3 y+z-11=0$
$\Rightarrow \frac{x}{11}-\frac{y}{11 / 3}+\frac{z}{11}=0$
(intercept from)
The above plane intercept the x-axis at a distance of 11 .
61. (A) $\because l^{2}+m^{2}+n^{2}=1$
i.e., $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \theta+1$
$[\because(\alpha=\beta),(\gamma=\theta)] \ldots \ldots$. (i)
Also, $\sin ^{2} \theta=2 \sin ^{2} \alpha \quad$ (given)
$\Rightarrow 1-\cos ^{2} \theta=2\left(1-\cos ^{2} \alpha\right)$
$\Rightarrow \cos ^{2} \theta=2 \cos ^{2} \alpha-1$
\therefore From Eq. (i),
$2 \cos ^{2} \alpha+\left(2 \cos ^{2} \alpha-1\right)=1$
$\Rightarrow 4 \cos ^{2} \alpha=2 \Rightarrow \cos ^{2} \alpha=\frac{1}{2}$
$\Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{2}} \Rightarrow \alpha=\frac{\pi}{4}, \frac{3 \pi}{4}$
62. (C) let the point $\left(x_{1}, y_{1}\right)$ be equidistant from the given points.
$\therefore \sqrt{\left[x_{1}-(m+n)\right]^{2}+\left[y_{1}-(n-m)\right]^{2}}$
$=\sqrt{\left[x_{1}-(m-n)\right]^{2}+\left[y_{1}-(n+m)\right]^{2}}$
$\Rightarrow x^{2}{ }_{1}+(m+n)^{2}-2 x_{1}(m+n)+y^{2}{ }_{1}+(n-m)^{2}-$ $2 y_{1}(n-m)$
$=x^{2}{ }_{1}+(m-n)^{2}-2 x_{1}(m-n)+y_{1}^{2}+(n+m)^{2}$ $-2 y_{1}(n+m)$
$\Rightarrow 2 x_{1}(m-n-m-n)+2 y_{1}(n+m-n+m)=0$
$\Rightarrow-4 x_{1} n+4 y_{1} m=0 \Rightarrow m y_{1}=n x_{1}$
Hence, locus of the point is
$n x=m y$
63. (C) Given the centre of sphere to be ($6,-1,2$) \therefore Radius $=$ Perpendicular distance to the plane from the centre
\therefore Radius $=\left[\frac{2(6)-1(-1)+2(2)-2}{\sqrt{4+1+4}}\right]=\frac{15}{3}=5$
\therefore Equation of sphere is
$(x-6)^{2}+(y+1)^{2}+(z-2)=5^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+16=0$
64. (A) The intersection of the given plane is
$x-y+2 z-1+\lambda(x+y-z-3)=0$
$\Rightarrow x(1+\lambda)+\mathrm{y}(\lambda-1)+z(2-\lambda)-3 \lambda-1=0$
Direction ratios of normal to the above plane is $(1+\lambda, \lambda-1,2-\lambda)$

Since, the line formed intersected by planes and the normal of the plane are perpendicular, then
by taking option (a)
$-1(1+\lambda)+3(\lambda-1)+3(2-\lambda)=0$
$\Rightarrow-1-\lambda+3 \lambda-3+4-2 \lambda=0$
$0=0$
65. (B) Given ellipse is $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$
$e=\sqrt{1-\frac{25}{169}}=\frac{12}{13} \quad\left(\because e=\sqrt{1-\frac{b^{2}}{a^{2}}}\right)$
Also, ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}$
(\because According to the ques-
tion)
$\frac{12}{13}=\sqrt{1-\frac{b^{2}}{a^{2}}}$
$\Rightarrow \frac{b^{2}}{a^{2}}=1-\frac{144}{169}=\frac{25}{169} \Rightarrow \frac{a}{b}=\frac{13}{5}$
66. (C) The projection of b on $\mathrm{a}=\frac{a \cdot b}{|\hat{a}|}=\hat{a} \cdot b$

$$
[\because|\hat{a}|=1]
$$

67. (A) By taking option (a).

