Campus

KD Campus Pvt. Ltd

NDA MOCK TEST-47 (SOLUTION)

1. (B) I. We know that, $\sin \theta \in[-1,1] ; \theta \in \square$
i.e the value of $\sin \theta$. also lies between -1 to 1 . II. We also know that, $\cos \in[-1,1] ; \theta \in \square$ i.e the value of $\cos \theta$, also lies between -1 to 1 .
2. (A) Case I, Let $a+b \geq 0 \Rightarrow|a+b|=a+b$
(By definition)
$\Rightarrow|a+b| \leq|a|+|b|[\because a \leq|a| \# a \in \square]$ $\therefore|a+b|<|a|+|b|$
Case II, Let $a+b \leq 0 \Rightarrow|a+b|=-(a+b)$
$=|a+b|=(-a)+(-b)$
$|a+b| \leq|a|+|b|[\because-a \leq|a| \# a \in \square]$
$\Rightarrow|a+b| \leq|a|+|b|$
Hence, $|a+b| \leq|a|+|b|$.
3. (A) We have
$A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$
Since,
$n(A \times B)=4$, the number of subsets of $A \times B$ is 2^{4}.
Therefore, the number of relations from A into B will be $2^{4}=16$
4. (B) The given differential equation is
$(x+y)(d x-d y)=d x+d y$
$\Rightarrow(x+y-1) d x=(x+y+1) d y$
$\Rightarrow \frac{d y}{d x}=\frac{x, y-1}{x, y, 1}$
Let $x+y=v$
so that as usual
$\frac{d y}{d x}=\frac{d v}{d x}-1 \ldots$
Using (2), (3), (1) becomes
$\frac{d v}{d x}-1=\frac{V-1}{V, 1}$
$\Rightarrow \frac{d v}{d x}=\frac{2 V}{V, 1}$
$\Rightarrow 2 d x=\left|-1, \frac{1}{v}\right| d v$
\therefore integrating
$2 x+c=v+\log v$
$\Rightarrow x-y+c=\log (x+y)$
5. (C) The coefficients of $(r-5)^{\text {th }}$ and $(2 r-1)^{\text {th }}$ terms of the expansion $(1+x)^{34}$ are ${ }^{34} \mathrm{C}_{r-6}$ and ${ }^{34} \mathrm{C}_{2 r-2}$, respectively.
Since they are equal so ${ }^{34} \mathrm{C}_{r-6}={ }^{34} \mathrm{C}_{2 r-2}$
Therefore, either $r-6=2 r-2$ or $r-6=34-$ ($2 r-2$)
[using the fact that if ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{p}$, then either r $=p$ or $r=n-p$]
So, we get $r=-4$ or $r=14$
r being a natural number, $r=-4$ is not possible so, $r=14$
6. (A) $595=2 \times 25+91$
$252=2 \times 91+70$
$91=1 \times 70+21$
$70=3 \times 21+7$
$21=7 \times 3$
Therefore g.c.d of 595 and 252 is $d=7$ from (1)
$d=7=70-3 \times 21$
$=70-(391-1 \times 70)$
$=70-3 \times 91+3 \times 70$
$=4 \times 70-3 \times 91$
$=4(252-2 \times 91)-3 \times 91$
$=4 \times 252-11 \times 91$
$=4 \times 252-11(595-2 \times 252)$
$=4 \times 252-11 \times 595+22 \times 252$
$=26 \times 252-11 \times 595$
$=252 m+595 n$
Here $m=26, n=-11$
7. (B) $\because a=7 \bmod 5$
$\therefore 5 / a-7$
$a-7=5 \mathrm{k}$, where k is any integer
Putting $k=0,1,2,3, \ldots-1,-2$, 3...successively,
we get
$a-7=0,5,10,15, \ldots,-5,-10,-15 \ldots$
$a=7,12,17,22, \ldots, 2,-3,-8, \ldots$
Hence all integers are congruent to $7 \bmod 5$.
8. (C) We know that
$2^{1}=2 \bmod 7$
$2^{2}=4 \bmod 7$
$2^{3}=8 \bmod 7$
$\Rightarrow 2^{3}=1 \bmod 7$
$\Rightarrow\left(2^{3}\right)^{6}=1 \bmod 7$
$2^{18}=1 \bmod 7$
multiplying (1) and (2), we get
$2^{20}=4 \bmod 7$.
$\therefore \quad 4$ is the remainder when 220 is divided by 7 .
9. (C) Probability $=$ RBRB + BRBR
$=\left|-\frac{5}{12} \propto \frac{7}{\infty} \underset{11}{1} \begin{array}{ccc}\propto & \frac{4}{9} & \frac{6}{9}\end{array}\right| \times 2$
$=\frac{7}{99} \times 2$
$=\frac{14}{99}=0.14$
10. (B)
$\mathrm{P}=\frac{{ }^{13} C_{2} \propto{ }^{39} C_{1}}{{ }^{52} C_{4}}+\frac{{ }^{13} C_{4}}{{ }^{52} C_{4}}$

$$
\begin{aligned}
& =\left\lvert\, \frac{78 \times 39}{4270725}\right., \frac{715}{270725} \\
& =\frac{3757}{270725}=0.013
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
11. (A)
$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
$\mathrm{R}_{2}-\mathrm{R}_{1} \rightarrow \mathrm{R}_{2}$
$\mathrm{R}_{3}-\mathrm{R}_{1} \rightarrow \mathrm{R}_{3}$
$\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right|$
$\Rightarrow(b-a)(c-a)\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b, a \\ 0 & 1 & c-a\end{array}\right|$
Expanding by C_{1}
$\left.(b-c)(c-a)\left|k^{1}\right| \begin{array}{lll}1 & b, a \\ 1 & c, a\end{array} \right\rvert\,$
$\Rightarrow(b-c)(c-a)(c+a-b-a)$
$\Rightarrow(b-c)(c-a)(c-b)$
$\Rightarrow(a-b)(b-c)(c-a)$
12. (D) Note : - The matrix $\left|\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ 4-1 & -2 & \$\end{array}\right|$ is singular matrix. Then b is equal to Solution :

The matrix $\left\lvert\, \begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ 4-1 & -2 & 4\end{array}\right.$ is singular, if

$$
\begin{aligned}
& \quad\left|\begin{array}{ccc}
5 & 10 & 3 \\
-2 & -4 & 6 \\
4-1 & -2 & 4
\end{array}\right|=0 \\
& \Rightarrow-1(60+12)+2(30+6)+b(-20+20)=0 \\
& -72+72+0 \times b=0
\end{aligned}
$$

\Rightarrow The given matrix is singular for any only value of b.
13. (B) Using the determinant

$$
\begin{aligned}
& 0=\frac{1}{2}\left|\begin{array}{ccc}
1 & x & y \\
-1 & 1 & 2 \\
41 & 3 & 6
\end{array}\right| \\
& \Rightarrow \left.0=\frac{1}{2}\left|{ }^{2}\right| \begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}|-1| \begin{array}{ll}
x & y \\
3 & 6
\end{array}|, 1| \begin{array}{ll}
x & y \\
1 & 2
\end{array} \right\rvert\, \\
& 0=\frac{1}{2}(6-6-6 x+3 y+2 x-y) \\
& 0=-4 x+2 y \\
& \Rightarrow 2 x-y=0
\end{aligned}
$$

14. (A) $\Rightarrow-\int_{\frac{-\theta}{2}}^{0} \sin x d f f_{0}^{\frac{\theta}{2}} \sin x d x$

$$
\begin{aligned}
& \Rightarrow \cdot \cos x \underline{\underline{\rho}}_{\frac{\theta}{2}}+\therefore \cos x \frac{\theta_{0}^{2}}{\square} \\
& \Rightarrow 1+0-0+1 \\
& =2
\end{aligned}
$$

15. (C) $\tan \left|\frac{1}{4} \sin -1 \frac{2 \tan ^{2} \rho}{1, \tan ^{2} \rho}, \frac{1}{2} \cos ^{-1} \frac{1-\tan \beta}{1 \tan \beta}\right|$

Putting $a=\tan \theta$
$=\tan \left|\frac{1}{4} \cdot 2 \rho \quad \frac{1}{2} p_{\gamma}\right|=\tan 2 \theta$
$=\frac{2 \tan \rho}{1-\tan ^{2} \rho}=\frac{2 a}{1-a^{2} *}$
16. (A) Let $x=\frac{\theta}{8}$. then $2 x=\frac{\theta}{4}$

