

EXAMPLE 15: FLORE OPPOSITE MUKHERE NGAR POLCE STATION, DELHI-110009

$$= \lim_{n \to \infty} \frac{95}{x^2} \frac{57}{x^2}, \frac{30}{x^2}$$

$$= \frac{0}{1-0} = 0$$
18: (C) Let objects 1, 2, 3, 4, 5 be placed in places marked 1, 2, 3, 4, 5 respectively. Then the number of drangements in which none of the object occupied its original position is given by
St $\left| \frac{1}{1-1}, \frac{1}{21}, \frac{1}{31}, \frac{1}{41}, -\frac{1}{51} \right|$
 $= 60 - 20 + 51 - 44$
Also total numbers of arrangements = 5t = 120
Hence required probability = $\frac{44}{120} = \frac{11}{30}$
19. (B) $x \ y \ x^2 \ y^2 \ xy$
 $\frac{4}{2} \ 216 \ 48$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 4 \ 416 \ 8$
 $2 \ 515 \ 16 \ 49 \ 56 \ 46$
 $= \frac{-10}{\sqrt{|26-22|39|-256|^2|}} = \frac{12}{\sqrt{|26-2259|280-256|^2|}} = \frac{1}{\sqrt{|22-2259|280-256|^2|}} = \frac{10}{\sqrt{|22-24|}} = \frac{10}{\sqrt{|22-22|39|-256|^2|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-24|}} = \frac{10}{\sqrt{|22-24|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-224|}} = \frac{10}{\sqrt{|22-2259|280-256|^2|}} = \frac{10}{\sqrt{|22-2259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|280-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|28-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|28-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|28-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|28-256|^2|}} = \frac{10}{\sqrt{|22-259|28-259|28-256|^2|}} = \frac{10}{\sqrt{|22-259|28$

EXAMPLES INTERCORPORT MUKERIZE NAGAR POLICE STATION, DELH-10009
32. (D) Given
$$x^{2} + x + 1 = 0$$

 $\therefore (x - 1)(x^{2} + x + 1) = 0$, $\therefore x^{2} = 1$
If *n* is not multiple 03, then we can
write *n* - 3*m* + *r*, where *m* + 1 and *r* - 1
or 2.
 $\therefore x^{2} + x^{2} - (2^{2})^{-} x^{2} + (2^{2})^{n} \cdot x^{2}$
 $= x^{2} + x^{2} - 2 + (2^{2})^{-} x^{2} + (2^{2})^{n} \cdot x^{2} = x^{2} + x^{2}$
 $= x^{2} + x^{2} - 2 + (2^{2})^{-} x^{2} + (2^{2})^{n} \cdot x^{2} = x^{2} + x^{2}$
 $= x^{2} + x^{2} - 2 + (2^{2})^{-} x^{2} + (2^{2})^{n} \cdot x^{2} = x^{2} + x^{2}$
 $= x^{2} + x^{2} - 1$
11 *r* - 2, then $2r - 4$
 $\therefore x^{2} + x^{2} + 2(x^{2})^{n} \cdot x^{2} = x^{2} + x^{2}$
 $= x^{2} + x^{2} - 1$
33. (C) Expression $2r + y^{2} - 2x - 2y + 4 = 0$
for which, $D < 0$ and $h^{2} - ab$
Hence the given curve represent a
parabola.
34. (A) The lines are
 $x = 1, y - 2$ i.e. $\frac{x - 1}{2} = \frac{y - 2}{2} = \frac{x}{1}$
and $y = -1, z = 0$ i.e. $\frac{x}{1} = \frac{y \cdot 1}{0} = \frac{x}{0}$
 \therefore If 0 is the angle between them, then
 $\cos \theta = 0, 1 + 0, 0 + 1, 0 = 0$
 \therefore If 0 is the angle between them, then
 $\cos \theta = 0, 1 + 0, 0 + 1, 0 = 0$
 \therefore If 0 is the angle between them, then
 $\cos \theta = 0, 0^{2}$ *d* (2, 3, -1) or is normal to the required probability and the plane are 2, 3, -1.
Equation of the given point p are
 $(2(x - 2) + 3(y - 3) + (z + 1) = 0$
Since, the direction ratios of the normal
to the plane are 2, 3, -1.
Equation of the given point p are
 $(2(x - 2) + 3(y - 3) + (z + 1) = 0$
Since, the direction ratios of the normal
to the plane are 2, 3, -1.
Equation of the required plane is
 $(2(x - 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} - (2 + 2) + 3(y - 3) + (z + 1) = 0$
 $x^{2} + 2(x + 2) + (2(x + 3) + (z + 2) + 0)$
 $x^{2} + 2(x + 2) + (2(x + 3) + (z + 2) + 0)$
 $x^{2} + 2(x + 2) + (2(x + 3) + (z + 1) + 0)$
 $x^{2} + 2(x + 2) + (2(x + 3)$