Condition of perpendicularity a.b $=0$
$\pm \frac{(3 i+4 \mathrm{j})}{5} \cdot(4 i-3+k)=\frac{1}{5}(12-12)=0$
68. (D) Let $\mathrm{r}_{1}=\mathrm{bi}-\mathrm{aj}$

Condition of perpendicularity a.b $=0$
Now, $\mathrm{r}_{1} \cdot \mathrm{r}=(\mathrm{bi}-\mathrm{aj}) .(\mathrm{ai}+\mathrm{bj})$
$=\mathrm{ab}-\mathrm{ab}=0$
69. (D) Given, $a=2 i-3 j+4 k$

Also, b = ma
$=m(2 \mathrm{i}-3 \mathrm{j}+4 \mathrm{k})$
As b is a unit vector.
Now, $|2 i-2 \mathrm{j}+4 \mathrm{k}|=\sqrt{4+9+16}=\sqrt{29}$
Therefore, m should be $\frac{1}{\sqrt{29}} \quad(\because|b|=1)$
70. (A) Since, $(\lambda a+b) \cdot(a-\lambda b)=0 \quad$ (given)
$\Rightarrow \lambda|a|^{2}+\left(1-\lambda^{2}\right) a . b-\lambda|b|^{2}=0$
$\Rightarrow\left(1-\alpha^{2}\right)|\mathrm{a}||\mathrm{b}| \cos 60^{\circ}=0 \quad(\because|\mathrm{a}|=|\mathrm{b}|)$
$\Rightarrow \lambda= \pm 1$ or $\lambda=1 \quad$ (given $\theta=60^{\circ}$)

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
71. (C) Since, $|\mathrm{a}+\mathrm{b}|^{2}+|\mathrm{a}-\mathrm{b}|^{2}=2\left(|\mathrm{a}|^{2}+|\mathrm{b}|^{2}\right)$
(by paralleogram law)
$\Rightarrow|\mathrm{a}+\mathrm{b}|^{2}+7^{2}=2\left(3^{2}+4^{2}\right)$
$\Rightarrow|a+b|^{2}=1$
$\Rightarrow|a+b|=1$
72. (B) Let $\mathrm{d}_{1}=3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}$
and $\mathrm{d}_{2}=4 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$
Now, $\mathrm{d}_{1} \cdot \mathrm{~d}_{2}=3(4)+6(-1)-2(3)=0$
Hence, $\left|d_{1}\right|=\sqrt{4^{2}+1^{2}+3^{2}}=\sqrt{26}$
$\Rightarrow\left|\mathrm{d}_{1}\right| \neq\left|\mathrm{d}_{2}\right|$
Hence, given quadrilateral is a rhombus.
73. (C) $\frac{\sin x}{1+\cos }=\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{1+2 \cos ^{2} \frac{x}{2}-1}$

$$
=\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}
$$

$$
=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\tan \frac{x}{2}
$$

74. (C) Let ' h ' be the height of the flag post.

In $\triangle \mathrm{ABC}$,

$$
\begin{array}{ll}
& \tan 75^{\circ}=\frac{A B}{B C}=\frac{h}{5} \\
\Rightarrow & \frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}}=\frac{h}{5} \\
\Rightarrow & \frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{h}{5} \\
\Rightarrow & \frac{h}{5}=\frac{(\sqrt{3}+1)^{2}}{(\sqrt{3})^{2}-(1)^{2}} \\
\Rightarrow & \frac{h}{5}=\left(\frac{3+1+2 \sqrt{3}}{3-1}\right) \\
=5(2+\sqrt{3})
\end{array}
$$