Now, $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\tan \frac{\theta}{4}=\frac{2 \tan \frac{\theta}{8}}{1-\tan ^{2} \frac{\theta}{8}}$
Let $y=\tan \frac{\theta}{8}$, then $1-\frac{2 y}{1-y^{2}}$
or $y^{2}+2 y-1=0$
Therefore, $y=\frac{-2 \prime 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$
Since, $\frac{\theta}{8}$ lies in first quadrant,
$y=\tan \frac{\theta}{8}$ is positive
Hence $\tan \frac{\theta}{8}=\sqrt{2}-1$
17.(C)Dividing the numerator and the denominator by the highest power, x^{5}, we find that
$\lim _{x \downarrow f} \frac{95 x^{3}, 57 x, 30}{x^{5}-1000}$
$=\lim _{x \downarrow f} \frac{95 x^{3}, 57 x, 30}{x^{5}-1000} \cdot \frac{\frac{1}{x^{5}}}{\frac{1}{x^{5}}}$
$=\lim _{x \downarrow f} \frac{\frac{95}{x^{2}}, \frac{57}{x^{4}}, \frac{30}{x^{5}}}{1-\frac{1000}{x^{5}}}$
$=\frac{0,0,0}{1-0}=0$
18. (C) Let objects $1,2,3,4,5$ be placed in places marked $1,2,3,4,5$ respectively. Then the number of derangements in which none of the object occupied its original position is given by
$5!\left|f-\frac{1}{1!}, \frac{1}{2!}-\frac{1}{3!}, \frac{1}{4!}-\frac{1}{5!}\right|$
$=60-20+5-1=44$
Also total numbers of arrangements $=5!=$ 120

Hence required probability $=\frac{44}{120}=\frac{11}{30}$
19. (B) $x \quad y \quad x^{2} \quad y^{2} \quad x y$
$\begin{array}{lllll}4 & 2 & 16 & 4 & 8\end{array}$
$\begin{array}{lllll}2 & 4 & 4 & 16 & 8\end{array}$
$\begin{array}{lllll}3 & 2 & 9 & 4 & 6\end{array}$
$\begin{array}{lllll}4 & 4 & 16 & 16 & 16\end{array}$
$\begin{array}{lllll}2 & 4 & 4 & 16 & 8\end{array}$
$\Sigma 1516495646$

$$
\begin{aligned}
& =\frac{5 \propto 46-15 \times 16}{\sqrt{\left.\mid() 5 \propto 49-225^{*}\right) 5 \times} 56-\left.256\right|^{*}} \\
& =\frac{230-240}{\sqrt{245-225 *) 280-256 *}} \\
& =\frac{-10}{\sqrt{20 \propto 24}} \\
& =\frac{-10}{\sqrt{5 \propto \propto \propto 6}}=\frac{-10}{4 \sqrt{30}}=\frac{-5}{2 \propto 5.77} \\
& =-0.4566
\end{aligned}
$$

20. (D) $\frac{d}{d x} \sec \tan ^{-1} x=\sec \tan ^{-1} x \cdot \tan \tan ^{-1} x \cdot \frac{1}{) 1, x^{2} *}$
$=\sec \theta \cdot \frac{x}{1, x^{2}} \quad$, where $\tan ^{-1} x=\theta$

$$
=\frac{x \sqrt{1, \tan ^{2} \rho}}{) 1, x^{2} *}=\frac{x}{\sqrt{1, x^{2}}}
$$

21. (B) Taking log both sides
$\log y=\log x . \log x=(\log x)^{2}$
Differentiate w.r.t x
$\frac{1}{y} \frac{d y}{d x}=2 \log x \cdot \frac{1}{x}$
$\therefore \frac{d y}{d x}=\frac{2 y}{x} \log x$
$\Rightarrow \frac{d y}{d x}=x^{\log x-1} \cdot 2 \log x$
22. (D) Domain of $\cot ^{-1} x$ is R , the set of Reals.
$\frac{x}{\sqrt{x^{2}-. x^{2} \perp}}$ is defined if $x^{2} \neq\left[x^{2}\right]$
i.e x^{2} is not integer.
since, $x^{2}=\left[x^{2}\right]$, if x^{2} is an integer,
Hence $x^{2} \neq$ non - negative integer.
i.e O or positive integer

Hence domain $=\mathrm{R}-\mid \sqrt{x}, x \times 0, x \notin \square \sim$.
23. (B) Let $n=x \hat{i}+y \hat{j}+z \hat{k}$
then $x^{2}+y^{2}+z^{2}=1$
$n \cdot k=\cos \frac{\theta}{4} \Rightarrow Z=\frac{1}{\sqrt{2}}$
Also $n+\hat{i}+\hat{j}=(x+1) \hat{i}+(y+1) \hat{j}+$
$Z \hat{k}$ is a unit vector
Therefore, $(x+1)^{2}+(y+1)^{2}+z^{2}=1 \ldots$ (iii)
Solving (i), (ii) and (iii) we get
$x=\frac{-1}{2}, y=\frac{-1}{2}, z=\frac{1}{\sqrt{2}}$
$\therefore n=\frac{-1}{2} \hat{i}-\frac{1}{2} \hat{j}+\frac{1}{\sqrt{2}} k$
24. (C) $\because 1, \omega$ and ω^{2} are the three cube roots of unity.

$$
\begin{aligned}
& \therefore 1+\omega+\omega^{2}=0 \text { and } \omega^{3}=1 \\
& \frac{a \xi^{6}, \quad \bar{\xi},{ }^{4} \xi_{c}{ }^{2}}{b, c \xi^{10}, \quad \check{\xi}^{8}}=\frac{a, b \xi, \quad \xi^{2}}{b, c \xi,} \overleftarrow{\xi}^{2} \\
& =\begin{array}{llll}
\xi) a & \xi, & \xi c^{2 *} \\
\xi) b & \xi, & \xi a^{2 *}
\end{array} \\
& =\frac{\xi) a}{\xi} \quad \bar{b}, \quad \xi c^{2 *} \\
& =\frac{\xi) a, \quad b, \quad \xi_{c^{2 *}}^{2 *}}{) a, b \xi,} \quad \xi^{2 *}=\omega
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd

25. (D) Since, $3<4 \Rightarrow \frac{3}{-5^{*}}>\frac{4}{-5^{*}}$
on multiplying or dividing an inequality by a negative number on both sides its sign changes.
26. (A) $(1+\omega)(1+2 \omega)(1+3 \omega)(1+5 \omega)$

$$
\Rightarrow\left[1+2 \omega+\omega+2 \omega^{2}\right]\left[1+5 \omega+3 \omega+15 \omega^{2}\right]
$$

$\Rightarrow\left[1+\omega+2\left(\omega+\omega^{2}\right)\right]\left[1+8 \omega+15 \omega^{2}\right]$
$\Rightarrow[1+\omega+2(-1)]\left[1+8 \omega+15 \omega^{2}\right]$
$\Rightarrow[\omega-1]\left[1+8 \omega+15 \omega^{2}\right]$
$\Rightarrow\left[\omega+8 \omega^{2}+15 \omega^{3}-1-8 \omega-15 \omega^{2}\right]$
$\Rightarrow \quad\left[-1-7 \omega-7 \omega^{2}+15\right]$
$\Rightarrow\left[14-7 \omega-7 \omega^{2}\right]$
$\Rightarrow 14-7\left(\omega+\omega^{2}\right)$
$\Rightarrow 14-7(-1)$
$\Rightarrow 21$
27. (C) Selection of 1 boy and 3 girls in ${ }^{5} \mathrm{C}_{1} \times$ ${ }^{4} C_{3}=20$ way
Selection of 4 girls and no boys in ${ }^{5} \mathrm{C}_{0} \times{ }^{4} \mathrm{C}_{4}$
$=1$ way
$\therefore n(E)=$ total no. of ways $=21$
$n(s)={ }^{9} \mathrm{C}_{4}=\frac{9!}{4!5!}=9 \times 7 \times 2$
$\therefore P(E)=\frac{20,1}{9 \propto 7 x 2}=\frac{1}{6}$
28. (B) $y=x^{2}-2 x+7$

Differentiate w.r.t x
$\frac{d y}{d x}=2 x-2$
Slope of line $2 x-y+9=0$

$$
\begin{aligned}
-y & =-9-2 x \\
y & =2 x+9 \\
m & =2
\end{aligned}
$$

\because slope of tangent $=$ slope of line

$$
\begin{aligned}
\Rightarrow 2 x-2 & =2 \\
x & =2
\end{aligned}
$$

Value of x put in equation (i)

$$
\begin{aligned}
& y=x^{2}-2 x+7 \\
& y=4-4+7 \\
& y=7
\end{aligned}
$$

\therefore equation of tangent is $(y-7)=2(x-2)$

$$
\begin{aligned}
& y-7=2 x-4 \\
& y-2 x=3
\end{aligned}
$$

29. (C) Notice that $\frac{1}{x-2}$ increase without bound as x approaches 2 from the right and $\frac{1}{x-2}$ decrease without bound as x approaches 2 from the left.
i.e $\lim _{x \downarrow 2} \frac{1}{x-2}=+\infty$
and $\lim _{x \downarrow 2^{-}} \frac{1}{x-2}=-\infty$
we also have $\lim _{x \downarrow 2} 3 x-5=1$ and it follows that

$$
\lim _{x \downarrow 2^{-}} \frac{3 x-5}{x-2}=-\infty
$$

30. (B) $\int e^{x}\left|-\frac{2-\sin 2 x}{1-\cos 2 x}\right| d x$

$$
\begin{aligned}
& \left(e^{x}\left|-\frac{2-2 \sin x \cos x}{2 \sin ^{2} x}\right| d x\right. \\
\Rightarrow & \left(e^{x}\right) \operatorname{cosec}^{2} x-\cot x * d x
\end{aligned}
$$