$(\because \sqrt{3}=1.732)$
$=5 \times 3.732$
$=19 \mathrm{~m}$ (Approx.)
75. (D)

$$
\mathrm{A}=\mathrm{P}(\{1,2\})=\{\phi,\{1\},\{2\},\{1,2\}\}
$$

From above, it is clear that $\{1,2\} \in \mathrm{A}$
76. (C) When we take 12 wrongly in place of 8 , then geometric mean $=6$
$\Rightarrow \quad\left(x_{1} \cdot x_{2} \cdot 12\right)^{1 / 3}=6$
$\Rightarrow \quad x_{1} \cdot x_{2} \cdot 12=216$
$\Rightarrow \quad x_{1} \cdot x_{2}=18$
Now, we take the right observation 8 in place of 12 , then the geometric mean

$$
\begin{aligned}
& =\left(x_{1} \cdot x_{2} \cdot 8\right)^{1 / 3} \\
& =(18.8)^{1 / 3} \\
& =2 \sqrt[3]{18}
\end{aligned}
$$

77. (D) \because

$$
\begin{aligned}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \text {,adj }(A) & =\left[\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]
\end{aligned}
$$

and $\quad|A|=4-6=-2$
$\therefore \quad \mathrm{A}^{-1}=\frac{1}{2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
$\left(\because A^{-1}=\frac{\operatorname{adj}(A)}{|A|}\right)$
$\Rightarrow \quad\left[b_{i j}\right]=\frac{1}{2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
$\Rightarrow \quad b_{22}=-\frac{1}{2}$
78. (B) $\because 4 \sin ^{2} x+4 \cos x-1=0$
$\Rightarrow 4-4 \cos ^{2} x+4 \cos x-1=0$
$\Rightarrow-4 \cos ^{2} x+4 \cos x+3=0$
$\Rightarrow 4 \cos ^{2} x-4 \cos x-3=0$
$\Rightarrow 4 \cos ^{2} x-6 \cos x+2 \cos x-3=0$
$\Rightarrow(2 \cos x-3)(2 \cos x+1)=0$
$\Rightarrow \cos x=\frac{3}{2}$ (which is not possible) $\cos x=-\frac{1}{2}$
$\Rightarrow \cos \mathrm{A}=-\frac{1}{2}=\cos 240^{\circ}$
[\because A lies in IIIrd quadrant]
$\Rightarrow \quad \mathrm{A}=240^{\circ}$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
79. (C) Equation of curve is

$$
\begin{aligned}
& y^{2}=12 x \\
\text { At } & y=6,36=12 \mathrm{x} \\
\Rightarrow & x=3
\end{aligned}
$$

\therefore Required area

$$
=\int_{0}^{3}(6-\sqrt{12 x}) d x
$$

$$
=[6 x]_{0}^{3}-\sqrt{12}\left[\frac{2 x^{\frac{3}{2}}}{3}\right]_{0}^{3}
$$

$$
=[6 \times 3]-\frac{\sqrt{12} \times 2 \times \sqrt{27}}{3}
$$

$$
=18-12=6 \text { sq unit }
$$

80. (B) $\because a=\sqrt{39}, b=5$ and $c=7$

By cosine rule,
$\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$=\frac{25+49-39}{2 \times 5 \times 7}$
$=\frac{1}{2}=\cos \frac{\pi}{3}$
$\Rightarrow \mathrm{A}=\frac{\pi}{3}$
81. (A) $\because \frac{1+2 i}{1-(1-i)^{2}}=\frac{1+2 i}{1-(1-1-2 i)}$
$=\frac{1+2 i}{1+2 i}=1$
$\therefore\left|\frac{1+2 i}{1-(1-i)^{2}}\right|=1$
82. (D) Direction ratio of line $A B$
$=2 k-k, 0-1,2+1$
$=(<k,-1,3>)$
and direction ratio of line BC
$=2+2 k-2 k, k-0,1-2$
$=(<2, k,-1>)$
$\because(2)(k)+(-1)(k)+(3)(-1)=0$
$\Rightarrow 2 k-k-3=0 \Rightarrow k=3$
83. (C) $\int \frac{1}{1+e^{x}} d x=\int \frac{e^{-x}}{e^{-x}+1} d x$
$\left(\because \int \frac{f^{\prime}(x)}{f(x)} d x=\log f(x)+C\right)$
$=-\log \left(1+e^{-x}\right)+C$
$=-\log \left(\frac{1+e^{x}}{e^{x}}\right)+C$
$=-\left\{\log \left(1+e^{x}\right)-\log e^{x}\right\}+C$
$=x-\log \left(1+e^{x}\right)+C$
84. (C) The function $f(x)=x \operatorname{cosec} x$

$$
\begin{aligned}
\text { LHL } & =f\left(0^{-}\right)=\lim _{h \rightarrow 0} f(0-h) \\
& =\lim _{h \rightarrow 0}-h \operatorname{cosec}(-h) \\
& =\lim _{h \rightarrow 0} \frac{h}{\sin h}=1 \\
\text { RHL } & =f\left(0^{+}\right)=f(0+h) \\
& =\lim _{h \rightarrow 0} h \operatorname{cosec} h \\
& =\lim _{h \rightarrow 0} \frac{h}{\sin h}=1
\end{aligned}
$$

and $f(0)=$ not defined.
So, the function $f(x)$ is continuous for all values of x. Except at $x=n \pi$ where n is an integer.
85. (D) $\because a x \frac{d y}{d x}+2 a y=x y \frac{d y}{d x}$

$$
\begin{aligned}
& \Rightarrow a x \frac{d y}{d x}-x y \frac{d y}{d x}=-2 a y \\
& \Rightarrow(x y-a x) \frac{d y}{d x}=2 a y
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{2 a y}{x y-a x} \\
& \Rightarrow \frac{(y-a)}{y} d y=\frac{2 a}{x} d x \\
& \Rightarrow \int\left(1-\frac{a}{y}\right) d y=\int\left(\frac{2 a}{x} d x\right) \\
& \Rightarrow y-a \log y=2 a \log x+a \log C \\
& \Rightarrow y=a \log x^{2} y C \\
& \Rightarrow x^{2} y=k e^{y / a}
\end{aligned}
$$

where $k=\frac{1}{C}$
86. (A) Let vector $b=x i+y i+z k$
and $a=2 i+j-k$
Given that $a . b=3$
$\Rightarrow(x i+y j+z k) \cdot(2 i+j-k)=3$
$\Rightarrow \quad 2 x+y-z=3$
\because Vectors a and b are collinear, i.e., Angle between both the vectors should be 0°.
Then, $a . b=|a||b| \cos 0$

$$
\begin{align*}
& \Rightarrow a . b=\sqrt{4+1+1} \sqrt{x^{2}+y^{2}+z^{2}} \times 1 \\
& \Rightarrow a . b=\sqrt{6} \sqrt{x^{2}+y^{2}+z^{2}} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii),
$\Rightarrow 3=\sqrt{6} \sqrt{x^{2}+y^{2}+z^{2}}$
$\Rightarrow \frac{3}{2}=x^{2}+y^{2}+z^{2}$
Hence, $b=\left(1, \frac{1}{2},-\frac{1}{2}\right)$ will satisfy Eq. (iii)
87. (D)

$$
\begin{aligned}
& \frac{1+i}{1-i}=\frac{(1+i)^{2}}{1+1}=\frac{1+i^{2}+2 i}{2}=i \\
\therefore & \left(\frac{1+i}{1-i}\right)^{n}=i^{n}=1
\end{aligned}
$$

Which is possible for $n=4$
88. (C) If $a=x i+y j+z k$
and $b=k, c$ from a right handed system.

$$
\begin{aligned}
& \therefore c=(a \times b)=\left|\begin{array}{lll}
i & j & k \\
x & y & z \\
0 & 0 & 1
\end{array}\right| \\
& \Rightarrow c=i(y-0)-j(x-0)+k(0-0) \\
& \Rightarrow c=y i-x j
\end{aligned}
$$

89. (C) $\because x=t^{2}, y=t^{3}$

$$
\begin{aligned}
& \Rightarrow \frac{d x}{d t}=2 t, \frac{d y}{d t}=3 t^{2} \\
& \therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}}{2 t}=\frac{3}{2} t \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{3}{2} \cdot \frac{d t}{d x}=\frac{3}{2} \cdot \frac{1}{2 t} \\
& \quad=\frac{3}{4 t}
\end{aligned}
$$