$\Rightarrow-I \mathrm{e}^{x} \cot x d x f e^{x} \operatorname{cosec}^{2} x d x \mid$
$\Rightarrow \int e^{x} \operatorname{cosec}^{2} x d x-\cot x \int e^{x} d x+$

$$
(D) \cot x \int^{*} e^{x} d x d x
$$

$=\int e^{x} \operatorname{cosec}^{2} x-\cot x \int e^{x} d x-\int e^{x} \operatorname{cosec}^{2} x d x$ $=-\mathrm{e}^{x} \cot x+c$
31. (D) $\tan ^{-1}\left|\frac{\sqrt{1, x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1, x^{2}}, \sqrt{1, x^{2}}}\right|$

Put $x^{2}=\cos 2 \theta$
$2 \theta=\cot ^{-1} x^{2}$

$$
\theta=\frac{1}{2} \cos ^{-1} x^{2}
$$

$$
\tan ^{-1}=\left|\begin{array}{ll}
\frac{\sqrt{1, \cos 2 \rho}}{\sqrt{1, \cos 2 \rho}}-\sqrt{1-\cos \not \supset} & \sqrt{1-\cos २}
\end{array}\right|
$$

$$
\tan ^{-1} \left\lvert\, \frac{\sqrt{2 \cos ^{2} \rho}-\sqrt{2 \sin \beta}}{\sqrt{2 \cos ^{2} \rho}} \sqrt{2 \sin \beta}\right.
$$

$$
\tan ^{-1}\left(\frac{\sqrt{2}) \sqrt{\cos ^{2} \rho}-\sqrt{\sin \beta}}{\sqrt{2}) \sqrt{\cos ^{2} \rho}} \sqrt{\sin \beta}\right.
$$

$$
\tan ^{-1}\left|\frac{\cos \rho-\operatorname{sip} p}{\cos \rho \operatorname{sip} p}\right|
$$

divide by $\cos \theta$

$$
\begin{aligned}
& \tan ^{-1}|-\tan |-\frac{\theta}{4}-\theta|\lambda| \\
& \Rightarrow \frac{\theta}{4}-\theta \\
& \Rightarrow \frac{\theta}{4}-\frac{\cos ^{-1} x^{2}}{2}
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
32. (D) Given $z^{2}+z+1=0$
$\therefore(z-1)\left(z^{2}+z+1\right)=0, \quad \therefore z^{3}=1$
If n is not multiple of 3 , then we can
write $n=3 m+r$, where $m \in \mathrm{I}$ and $r=1$ or 2 .
then $2 n=6 m+2 r$
if $r=1$, then $2 r=2$
$\therefore Z^{n}+z^{2 n}=\left(Z^{3}\right)^{m} \cdot Z^{r}+\left(Z^{3}\right)^{2 m} \cdot Z^{2 r}$
$=Z^{r}+Z^{2 r}=Z+Z^{2}=-1$
If $r=2$, then $2 r=4$
$\therefore Z^{n}+Z^{2 n}=\left(Z^{3}\right)^{m} \cdot Z^{r}+\left(Z^{3}\right)^{2 m} \cdot Z^{2 r}=Z^{2}+Z^{4}$

$$
=z^{2}+z=-1
$$

Hence, $\boldsymbol{z}^{n}+z^{m}=-1$
33. (C) $x+y=2\left(t^{2}+1\right), x-y=2 t$

Eliminating t, we get
$x+y=\frac{1}{2}(x-y)^{2}+2$
or $x^{2}-2 x y+y^{2}-2 x-2 y+4=0$
for which, $\mathrm{D} \neq 0$ and $h^{2}=a b$
Hence the given curve represent a parabola.
34. (A) The lines are
$x=1, y=2$ i.e $\frac{x-1}{0}=\frac{y-2}{0}=\frac{z}{1}$
and $y=-1, z=0$ i.e $\frac{x}{1}=\frac{y, 1}{0}=\frac{z}{0}$
\therefore If θ is the angle between them, then $\cos \theta=0.1+0.0+1.0=0$
i.e $\theta=90^{\circ}$
35. (A) Coordinate of the given point p are $(2,3,-1)$ op is normal to the required plane so direction rations of the normal to the plane are $2,3,-1$.
Equation of the plane through $\mathrm{P}(2,3,-1)$ is $a(x-2)+b(y-3)+c(z+1)=0$
Since, the direction ratios of the normal to the plane are $2,3,-1$
so, we have $\frac{a}{2}=\frac{b}{3}=\frac{c}{-1}$ and hence the equation of the required plane is
$2(x-2)+3(y-3)-1(z+1)=0$ or $2 x+3 y-z=14$.
36. (A) The projection of the line
$\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{3}$
on the plane $x+y+z-1=0$
is the line of intersection of the plane (ii) and the plane perpendicular to the plane (ii) and containing the line (i).

Now, equation of the plane through line (i) can be taken as
$\mathrm{A}(x-1)+B(y-1)+c(z-3)=0$
where $2 . \mathrm{A}+1 . \mathrm{B}+3 . \mathrm{C}=0 \ldots(\mathrm{iv})$

If plane (iii) is perpendicular to the plane (ii) then

$$
\begin{equation*}
1 . \mathrm{A}+1 . \mathrm{B}+1 . \mathrm{C}=0 \tag{v}
\end{equation*}
$$

(iv) and (v) $\Rightarrow \frac{A}{-2}=\frac{B}{1}=\frac{c}{1}=k$ (say)
$\therefore A=-2 x, B=k, c=\mathrm{k}$
Putting in (iii), we get

$$
\begin{equation*}
2 x-y-z+3=0 \tag{vi}
\end{equation*}
$$

Hence the required projection is given by planes (ii) and (vi).
37.(A) Given $x^{2}+y^{2}=2 x y$

Difference w.r.t x
$2 x+2 y \frac{d x}{d y}=2\left(-x \frac{d y}{d x}, y\right)$
$\therefore \frac{d y}{d x}=1$
38. (B) We have

$$
\begin{aligned}
& R f^{\prime}(1)=\lim _{h \downarrow 0} \frac{f) 1, h *-f) 1^{*}}{h} \\
& =\lim _{h \downarrow 0} \frac{\mid) 1, h *^{3}-1 \sim-0}{h}=3 \\
& L f^{\prime}(1)=\lim _{h \downarrow 0} \frac{f) 1-h *-f) 1^{*}}{-h} \\
& \quad=\lim _{h \downarrow 0} \frac{\mid) 1-h *-1 \sim-0}{-h}=1
\end{aligned}
$$

$$
\therefore R f^{\prime}(1) \neq L f^{\prime}(1)
$$

$$
\Rightarrow f(x) \text { is not differentiable at } x=1
$$

$$
\text { Now, } f(1+0)=\lim _{h \downarrow 0} f(1+h)=0
$$

$$
f(1-0)=\lim _{h \downarrow 0} f(1-h)=0
$$

$$
\therefore f(1+0)=f(1-0)=f(0)
$$

$$
\Rightarrow f(x) \text { is continuous at } x=1
$$

Hence $x=1, f(x)$ is continuous and not differentiable.
39. (D) $\left.y=) x, 1 * \frac{1}{3}-\right) x-1^{\frac{1}{3}}$ on $[0,1]$

$$
\because: \frac{d y}{d x} \text { does not exist at } x=1
$$

$$
=\frac{1}{3} \frac{) x-1^{\frac{2}{3}}-\right) x, 1^{\frac{2}{3}}}{) x, 1^{\frac{2}{3}} \cdot\right) x-1^{\frac{2}{3}}}
$$

Campus

KD Campus Pvt. Ltd

$\frac{d y}{d x}=0$ at $x=0$ which is end point so
there is no critical point in $[0,1]$
Also $y_{x=0}=2$ and $y_{x=1}=1$
$\therefore y_{\text {greatest }}=2$
40. (B) The given equation of line can be rewritten as

$$
\begin{aligned}
& \frac{x}{5}-\frac{y}{3}=1 \\
& \text { and } y=\frac{3 x-15}{5}
\end{aligned}
$$

Required area $=\int^{3} y d x$

$$
\begin{aligned}
& =\int^{3} \frac{3 x-15}{5} d x \\
& =\frac{1}{5} \int^{2} 3 x-15 * d x \\
& =\frac{1}{5}\left|\frac{3 x^{2}}{2}-15 x\right|_{1}^{3} \\
& =\frac{1}{5}\left|\frac{27}{4}-45-\frac{3}{2}, 15\right| \\
& =\frac{1}{5}\left|\frac{24}{2}-30\right|=\frac{1}{5} .12-30 \perp
\end{aligned}
$$