90. (D) $\because \tan ^{3} x$ is an odd function.

$$
\begin{aligned}
& \therefore \int_{-\pi / 4}^{\pi / 4} \tan ^{3} x d x=0 \\
& \because\left\{\int_{-a}^{a} f(x) d x=\right.
\end{aligned}
$$

$$
\begin{array}{cc}
2 \int_{0}^{a} f(x) d x, & \text { if } f(-x), f(x) \text {, i.e., even function } \\
0 & \text { if } f(-x)=-f(x) \text {, i.e., odd function }
\end{array}
$$

$\Rightarrow f(x)=\tan ^{3}(-x)$
$\Rightarrow \quad=-\tan ^{2} x=-f(x)$
91. (C) We know that in a parallelogram, diagonals bisect each other. Mid-point of $O Q=$ Midpoint of $P R$.

$$
\begin{aligned}
& \therefore\left(\frac{0+m}{2}, \frac{0+n}{2}, \frac{0+r}{2}\right) \equiv\left(\frac{1+3}{2}, \frac{1+4}{2}, \frac{1+5}{2}\right) \\
& \Rightarrow \quad m=4, n=5, r=6 \\
& \text { Hence, } m+n+r=4+5+6=15
\end{aligned}
$$

92. (B) $3 e^{x} \tan y d x+\left(1+e^{x}\right) \sec ^{2} y d y=0$

$$
\begin{aligned}
& \Rightarrow \quad \int \frac{3 e^{x}}{1+e^{x}} d x+\int \frac{\sec ^{2} y}{\tan y} d y=0 \\
& \Rightarrow \quad 3 \log \left(1+e^{x}\right)+\log \tan y=\log C \\
& \Rightarrow \quad \log \left(1+e^{x}\right)^{3} \tan y=\log C \\
& \Rightarrow \quad\left(1+e^{x}\right)^{3} \tan y=C
\end{aligned}
$$

93. (C) We know that the locus of the points, the difference of whose distances from two points being constant, is a hyperbola.
[by definition of hyperbola]
94. (C) $\because y^{2}=4 a(x-a)$

On differentiating w.r.t. x, we get

$$
\begin{equation*}
2 y y^{\prime}=4 a \tag{i}
\end{equation*}
$$

$\Rightarrow a=\frac{y y^{\prime}}{2}$
On putting the value of a in Eq. (i), we get

$$
\begin{aligned}
& y^{2}=4\left(\frac{y y^{\prime}}{2}\right)\left(x-\frac{y y^{\prime}}{2}\right) \\
\Rightarrow \quad & y y^{\prime}\left(y y^{\prime}-2 x\right)+y^{2}=0
\end{aligned}
$$

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
95. (B) From the figure, it is clear that the angle between 6 b and -5 a is 120° or $\frac{2 \pi}{3}$.

96. (B) The given equation can be rewritten as

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{3}
$$

From above it is clear that the degree of equation is 2 .
97. (B) $\because \sin \mathrm{A}=\frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}$

If A is not known but $\sin \mathrm{A}$ is known, then 2 values of $\tan \frac{A}{2}$ can be calculated, because above equation is a quadratic equation in $\tan \frac{A}{2}$.
98. (C) $\operatorname{cosec}^{-1}\left(-\frac{2}{\sqrt{3}}\right)=-\frac{\pi}{3}$
\because The range of $\operatorname{cosec}^{-1} x$ is $\left[-\frac{\pi}{2}, 0\right) \cup\left(\frac{\pi}{2}, \pi\right]$
and $\quad \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{6}$
\because The range of $\sec ^{-1} x$ is $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$.
\therefore Both statements I and II are correct.
99. (C) Both the statements I and II are correct, by property of correlation coefficient.
100. (B) If the values of a set are measured in cm , then the unit of variance is cm^{2}.
101. (D) Required probability

$$
\begin{aligned}
& =\frac{{ }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}}{{ }^{6} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1}} \\
& =\frac{6 \bullet 5 \bullet 4}{6 \bullet 6 \bullet 6}
\end{aligned}
$$

$$
=\frac{5}{9}
$$

102. (C) The equation $a x^{2}+b y^{2}+2 h x y+2 g x+$ $2 f y+c=0$ represents a circle, if $a=b$ and $h=0$.
Then, the equation becomes the general equation of a circle