$=\frac{-18}{5}=\frac{18}{5}$ sq. units [neglecting negative sign]
41. (B) $r=\frac{\operatorname{cov}) x \cdot y^{*}}{\tau_{x} \tau_{y}} \Rightarrow \sigma_{y}=\frac{\operatorname{cov}) x \cdot y^{*}}{r . \tau_{x}}$

$$
=\frac{16}{0.5 \propto 4}=8
$$

42. (A) Arranging the data as

$$
\begin{aligned}
& \alpha-\frac{7}{2}, \alpha-3, \alpha-\frac{5}{2}, \alpha-2, \alpha-\frac{1}{2}, \alpha+\frac{1}{2}, \\
& \alpha+4, \alpha+5 \\
& \text { median }=\frac{1}{2}\left|-\beta-2, \beta-\frac{1}{2}\right|=\alpha-\frac{5}{4}
\end{aligned}
$$

43. (B) Note :- Let $\vec{a}=2 \hat{i}+\hat{j}-2 x$ and $\vec{b}=\vec{i}+$ \vec{j}. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|, \mid \vec{c}$ $-\vec{a} \mid=2 \sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is 30°. $|(\vec{a} \times \vec{b}) \times \vec{c}|=$ Solution :
$\vec{a} \cdot \vec{c}=|\vec{c}| \Rightarrow 3|\vec{c}| \cos \theta=|\vec{c}|$
$\Rightarrow \cos \theta=\frac{1}{3}$
$|\vec{c}-\vec{a}|=2 \sqrt{2} \Rightarrow \overrightarrow{c^{2}}+\overrightarrow{a^{2}}-2 \vec{c} \cdot \vec{a}=8$
$\Rightarrow|\vec{c}|^{2}+9-6|\vec{c}| \cos \theta=8 \because|\vec{a}|=3$
$\Rightarrow(|\vec{c}|-1)^{2}=0$
$\Rightarrow|\vec{c}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|(2 i+j-2 k) \times(i \times j)|=3$
$|(\vec{a} \times \vec{b}) \times \vec{c}|=|\vec{a} \times \vec{b}| \cdot|\vec{c}| \sin 30^{\circ}$
$=\frac{3}{2}$
44. (D) $\quad|(a \times b) \cdot c|=|a||b||c|$
$\Leftrightarrow|a b \sin \theta n \cdot c|=a b c$
$\Leftrightarrow \mid(a b \sin \theta) 1 . c \cos \phi 1=a b c$
$\Leftrightarrow|\sin \theta||\cos \phi|=1$
$\Leftrightarrow \theta=\frac{\theta}{2}$ and $\phi=0$
$\Leftrightarrow a$ is \perp to b and c is \| to n
$\Leftrightarrow a$ is \perp to b and c is \perp to both a and b $\Leftrightarrow a, b, c$ are mutually perpendicular $\Leftrightarrow a . b=b . c=c . a=0$
45. (C) The given differential equation can be written as
$\frac{d y}{d x}-\frac{1}{2 x} \cdot y=\frac{3}{2 x}$
which is linear
\therefore I.F $e^{f-\frac{1}{2 x} d x}=e^{\frac{-1}{2} \log x}=x^{\frac{-1}{2}}$
\therefore Solution is $y \cdot x^{\frac{-1}{2}}=c+\int \frac{3}{2 x} x^{\frac{-1}{2}} d x$
$y x^{\frac{-1}{2}}=c-3 x^{\frac{-1}{2}}$
or $(y+3)^{2}=c^{2} x$
which represents parabola.
46. (C) $\sin ^{2} x+\sin ^{2} y=1$
$\Rightarrow \sin ^{2} x=1-\sin ^{2} y$
$\Rightarrow \sin ^{2} x=\cos ^{2} y$
$\Rightarrow \sin x=\cos y$
$\Rightarrow \sin x=\sin \left(90^{\circ}-y\right)$
$\Rightarrow x=90^{\circ}-y$
$\Rightarrow x+y=90^{\circ}$
$\cot (x+y)=\cot 90^{\circ}=0$
47. (B) $S=64 t-16 t^{2}$
$\Rightarrow \frac{d s}{d t}=64-32 t$
For maximum height, $\frac{d s}{d t}=0$
Thus, $64-32 t=0$

$$
\Rightarrow 32 t=64
$$

$$
t=2 \mathrm{~s}
$$

KD Campus Pvt. Ltd

48. (A) $\left|\begin{array}{llll}k & b, c & b^{2}, c^{2} \\ k & c, a & c^{2}, & a^{2} \\ k & a, & b & a^{2}, \\ b^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
$\Rightarrow k\left|\begin{array}{llll}1 &) b, & c^{*} &) b^{2}, \\ 1 & c^{2} * \\ 1 & c, & a^{*} &) c^{2}, \\ 1 & a^{2} * \\ 1 & a, & b^{*} &) a^{2}, \\ , b^{2} *\end{array}\right|=(a-b)(b-c)(c-a)$
By applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}+R_{3}$ we get

$$
\Rightarrow k\left|\begin{array}{lll}
0 &) b-c^{*} &) b^{2}-c^{2} * \\
0 &) c-a^{*} &) c^{2}-a^{2} * \\
1 &) a, b^{*} &) a^{2}, b^{2} *
\end{array}\right|=(a-b)(b-c)(c-a)
$$

$$
\Rightarrow k(b-a)(c-b)\left|\begin{array}{llll}
0 & 1 &) b, & c^{*} \\
0 & 1 &) c, & a^{*} \\
1 &) a, & b^{*} &) a^{2}, \\
b^{2} *
\end{array}\right|
$$

$$
=(a-b)(b-c)(c-a)
$$

$$
\Rightarrow k(b-a)(c-b) \cdot 1[c+b-b-a]=(a-b)
$$

$$
(b-c)(c-a)
$$

$$
\Rightarrow k(b-a)(c-b)(c-a)=(a-b)(b-c)(c-a)
$$

$$
\Rightarrow k(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)
$$

$$
\therefore k=1
$$

49. (B) $A=\left|\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right|$
50. (A) Marks No. of $\frac{1}{x} \quad f \frac{1}{x}$

Students $y(f)$

20	4	0.0500	0.2000
21	2	0.0476	0.0952
22	7	0.0454	0.3178
23	1	0.0435	0.0435
24	3	0.0417	0.1251
25	$\frac{1}{18}$	0.0400	$\underline{0.0400}$
	$\frac{}{18}$		0.8216

$\mathrm{H} . \mathrm{M}=\frac{N}{\mathrm{~T} f\left|-\frac{1}{x x}\right|}=\frac{18}{0.8216}=21.91$

$$
\begin{aligned}
& \operatorname{Adj} A=\left|\begin{array}{cc}
4 & -1 \\
f-2 & 3
\end{array}\right|=\left|\begin{array}{cc}
4 & -2 \\
f-1 & 3
\end{array}\right| \\
& \text { Now, } A(\operatorname{Adj} A)=\left|\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right| \cdot\left|\begin{array}{cc}
4 & -2 \\
\lceil-1 & 3
\end{array}\right| \\
& =\left|\begin{array}{ll}
12-2 & -6,6 \\
4-4 & -2,12
\end{array}\right| \\
& =\left|\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right|
\end{aligned}
$$

51. (B) (1) A relation R on a set A is said to be a reflexive realtion, if $(a, a) \in R, \quad \# a \in R$
$\therefore R$ is reflexive.
(2) A relation R on a set A is said to be a symmetric relation, if $(a, b) \in \mathrm{R} \Rightarrow(b, a) \in R$, \# $a, b \in R$
Since, (b, a) A
$\therefore R$ is not symmetric
(3) A relation R on a set A is said to be a transitive relation if $(a, b) \in R,(b, c) \in R \Rightarrow(c, a)$ $\in R$
$\therefore R$ is transitive.
52. (D) $\operatorname{Adj} A=\left|\begin{array}{cc}a & 0 \\ f-1 & \phi\end{array} \quad \therefore A=\left|\begin{array}{cc}b & 0 \\ f-1 & व\end{array}\right|\right.$
since, $|\mathrm{A}|=a b$
$A^{-1}=\frac{\operatorname{Adj} A}{|A|}=\frac{1}{a b}\left|\begin{array}{cc}a & 0 \\ f-1 & \phi\end{array}\right|$
$\therefore A^{-1}=\left[\begin{array}{cc}\frac{1}{b} & 0 \\ -\frac{1}{a b} & \frac{1}{d}\end{array}\right]$
Hence, $\left|\mathrm{A}^{-1}\right|=\frac{1}{a b}$
53. (B) Let $p(h, k)$ be the mid-point of the chord op through vectex $(0,0)$, then P is $(2 h, 2 k)$ which lie on the parabola $y^{2}=4 x$
$\therefore 4 x^{2}=8 h$
Hence the locus of p is $y^{2}=2 x$.
54. (C) The given equation $x^{2}+2 y^{2}-2 x+3 y+2=$