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

103. (A) $\because \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.5, P(\bar{B})=0.8, \mathrm{P}\left(\frac{A}{B}\right)=0.4$

Now, $\mathrm{P}\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow \mathrm{P}(\mathrm{B}) \times \mathrm{P}\left(\frac{A}{B}\right)=P(A \cap B)$

$$
[\because P(B)=1-P(\bar{B})]
$$

$\Rightarrow P(A \cap B)=0.4 \times(1-0.8)$

$$
=0.4 \times 0.2
$$

$$
=0.08
$$

104. (A) $\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda=1$
$\Rightarrow 2 \cos ^{2} \alpha+2 \cos ^{2} \beta+2 \cos ^{2} \lambda=2$
$\Rightarrow 2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \lambda-1=2-3$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta+\cos 2 \lambda=-1$
and now,

$$
\begin{aligned}
& 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \lambda=1 \\
\Rightarrow & \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \lambda=2
\end{aligned}
$$

Hence, only statement I is correct.
105. (B) Since, point $(3,7,1)$ satisfies the equation of plane $2 x+3 y-6 z=21$
Hence, $(3,7,1)$ lies on the plane.
106. (D) The equation of planes are $x+y+2 z=3$ and $-2 x+y-z=11$.
We know that, the angle between the planes $\mathrm{a}_{1} x+\mathrm{b}_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+$ $b_{2} y+c_{2} z+d_{2}=0$ is given by -

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

Here, $a_{1}=1, b_{1}=1, c_{1}=2, a_{2}=-2, b_{2}=1, c_{2}=-1$

$$
\begin{aligned}
\Rightarrow \cos \theta & =\left|\frac{1 \times(-2)+1 \times 1+2 \times(-1)}{\sqrt{1+1+4} \sqrt{4+1+4}}\right| \\
& =\left|\frac{-2+1-2}{\sqrt{6} \sqrt{6}}\right| \\
& =\frac{3}{6}=\frac{1}{2}=\cos \frac{\pi}{3}
\end{aligned}
$$

$$
\theta=\frac{\pi}{3}
$$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
107. (C) The equation of curves are $y=e^{x}$ and $y=e^{-x}$.

$$
\begin{aligned}
& \therefore \begin{aligned}
\therefore \quad e^{x}=\frac{1}{e^{x}} \\
\Rightarrow \quad e^{2 x}=e^{0} \Rightarrow x=0
\end{aligned} \\
& \begin{aligned}
\therefore \text { Required area } & =\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x \\
& =\left[e^{x}+e^{-x}\right]_{0}^{1} \\
& =e+e^{-1}-e^{0}-e^{0} \\
& =\left(e+\frac{1}{e}-2\right) \text { sq unit }
\end{aligned}
\end{aligned}
$$

108. (D) The equation of curve is

$$
4 x^{2}-9 y^{2}=1
$$

$\Rightarrow \quad \frac{x^{2}}{\frac{1}{4}}-\frac{y^{2}}{\frac{1}{9}}=1$
This is an equation of a hyperbola and the equation of conjugate axis is y-axis i.e., $x=0$.

Put $x=0$ in Eqn. (i),

$$
y^{2}=-\frac{1}{9}
$$

or

$$
y=\frac{1}{3} i \text {, an imaginary points }
$$

Hence, no point of intersection exists.
109. (A)
\because The lines $y=x$ and $y=-x$ lie at the same distances in coordinate axes.
$\therefore \quad y= \pm x \Rightarrow x \pm y=0$