0, can be written as $\frac{) x-1 *^{2}}{\frac{1}{8}}+\frac{\left(\left.\frac{y, 3}{4}\right|^{2}\right.}{\frac{1}{16}}$
$=1$
Which represents an ellipse for which
$a^{2}=\frac{1}{8}, b^{2}=\frac{1}{16}$
$\therefore b^{2}=3^{2}$ and centre is $(h, k)=(-1,-2)$
$e^{2}=1-\frac{b^{2}}{a^{2}}=\frac{16}{25} \Rightarrow e=\frac{4}{5}$
\therefore coordinates of the foci are
$(h, k \pm a e)$, i.e $(-1,-2 \pm 4)$
i.e $(-1,2)=(-1,-6)$
55. (D) $f^{\prime}(x)=-(x+1) e^{-x}$
obviously $f^{\prime}(x)<0$, when $x>-1$
and $f^{\prime}(x)>0$, when $x<-1$
Hence, $f(x)$ in decreasing in $(-1, \infty)$ and increasing in $(-\infty,-1)$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
56. (A) Clearly $f(1)=e^{o}+1-2=1+1-2=0$

So 1 is a root of equation
Let $\alpha>1$ be also a root. then $f(\alpha)=0$
\therefore By rolle's theorem $f^{\prime}(x)=0$ for at least one x between 1 and α.
Now $f^{\prime}(x)=\mathrm{e}^{x-1}+1=0$
$\Rightarrow e^{x-1}=-1$
Which is not possible as $x \in] 1$, α [, i.e $x>1$
\therefore There exist no root >1
Similarly we can see that no root exists less than 1
Thus, there is only one root.
57. (D) Both curves $y=x^{3}$ and $y=x$ are symmetrical in opposite quadrants and points of intersection are $x= \pm 1$ and 0 .
\therefore required area

\therefore required area
$=2 \mid\left\{y_{2} d x f_{0}^{1} y_{1} d x\right)$
$=2 \int x-x^{3} * d x=\frac{1}{2}$
58. (B) $\frac{) 1, i^{*} x-2 i}{3, i}+\frac{) 2-3 i^{*} y, i}{3-i}=i$

$$
\frac{) 3-i * \mid()) 1, i * x-2 i *,) 3, i * \mid() 2-3 i * y, \dot{\gamma}}{9,1}=i
$$

$$
\Rightarrow 4 x+9 y=3,2 x-7 y=13
$$

$\Rightarrow x=3, y=-1$
59. (D) Given expression
$=1-1+1-1+\ldots+(-1)^{n}$
Which can't be determined, unless n is known.
60. (A)

Product Integral Part

$$
\begin{array}{ll}
0.25 \times 2=1.5 & 0 \\
0.5 \times 2=1.0 & 1 \downarrow \text { Result } \\
\therefore(0.25)_{10}=(0.10)_{2} &
\end{array}
$$

61. (C) $63+(n-1) \cdot 2=3+(n-1) \cdot] \Rightarrow 60=7 n-7-2 n+2$

$$
\Rightarrow 5 n=65 \Rightarrow n=13
$$

62. (C) $\frac{\left.\frac{n}{2}\right|_{[2 a,) n-1 * q \mid}}{\left.\frac{n}{2}\right|_{\mid 2 A,) n-1 * D \mid}}=\frac{3 n, 4}{5 n, 6}$

$$
\Rightarrow \frac{2 a,) n-1 * d}{2 A,) n-1 * D}=\frac{3 n, 4}{5 n, 6}
$$

$\Rightarrow \frac{a, \frac{n-1}{2} d}{A, \frac{n-1}{2} D}=\frac{3 n, 4}{5 n, 6}$
we have to find 5th term

$$
\begin{aligned}
& \text { i.e } \frac{a, 4 d}{A, 4 D} \text {, put } \frac{n-1}{2}=4 \\
& \Rightarrow n=9 \Rightarrow \frac{a, 4 d}{A, 4 D}=\frac{3 \propto 964}{5 \propto 9}=\frac{31}{51}
\end{aligned}
$$

63. (D) Let point be ($x, 0$)
$\therefore\left|\frac{4 x, 3 \propto 0-12}{\sqrt{16,9}}\right|=8$
$\Rightarrow 4 x-12= \pm 40 \Rightarrow 4 x=52,-28$
$\Rightarrow x=13,-7$
64. (A) slope of the line through $A(5,0)$ is
$m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
When rolated 15° clockwise
Then line marks angles 15° with x-axis
\therefore slope of the line $=\tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right)$
$=\frac{\sqrt{3}-1}{1, \sqrt{3}}=\frac{) \sqrt{3}-1 *^{2}}{3-1}=2-\sqrt{3}$
\therefore Equation of the line is $y-0=2-\sqrt{3}(x-5)$
$\Rightarrow(2-\sqrt{3}) x-y-5(2-\sqrt{3})=0$.
65. (A) Let circle be $(x-h)^{2}+(y-k)^{2}=9 \ldots$ (i)

Circle (i) passes through the point $(7,3)$.
$\therefore(7-h)^{2}+(3-k)^{2}=9 \ldots$ (ii)
Also centre (h, k) lies m line $y=x-1$
$\Rightarrow k=h-1$
...(iii)
from (ii) \& (iii), we have $(7-h)^{2}+(4-h)^{2}=9$
$\Rightarrow 49-14 h+h^{2}+16-8 h+h^{2}=9$
$\Rightarrow h^{2}-11 h+28=0$
$\Rightarrow 2 h^{2}-22 h+56=0$
$(h-7)(h-4)=0$
$\Rightarrow h=7$ or $h=4$
from (iii), when $h=7, k=6$
substituting in (1), we get circle as $(x-7)^{2}$ $+(y-6)^{2}=9$
66. (B)

Let a be the length of a side of square plot ABCD and h, the height of the pole standing at D.

Campus

KD Campus Pvt. Ltd

Since elevations of p from A or C is 30° and that from B is θ.
\therefore In $\triangle P C D, \tan 30^{\circ}=\frac{h}{a}$
i.e $\frac{h}{a}=\frac{1}{\sqrt{3}}$
and in $\triangle \mathrm{PBD}$

$$
\begin{aligned}
& \tan \theta=\frac{P D}{B D}=\frac{h}{a \sqrt{2}}=\frac{1}{\sqrt{6}} \\
& \therefore \mathrm{BD}=\sqrt{A B^{2}, A D^{2}}=a \sqrt{2}
\end{aligned}
$$

67. (A) $\frac{d y}{d \rho}=-a \sin \theta$

$$
\begin{aligned}
& \frac{d x}{d \rho}=a(1+\cos \theta) \\
& \frac{d y}{d x}=\frac{\frac{d y}{d \rho}}{\frac{d x}{d \rho}}=\frac{-a \sin \rho}{a) 1, \cos \rho *}=-\tan \frac{\rho}{2} \\
& \therefore \frac{d^{2} y}{d x^{2}}=\frac{-1}{2} \sec ^{2} \frac{\rho}{2}\left|-\frac{d \rho}{d x}\right| \\
& \left.\left.=\frac{-1}{2} \sec ^{2} \frac{\rho}{2} \cdot \right\rvert\, \frac{1}{4 a}\right) 1, \cos \rho^{*} \\
& =\frac{-1}{4 a} \sec ^{4} \frac{\rho}{2}
\end{aligned}
$$

At $\theta=\frac{\theta}{2}$

$$
\frac{d^{2} y}{d x^{2}}=\frac{-1}{4 a} \sec ^{4} \frac{\theta}{4}=\frac{-1}{a}
$$

68. (B) Let r be the radius and θ the angle of the sector.
\therefore Perimeter $=2 r+\operatorname{arc} \mathrm{AB}=2 r+r \theta$

$$
=20 \mathrm{~cm} \text { (given) }
$$

$\Rightarrow \theta=\frac{) 20-2 r *}{r}$
The area of sector
$\mathrm{A}=\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \frac{20-2 r^{*}}{r}$
$\mathrm{A}=10 r-r^{2}$
$\frac{d A}{d t}=10-2 r=0$, for \max or min of A
$\Rightarrow r=5 \mathrm{~cm}$
$\frac{d^{2} A}{d^{2} r}=-2, \quad$ which is - ve
$\therefore A$ is max. when $r=5 \mathrm{~cm}$
$\therefore \max A=10 \times 5-5^{2}=25$ sq. cm.
69. (A)

The two curves $y=2^{x}$ and $y=2 x-x^{2}$ do not intersect between $x=0$ and $x=2$
\therefore Required area
$=\int_{0}^{0} y_{1} d x-\int^{0} y_{2} d x$
$=\left(\int^{2} 2^{x}-2 x, x^{2} * d x\right.$
$=\frac{3}{\log 2}-\frac{4}{3}$.
70. (C) Given integral

$$
\begin{aligned}
& =\overbrace{}^{\frac{\theta}{2}} \frac{d x}{1, \cos \left\lvert\,\left(\left.-\frac{1}{2} \theta-x \right\rvert\,\right.\right.} \\
& =\frac{1}{2} \stackrel{\theta}{2}_{6}^{\sec ^{2}}\left|-\frac{1}{4} \theta-\frac{1}{4} x\right| d x \\
& \left.=|-\tan |-\frac{1}{4} \theta-\frac{1}{2} x\right)\left|\left.\right|_{0} ^{\frac{\theta}{2}}=1\right.
\end{aligned}
$$

71. (C) Given,

$$
\begin{aligned}
& y=\tan ^{-1}\left|\frac{1-2 \log x}{1,2 \log x}\right|+\tan ^{-1}\left|\frac{3,2 \log x}{1-3 x 2 \log x}\right| \\
& =\tan ^{-1} 1-\tan ^{-1}(2 \log x)+\tan ^{-1} 3+\tan ^{-1}(2 \log x) \\
& y=\tan ^{-1} 1+\tan ^{-1} 3 \\
& \therefore y^{\prime}=0 \text { and } y^{\prime \prime}=0
\end{aligned}
$$

72.(A) Given integral

$$
\begin{aligned}
\mathrm{I} & \left.\left.\left.=\frac{1}{2} \int^{m} \right\rvert\, \sin \right) m, n * x-\sin \right) m-n * x \mid d x \\
& =-\frac{1}{2}\left|\frac{\cos) m, n * x}{m, n}-\frac{\cos) m-n * x}{m-n}\right|_{0}^{\theta} \\
& \left.=-\frac{1}{2} \left\lvert\, \frac{\{ }{4 y} \frac{-1 *^{m, n}}{m, n}-\frac{)-1 *^{m-n}}{m-n}\right.\right\}_{*} \left\lvert\, \frac{1}{m, n}-\frac{1\}}{m-r \mid}\right.
\end{aligned}
$$

since, $n-m$ is odd, $\therefore n+m$ must be odd, so $(-1)^{m+n}=(-1)^{m-n}=-1$
Also since
$|m| \neq|n|, m+n \neq 0, m-n \neq 0$

$$
\begin{aligned}
\therefore & \mathrm{I}=\frac{1}{m, n}-\frac{1}{m-n} \\
& =\frac{m-n-m-n}{m^{2}-n^{2}}=\frac{2 n}{n^{2}-m^{2}}
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
73. (C) Here $n=3$
\therefore Number of subsets $=2^{3}=8$.
74. (B) $\mathrm{A}=\left\{x^{2}: x \in \square\right\}$
75. (B) $p: 100$ is divisible by 3 ; ' F '
$q: 100$ is divisible by 11 ; ' F '
$r: 100$ is divisible by 5 ; ' T '
$\therefore \mathrm{p}, \mathrm{q}$ and r is ' F ' i.e false
76. (B) Given,
$\mathrm{N}=200, \bar{x}=48$ and $\sigma=3$ and it is required to find the value of Σx and Σx^{2}
Now, $\bar{x}=\frac{(x}{200}$
$\Rightarrow \Sigma x=\mathrm{N} \bar{x}=200 \times 48=9600$
Also, $\sigma^{2}=\frac{\mathrm{T} x^{2}}{N}-\left(-\frac{\mathrm{T} x}{N}\right)^{2}$
Substituting the value, we get

$$
\begin{aligned}
& \sigma^{2}=\frac{\mathrm{T} x^{2}}{200}-\left(-\frac{9600}{200}\right)^{2} \\
& \Rightarrow \Sigma x^{2}=4,62,600
\end{aligned}
$$

77. (A) Center is $(2,3)$

$$
\begin{align*}
& (8,4) \\
& \frac{8, \beta}{2}=2 ; \frac{4, \chi}{2}=3 \\
& \Rightarrow \alpha=-4, \beta=2 \text { i.e }(-4,2) \tag{i}
\end{align*}
$$

78. (C) Given $\frac{2 b^{2}}{a}=b \Rightarrow a=2 b$
$c=\sqrt{a^{2}-b^{2}}=\sqrt{3} b$
\therefore Eccentricity $=\frac{c}{a}=\frac{\sqrt{3} b}{a}=\frac{\sqrt{3}}{2}$
(\because from (i))
79. (D) $\vec{a}, \vec{b}, \vec{c}$ are L. D vectors, so

$$
(\vec{a}, \vec{b}, \vec{c})=\left|\begin{array}{ccc}
1 & 1 & 1 \\
4 & 3 & 4 \\
1 & \beta & \chi
\end{array}\right|=1-\beta=0
$$

$\Rightarrow \beta=1$
Also, $|c|=\sqrt{3} \Rightarrow 1+\alpha^{2}+\beta^{2}=3$
$\Rightarrow \alpha^{2}=1 \Rightarrow \alpha= \pm 1$
Thus $\alpha= \pm 1, \beta=1$.
80. (A) $\because p$ and q are the roots of $x^{2}-p x+q=0$.

$$
\begin{aligned}
& \therefore p+q=p, p q=q \\
& \Rightarrow q(p-1)=0 \\
& \Rightarrow q=0, p=1
\end{aligned}
$$

81. (C) $\mathrm{P}\left|-\left|\frac{\bar{A}}{\bar{B} B}\right|=\left|\frac{\bar{A} \cup \bar{B}}{P) B^{*}}\right|=\frac{P) \overline{A \supset B^{*}}}{P) \bar{B}^{*}}\right.$

$$
=\frac{1-P) A \supset B *}{P) \bar{B} *}
$$

82. (D) Let A, A, I, N be arranged.

Now there are 5 place for ' S ' to be arranged
\therefore ways for arrangement of ' S '
$={ }^{5} \mathrm{C}_{4} \frac{4!}{2!}=60$
And total number of ways of arrangement
of 8 letters $=\frac{8!}{4!2!}=\frac{8.7 .6 .5}{2}$
$\therefore P$ (no two S occur together)
$=\frac{60 \propto 2}{8 \propto 7 \propto 65}=\frac{1}{14}$
83. (C) Solving $y=0$ and $y=4+3 x-x^{2}$

We get $x=-1,4$. curve does not intersect x-axis between $x=-1$ and $x=4$
\therefore Area $\left.=\int_{1}^{\infty}\right) 4,3 x-x^{2} * d x$
$=\frac{125}{6}$ sq. units.
84. (A) Let $z=x+i y$, then
$z=\bar{z} \Rightarrow x+i y=x-i y \Rightarrow y=0$
$\Rightarrow z$ is real.
85. (D) $\frac{1-i \sqrt{3}}{1, i \sqrt{3}}=\frac{) 1-i \sqrt{3} *^{2}}{4}=\frac{-2-2 \sqrt{3 i}}{4}$
$=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
$\therefore \arg \left|-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right|=-\left(\pi-\tan ^{-1} \sqrt{3}\right)$
$=\frac{-2 \theta}{3}$
86. (B) Consider $\frac{5-2 x}{3} \leq \frac{x}{6}-5$
multiplying throughout by 6 , we get
$10-4 x \leq x-30 \Rightarrow 40 \leq 5 x \Rightarrow 8 \leq x$
$\Rightarrow x \geq 8$.
87. (A) Let $\mathrm{Q}(\alpha, \beta)$ be image of $p(-8,12)$ in the line $4 x+7 y+13=0$. Then (i) R is mid-point of $P Q=3$ and (ii) $P Q \quad$ line.

Campus

KD Campus Pvt. Ltd

Coordinate of mid-point $R \leqslant\left|\frac{\beta-8}{2}, \frac{12}{2}\right|$
As this point lies on line.
$\Rightarrow 4\left|-\frac{\beta-8}{27}\right|+7\left|-\frac{\gamma \quad 12}{2}\right|+13=0$
$\Rightarrow 4 \alpha-32+7 \beta+84+26=0$
$\Rightarrow 4 \alpha+7 \beta+78=0 \ldots$ (i)
Also PQ _ line $\Rightarrow \frac{\chi \quad 12}{\beta \quad B} \times \frac{-4}{7}=-1$
$\Rightarrow 4 \beta-48=7 \alpha+56$
$\Rightarrow 7 \alpha-4 \beta+104=0$
Solving (i) and (ii), we get $\alpha=-16, \beta=-2$
Hence image is $(-16,-2)$.
88. (C) Third term from end $=(n-3+2)^{\text {th }}$ term i.e $(n-1)^{\text {th }}$ from beginning
\therefore coefficient $={ }^{n} C_{n-2}={ }^{n} C_{2}=45$
$\Rightarrow n(n-1)=90$
$\Rightarrow n=10$
$T_{6}={ }^{10} \mathrm{C}_{5}\left|y^{\frac{1}{3}}\right|^{5}\left|x^{\frac{1}{3}}\right|^{\frac{5}{5}}=-252 x^{\frac{5}{3}} y^{\frac{5}{2}}$.
89. (A) $T_{n}=\frac{n^{2}}{n, 1 *!}=\frac{n^{2}-1,1}{n n, 1 *!}$

$$
\begin{aligned}
& =\frac{) n-1^{*}\right) n, 1^{*}}{n, 1^{*!}}+\frac{1}{) n, 1 *!} \\
& =\frac{) n-1^{*}}{n!}+\frac{1}{n, 1 *!} \\
& =\frac{n}{n!}-\frac{1}{n!}+\frac{1}{\mid n, 1 *!} \\
& =\frac{1}{\mid n-1 *!}-\frac{1}{n!}+\frac{1}{) n, 1 *!} \\
& \left.S_{n}=\left|-\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \ldots\right|-\left\lvert\,-\frac{1}{1!}\right., \frac{1}{2!}, \frac{1}{3!}, \ldots\right) \\
& \left.\quad+\left\lvert\,-\frac{1}{2!}\right., \frac{1}{3!}, \frac{1}{4!}, \ldots\right)
\end{aligned}
$$