So, $x \pm y=0$ is the locus of a point which moves equidistant from the coordinates
110. (B)
$\int e^{x}\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) d x$
Let $f(x)=\sqrt{x}$
$=f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$
$\left[\because \int e^{x} \cdot\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+C\right]$
$=e^{x} \cdot \sqrt{x}+C$
111. (C) $p=$ Magnitude of $3 i-2 j=\sqrt{9+4}=\sqrt{13}$
$\mathrm{q}=$ Magnitude of $2 i+2 j=\sqrt{4+4+1}=3$
$\mathrm{r}=$ Magnitude of $4 i-j+k=\sqrt{16+1+1}$

$$
=\sqrt{18}=3 \sqrt{2}
$$

and $\mathrm{S}=$ Magnitude of $2 i+2 j+3 k$

$$
=\sqrt{4+4+9}=\sqrt{17}
$$

$\therefore \quad r>s>p>q$.
112. (B) $\because c=2, \mathrm{~A}=120^{\circ}$ and $a=\sqrt{6}$.

$$
\begin{aligned}
& \therefore \frac{a}{\sin A}=\frac{c}{\sin C} \Rightarrow \frac{\sqrt{6}}{\sin 120^{\circ}}=\frac{2}{\sin C} \\
& \Rightarrow \sin C=\frac{2 \times \sqrt{3}}{\sqrt{6} \times 2}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \sin C=\sin 45^{\circ}=\angle C=45^{\circ}
\end{aligned}
$$

113. (D)

Class Interval	\boldsymbol{f}	$\boldsymbol{c f}$
$0.5-5.5$	3	3
$5.5-10.5$	7	10
$10.5-15.5$	6	16
$15.5-20.5$	5	21
	21	50

$\mathrm{N}=21$

$$
\frac{N}{2}=\frac{21}{2}=10.5
$$

\because Median class is $10.5-15.5$.

$$
\begin{aligned}
\therefore \text { Median }= & 10.5+\frac{10.5-10}{6} \times 5 \\
& =10.5+0.417=10.917
\end{aligned}
$$

Thus, median is not combined in the modal class and the distribution is not bell-shaped because in this distribution

Mean \neq Median \neq Mode
for the next two (2) items that follow:-

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Class Interval	\boldsymbol{f}	$\boldsymbol{c f}$	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$
$0-10$	5	5	5	25
$10-20$	10	15	15	150
$20-30$	20	35	25	500
$30-40$	5	40	35	175
$40-50$	10	50	45	450
	50	145	125	1300

$\therefore \frac{N}{2}=\frac{50}{2}=25$
114. (C) Median group is 20-30

$$
\begin{aligned}
\Rightarrow \text { Median } & =20+\frac{25-15}{20} \times 10 \\
& =20+5=25
\end{aligned}
$$

115. (B) Mean $=\frac{\sum f x}{\sum f}=\frac{1300}{50}=26$
116. (A) Since, the given matrix is

$$
\mathrm{A}=\left[\begin{array}{ccc}
2-x & 1 & 1 \\
1 & 3-x & 0 \\
-1 & -3 & -x
\end{array}\right]=0
$$

This matrix is singular.
$\therefore|\mathrm{A}|=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2-x & 1 & 1 \\
1 & 3-x & 0 \\
-1 & -3 & -x
\end{array}\right|=0 \\
& \text { apply } \mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{2} \\
& \Rightarrow\left|\begin{array}{ccc}
2-x & 1 & 1 \\
0 & -x & -x \\
-1 & -3 & -x
\end{array}\right| \\
& \Rightarrow(2-x)\left(x^{2}-3 x\right)+1(x)+1(-x)=0 \\
& \Rightarrow(2-x)(x)(x-3)=0 \\
& \Rightarrow x=2,0,3
\end{aligned}
$$

Hence, solution set $\mathrm{S}=\{0,2,3\}$.
117. (C)
$\because f(x)=\cos 2 x-\sin 2 x$

$$
\begin{gathered}
{[\because f(x)=a \cos x+b \sin x} \\
\left.-\sqrt{a^{2}+b^{2}} \leq f(x) \leq \sqrt{a^{2}+b^{2}}\right] \\
-\sqrt{1+1} \leq \cos 2 x-\sin 2 x \leq \sqrt{1+1} \\
-\sqrt{2} \leq \cos 2 x-\sin 2 x \leq \sqrt{2}
\end{gathered}
$$