$=e-(e-1)+(e-2)$
$=e-1$
90. (B) ${ }^{n} P_{r}=336,{ }^{n} c_{r}=56$

We know that ${ }^{n} P_{r}=r!{ }^{n} c_{r} \Rightarrow 336=$
$\Rightarrow r!=6=3!\Rightarrow r=3$
Consider ${ }^{n} c_{r}=56 \Rightarrow{ }^{n} c_{3}=56$
$\Rightarrow \frac{\left.n) n-1^{*}\right) n-2 *}{3!}=56$
$\Rightarrow n(n-1)(n-2)=56 \times 6=8 \times 7 \times 6$

$$
\begin{aligned}
& n(n-1)(n-2)=8(8-1)(8-2) \\
\Rightarrow & n=8
\end{aligned}
$$

Hence $n=8, r=3$
91. (A) $f(x)=\alpha x^{2}+\beta x^{2}+r$
obviously $f(x)$ is continuous in a closed interval $[a, b]$ and differentiable in open interval $] a, b[$.
\therefore by Lagrange's mean value theorem, there exist a point c, such that $a<c<b$, where
$f^{\prime}(c)=\frac{\left.f) b^{*}-f\right) a^{*}}{b-a}$
$\Rightarrow 2 \alpha c+\beta=\frac{\left.\beta) b^{2}-a^{2} * \chi\right) b-a^{*}}{b-a}$
$\Rightarrow 2 \alpha c+\beta=\alpha(b+a)+\beta$
$c=\frac{a, b}{2}$
92. (D) Here $\frac{d r}{d t}=4 \mathrm{~cm} / \mathrm{s}$

Area $=\mathrm{A}=\pi r^{2}$
$\therefore \frac{d A}{d t}=\left|-2 \theta r \frac{d r}{d t}\right|_{r>10}=80 \pi \mathrm{~cm}^{2} / \mathrm{s}$
But in (B) the result is $80 \pi \mathrm{~cm} / \mathrm{s}$ which is wrong unit so not true.
93. (D) $f(x)=|x|+|x-1|$
$=\left\{\begin{array}{ccc}\{-2 x, 1 & : & -1 / x=0 \\ 1 & : & 0 / x=1 \\ 2 x-1 & : & 1 / x / 2\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{aligned}-2:-1 \leq x<0 \\ \text { not exist }: x=0 \\ 0: 0<x<1 \\ \text { not exist }: x=1 \\ 2: 1<x \leq 2\end{aligned}\right.$
Hence $f(x)$ is decreasing in $[-1,0[$ and increasing in]1, 2],
i.e, neither increasing nor decreasing in $[-1,2]$.
94. (C) $\log _{2} x$ is real if $x>0$ so we should have $\log _{3} \log _{\left|-\frac{4}{\theta}\right|}\left(\tan ^{-1} x\right)^{-1}>0$
\because Base $3>1$ so $\log _{4}\left(\tan ^{-1} x\right)^{-1}>1$

Now the base $\frac{4}{\theta}>1$ so

$$
\left(\tan ^{-1} x\right)^{-1}>\frac{4}{\theta}
$$

or $\tan ^{-1} x<\frac{4}{\theta}$
so $0<x<1$
Hence required domain is $(0,1)$

Campus

KD Campus Pvt. Ltd

95. (B) We have $\frac{d y}{d x}=\frac{1}{|x|} \cdot \frac{d}{d x}|x|$

We have $|x|=\left\{\begin{array}{r}x: x \geq 0 \\ -x: x<0\end{array}\right.$
$\therefore \frac{d|x|}{d x}=\left\{\begin{array}{r}1: x \geq 0 \\ -1: x<0\end{array}\right.$
from (i) and (iii), we have

$$
\frac{d y}{d x}=\frac{1}{x} \cdot 1 \quad(x \geq 0)
$$

and $\frac{d y}{d x}=\frac{1}{)-x^{*}} \cdot(-1)=\frac{1}{x}, \quad(x<0)$
Hence $\frac{d y}{d x}=\frac{1}{x}$
96. (C) Required probability
$=1-\mathrm{P}(\mathrm{red}$ balls $)$
$=1-\frac{7_{C_{2}}}{9_{C_{2}}}$
$=1-\frac{7 \times 6}{9 \times 8}=\frac{5}{12}$
97. (C) $\left.\int_{1}^{0} \mid\right) 1-x * d x=\left(\int_{1}^{0}\right) 1-x * d x$ $\because 1-x \geq 0$, when $-1 \leq x \leq 1$ $=\left|x-\frac{1}{2} x^{2}\right|_{-1}^{1}=2$
98. (D) $A \cup B=A \cap C$
$A \cap B=A \cap C$
from (i) and (ii)

$$
\begin{equation*}
A \cup B=A \cap B \tag{ii}
\end{equation*}
$$

since $A=B$
Again from (ii) $A \cap B=A \cap B$
since $B=C$
Hence $A=B=C$
99. (B) $\left|\begin{array}{ccc}2 & 4 & 0 \\ 0 & 5 & 16 \\ 0 & 0 & 1, P\end{array}\right|=20$
since, $2[5(1+P)-0]=20$
$\Rightarrow 10(1+P)=20$
$\Rightarrow \mathrm{P}=1$
100. (*) from $\triangle \mathrm{CAD}$ and CDB

$\frac{d-y}{h}=\cot \alpha$
$\frac{y}{h}=\cot \beta$
from (i) \& (ii)
$\frac{d}{h}-\cot \beta=\cot \alpha \Rightarrow \frac{d}{h}=\cot \alpha+\cot \beta$
$\therefore \frac{h}{d}=\frac{1}{\cot \beta \cot }=\frac{\cot) \beta \chi *}{\cot \beta \cot -1}$
101. (C) $\left\lvert\,\left\langle\left(\left.\frac{d^{4} y}{d x^{4}}| |_{-}^{3}\right|^{\frac{2}{3}}-7 x\left|-\left|\frac{d^{3} y}{d x^{3}}\right|\right|=8\right.\right.\right.$
$\Rightarrow\left|\frac{d^{4} y}{d x^{4}}\right|^{2}-7 x\left|-\frac{d^{3} y}{d x^{3}}\right|=8$
Hence, order $=4$
Degree $=2$
102. (C) $\left[F(x)^{2}\right]=\left|-x, \frac{1}{x}\right|^{2}=x^{2}+\frac{1}{x^{2}}+2$
$f\left(x^{2}\right)+2=x^{2}+\frac{1}{x^{2}}+2$
$[f(x)]^{2}=\left|-x, \frac{1}{x}\right|^{3}=x^{3}+\frac{1}{x^{3}}+3\left|-x, \frac{1}{x}\right|$
$=x^{3}+\frac{1}{x^{3}}+3 f(x)$
Now, $f\left(x^{3}\right)+3 f(x)=x^{3}+\frac{1}{x^{3}}+3 f(x)$
Hence, both the statements are true.
103. (D) Let a and d be the first term and common difference of an AP.

According to question,

$$
\begin{aligned}
& P . T_{p}=q \cdot T_{q} \\
\Rightarrow & p[a+(p-1) d]=q[a+(q-1) d] \\
\Rightarrow & \left.p a+\left(p^{2}-p\right) d\right]=q a+\left(q^{2}-q\right) d \\
\Rightarrow & (p-q) a=\left(q^{2}-p^{2}+p-q\right) d \\
\Rightarrow & (p-q) a=(p-q)(-p-q+1) d \\
\Rightarrow & \mathrm{a}=-(p+q-1) d \\
\text { Now, } T_{p+q}= & a+(p+q-1) d \\
& =-(p+q-1) d+(p+q-1) d \\
& =0
\end{aligned}
$$

104. (C) P (ace) $=\frac{4}{52}=\frac{1}{13}$
$P($ King $)=\frac{4}{52}=\frac{1}{13}$
$\mathrm{P}(2$ areas and one king $)={ }^{3} \mathrm{C}_{2}\left|-\frac{1}{13}\right|^{2}\left|-\frac{1}{13}\right|$

$$
=\frac{3}{\sqrt[13]{ } *^{3}}
$$

105. (B) Total ways $={ }^{80} \mathrm{C}_{2}$

Favourable ways $={ }^{20} \mathrm{C}_{2}$

$$
\begin{aligned}
P & =\frac{{ }^{20} \mathrm{C}_{2}}{{ }^{80} \mathrm{C}_{2}} \\
& =\frac{19}{316}
\end{aligned}
$$