So, Range of $f(x)$ is $[-\sqrt{2}, \sqrt{2}]$.
118. (A) The given differential equation is

$$
\begin{aligned}
& \frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 \\
& \Rightarrow \int \frac{1}{\sqrt{1-y^{2}}} d y+\int \frac{1}{\sqrt{1-x^{2}}} d x=0 \\
& \Rightarrow \sin ^{-1} y+\sin ^{-1} x=\mathrm{C}
\end{aligned}
$$

$$
\text { 119. (C) } \because z=\left(1+\cos \frac{\pi}{5}\right)+i \sin \frac{\pi}{5}
$$

$$
=2 \cos ^{2} \frac{\pi}{10}+i 2 \sin \frac{\pi}{10} \cos \frac{\pi}{10}
$$

$$
=2 \cos \frac{\pi}{10}\left[\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right]
$$

$$
=2 \cos \frac{\pi}{10} \cdot e^{i \pi / 10}
$$

$$
\left\{\begin{array}{l}
\because e^{i \theta}=\cos \theta+i \sin \theta \\
\left|e^{i \theta}\right|=1
\end{array}\right\}
$$

$$
\Rightarrow|z|=\left|2 \cos \frac{\pi}{10} \cdot e^{i \pi / 10}\right|
$$

$$
=2 \cos \frac{\pi}{10}
$$

120. (C) $\because x i+y j+z k$ is a unit vector. and $x^{2}+y^{2}+z^{2}=1$ (given)
$\Rightarrow \quad x: y: z=\sqrt{3}: 2: 3$
$\therefore(\sqrt{3} k)^{2}+(2 k)^{2}+(3 k)^{2}=1$
$\Rightarrow 3 k^{2}+4 k^{2}+9 k^{2}=1$
$\Rightarrow k^{2}=\frac{1}{16}$
$\Rightarrow k=\frac{1}{4}$
Hence, $z=3 k=3 \times \frac{1}{4}=\frac{3}{4}$

NDA MATHS MOCK TEST - 51 (ANSWER KEY)

1. (C)	31. (A)	61. (A)	91. (C)
2. (C)	32. (C)	62. (C)	92. (B)
3. (B)	33. (B)	63. (C)	93. (C)
4. (B)	34. (C)	64. (A)	94. (C)
5. (C)	35. (C)	65. (B)	95. (B)
6. (D)	36. (C)	66. (C)	96. (B)
7. (D)	37. (D)	67. (A)	97. (B)
8. (B)	38. (A)	68. (D)	98. (C)
9. (D)	39. (D)	69. (D)	99. (C)
10. (A)	40. (D)	70. (A)	100. (B)
11. (B)	41. (A)	71. (C)	101. (D)
12. (A)	42. (B)	72. (B)	102. (C)
13. (D	43. (A)	73. (C)	103. (A)
14. (B)	44. (C)	74. (C)	104. (A)
15. (B)	45. (A)	75. (D)	105. (B)
16. (B)	46. (C)	76. (C)	106. (D)
17. (B)	47. (A)	77. (D)	107. (C)
18. (C)	48. (C)	78. (B)	108. (D)
19. (A)	49. (D)	79. (C)	109. (A)
20. (A)	50. (D)	80. (B)	110. (B)
21. (D)	51. (D)	81. (A)	111. (C)
22. (C)	52. (*)	82. (D)	112. (B)
23. (C)	53. (B)	83. (C)	113. (D)
24. (B)	54. (C)	84. (C)	114. (C)
25. (D)	55. (C)	85. (D)	115. (B)
26. (C)	56. (B)	86. (A)	116. (A)
27. (D)	57. (A)	87. (D)	117. (C)
28. (C)	58. (C)	88. (C)	118. (A)
29. (C)	59. (B)	89. (C)	119. (C)
30. (B)	60. (D)	90. (D)	120. (C)

Note: If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact : 9313111777