106. (C) $\frac{\cot 54^{\circ}}{\tan 36^{\circ}}+\frac{\tan 20^{\circ}}{\cot 70^{\circ}}=\frac{\cot 54^{\circ}}{\tan) 90^{\circ}-54^{\circ} *}+$

$$
\begin{aligned}
& \frac{\tan 20^{\circ}}{\cot) 90^{\circ}-20^{*}} \\
& =\frac{\cot 54^{\circ}}{\cot 54^{\circ}}+\frac{\tan 20^{\circ}}{\tan 20^{\circ}} \\
\Rightarrow 1 &
\end{aligned}
$$

107. (D) $\lim _{x \downarrow 0} \frac{5^{x} 2^{x}-5^{x}-2^{x}, 1}{x^{2}}$

$$
\begin{aligned}
& \lim _{x \downarrow 0} \frac{\left.\left.5^{x}\right) 2^{x}-1^{*}-1\right) 2^{x}-1^{*}}{x^{2}} \\
\Rightarrow & \lim _{x \downarrow 0} \frac{5^{x}-1}{x} \cdot \frac{2^{x}-1}{x} \\
\Rightarrow & \log _{\mathrm{e}}{ }^{5} \log _{\mathrm{e}}{ }^{2}
\end{aligned}
$$

108. (A) Number of ways to choose 8 players from

$$
12 \text { players }={ }^{12} \mathrm{C}_{8}=\frac{12!}{8!4!}=495
$$

and number of ways to choose a captain and a vice-captain

$$
\begin{aligned}
& ={ }^{8} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{1} \\
& =8 \times 7=58
\end{aligned}
$$

Hence, required number of

$$
=495 \times 56=27720
$$

109. (B) Let $y=x^{2}$
$\log y=x \cdot \log x \quad x>0$
Differentiate w.r.t x
$\frac{1}{y} \frac{d y}{d x}=(1+\log x)$
$\therefore \frac{d y}{d x}=x^{x}(1+\log x)$
$\therefore \frac{d y}{d x}=0 \Rightarrow \log x=-1$
$\Rightarrow x=e^{-1}=\frac{1}{e}$
\therefore stationary point is $x=\frac{1}{e}$
$\frac{d^{2} y}{d x^{2}}=x^{x}(1+\log x)^{2}+x^{2} \cdot \frac{1}{x}$
when $x=\frac{1}{e}, \frac{d^{2} y}{d x^{2}}=\left|-\frac{1}{e}\right|^{\frac{1}{e}-1}>0$
$\therefore y$ is minimum at $x=\frac{1}{e}$ and
minimum value $=\left|-\frac{1}{e}\right|^{\frac{1}{e}}=e^{-\frac{1}{e}}$
110. (B) $(g \circ f)(x)=g(f(x))=g\left(e^{x}\right)$

$$
=\ln \mathrm{e}^{x}=x \ln \mathrm{e}=x
$$

$\therefore \frac{d y}{d x}=1$.
111. (D) By the result
mode $=3$ median -2 mean
assuming, mean $>$ median $>$ mode
mean - mode $=3($ mean - median $)$
$\therefore 63=3$ (mean - median)
i.e mean - median $=21$
112. (C) $(1+i)^{2 n}=(l-i)^{2 n}$
$\Rightarrow\left|-\frac{1, i}{1-7}\right|^{2 n}=1 \Rightarrow(i)^{2 n}=1$
$\therefore n=2$ is the smallest positive integer.
113. (B) $\mathrm{A}^{2}=\left|\begin{array}{rr}i & 0 \\ 0 & i\end{array}\right| \begin{array}{cc}i & 0 \\ 0 & i\end{array}\left|=\left|\begin{array}{ll}i^{2} & 0 \\ \mathrm{O} & i^{2}\end{array}\right|\right.$
$=\left|\begin{array}{cc}-1 & 0 \\ 0 & -7\end{array}\right|$
114. (C) Any point on the given line is
$(5 r-3,2 r+1,3 r-4)$
If it is the foot of the perpendicular from ($1,2,3$), then
$5(5 r-3-0)+2(2 r+1-2)+3(3 r-4-3)=0$
i.e $38 r=38$
i.e $r=1$
\therefore foot of perpendicular is $(2,3,-1)$
115. (B) $\cos \mathrm{A}=\frac{6^{2}, 10^{2}-14^{2}}{2 \propto 610}=\frac{36,100-196}{120}$
$=\frac{-60}{120}=\frac{-1}{2}$
$\Rightarrow \mathrm{A}=120^{\circ}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
116. (A)) $\left.623 * \frac{1}{\frac{1}{4}}=\right) 625-2^{\frac{1}{4}}$

$$
\begin{aligned}
& =5\left|-1-\frac{2}{625}\right|^{\frac{1}{4}} \\
& =5\left|-1-\frac{2}{4 \propto 625}\right| \\
& =5(1-0.0008)=4.996
\end{aligned}
$$

117. (C) $f(x)=\left\{\begin{array}{cc}\left\{\begin{array}{cc}a, b x & , \\ 4=1 \\ 4 & , \\ b-a x & , \\ b ? 1\end{array}\right.\end{array}\right.$

Given,

$$
\begin{aligned}
& { }_{x \downarrow}^{L t_{1}} f(x)=f(1) \\
& \Rightarrow{ }_{x \downarrow 1}^{L t} f(x)={ }_{x \downarrow 1}^{L t} f(x)=f(1) \\
& \Rightarrow{ }_{h \downarrow}^{L t} f(1-h)={ }_{h \downarrow}^{L t} f(1+h)=f(1) \\
& \Rightarrow{ }_{h \downarrow 0}^{L t_{0}}\{a+b(1-h)\}={ }_{h \downarrow}^{L t}\{b-a(1+h)\}=4 \\
& \Rightarrow a+b=b-a=4 \Rightarrow a=0, b=4
\end{aligned}
$$

118. (A) $\mathrm{I}=\frac{\log x^{2}}{x} d x=2 \int \frac{\log x}{x} d x$
$\left.=2 \cdot \frac{1}{2}\right) \log x^{* 2}+\mathrm{C}$
$\Rightarrow(\log x)^{2}+\mathrm{C}$
119. (B) $\mathrm{A}=\left|\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ 4-1 & 0 & 0\end{array}\right|$

$$
\begin{aligned}
& \Rightarrow A^{2}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
4-1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right] \\
& A^{2}=I
\end{aligned}
$$

120. (C) Given $n(A-B)=14+x$

$$
\begin{aligned}
& n(B-A)=3 \mathrm{x} \\
& n(A \cap B)=x \\
& n(A)=n(B) \\
& \Rightarrow n(A-B)+n(A \cap B)=n(B-A)+n(A \cap B) \\
& \Rightarrow 14+x+x=3 x+x \\
& \Rightarrow 14=2 x \\
& x=7
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA MOCK TEST-47 (ANSWER KEY)

1.	(B)	21.	(B)	41.	(B)
2.	(A)	22.	(D)	42.	(A)
3.	(A)	23.	(B)	43.	(B)
4.	(B)	24.	(C)	44.	(D)
5.	(C)	25.	(D)	45.	(C)
6.	(A)	26.	(A)	46.	(C)
7.	(B)	27.	(C)	47.	(B)
8.	(C)	28.	(B)	48.	(A)
9.	(C)	29.	(C)	49.	(B)
10.	(B)	30.	(B)	50.	(A)
11.	(A)	31.	(D)	51.	(B)
12.	(D)	32.	(D)	52.	(D)
13.	(B)	33.	(C)	53.	(B)
14.	(A)	34.	(A)	54.	(C)
15.	(C)	35.	(A)	55.	(D)
16.	(A)	36.	(A)	56.	(A)
17.	(C)	37.	(A)	57.	(D)
18.	(C)	38.	(B)	58.	(B)
19.	(B)	39.	(D)	59.	(D)
20.	(D)	40.	(B)	60.	(A)

61.	(C)
62.	(C)
63.	(D)
64.	(A)
65.	(A)
66.	(B)
67.	(A)
68.	(B)
69.	(A)
70.	(C)
71.	(C)
72.	(A)
73.	(C)
74.	(B)
75.	(B)
76.	(B)
77.	(A)
78.	(C)
79.	(D)
80.	(A)

81.	(C)	101. (C)
82.	(D)	102. (C)
83.	(C)	103. (D)
84.	(A)	104. (C)
85.	(D)	105. (B)
86.	(B)	106. (C)
87.	(A)	107. (D)
88.	(C)	108. (A)
89.	(A)	109. (B)
90.	(B)	110. (B)
91.	(A)	111. (D)
92.	(D)	112. (C)
93.	(D)	113. (B)
94.	(C)	114. (C)
95.	(B)	115. (B)
96.	(C)	116. (A)
97.	(C)	117. (C)
98.	(D)	118. (A)
99.	(B)	119. (B)
100.	(*)	120. (C)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact : 9313111777