(M) 9555108888, 9555208888 5

EXAMPLIES: LEVER OPPOSITE MUCHERIZE NAGAR POLICE STATION, DELHI-110009

$$\frac{dy}{dx} = 0 \text{ at } x = 0 \text{ which is end point so there is no critical point in [0, 1]}
Also $y_{i,n} = 2$ and $y_{i,n} = 1$
 $\therefore y_{parsise} = 2$
40. (B) The given equation of line can be rewritten as
 $\frac{x}{5} - \frac{y}{3} = 1$
and $y = \frac{3x - 15}{5}$
Required area $= \int y \, dx$
 $= \int \frac{3x - 15}{5} dx$
 $= \frac{1}{5} \int \frac{3x^2 - 15}{2} dx$
 $= \frac{1}{5} \int \frac{3x^2}{2} - 30 \int_{1}^{1} \frac{1}{5} (x^2 - 30)$
 $= \frac{1}{5} \frac{24}{2} - 30 \int_{1}^{2} \frac{1}{5} (x^2 - 30)$
 $= \frac{1}{5} \frac{2}{5} - \frac{2}{5} (x^2 - 3) \int_{1}^{2} \frac{1}{5} (x^2 - 3) \int$$$

(M) 9555108888, 9555208888

6

M) 9555108888, 9555208888

Since elevations of p from A or C is 30° and
that from B is 0.

$$\therefore \text{ In APCD, tan 30° = } \frac{h}{a}$$
i.e. $\frac{h}{a} = \frac{1}{\sqrt{3}}$
and in APBD

$$\tan 0 = \frac{PD}{BD} = \frac{h}{a\sqrt{2}} = \frac{1}{\sqrt{6}}$$

$$\therefore BD = \sqrt{AB^{2}}, AD^{2} = a\sqrt{2}$$
67. (A) $\frac{dy}{dp} = -a \sin 0$
 $\frac{dx}{dp} = a(1 + \cos 0)$
 $\frac{dy}{dx} = \frac{d}{dx} = \frac{1}{a} \sec^{2} \frac{p}{2} |\frac{dp}{dx}|$
 $= \frac{1}{2} \sec^{2} \frac{p}{2} |\frac{1}{a}|_{1}$. $\cos p^{4}|$
 $= \frac{1}{2} \frac{1}{p} \sec^{2} \frac{p}{2} + \frac{1}{a} \sec^{2} \frac{p}{2} + \frac{1}{a}$
(68. (B) Let *r* be the radius and θ the angle of the sector.
 \therefore Perimeter $= 2r + \arg AB = 2r + n^{2}$
 $= 20 \operatorname{cm} (given)$
 $\Rightarrow \theta = \frac{120 - 2r^{8}}{r}$
 $A = 10r - r^{8}$
 $\frac{dA}{dr} = 10 - 2r - 0$, for max or min of A
 $\Rightarrow r = 5\operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is -ve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve
 \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve \therefore A is max, when $r = 5 \operatorname{cm}$
 $\frac{d^{4}A}{dr} = -2$, which is seve \therefore A is max, when $r = 5 \operatorname{cm}$. $\frac{m}{r} - \frac{m}{r} - \frac$

(M) 9555108888, 9555208888

EXAMPLIES: LET PLOOP, OPPOSITE MUKHERIEE NAGAR POLICE STATION, DELHI-110009
73. (C) Here
$$n = 3$$

 \therefore Number of subsets = $2^n = 8$.
74. (B) $A = ||x'| \times ||x||^2$
75. (B) $p : 100$ is divisible by 3; T'
 $g : 100$ is divisible by 5; T'
 $\therefore p, and r is T' ic false
76. (B) Given.
 $N = 200, \overline{x} = 48$ and $\sigma = 3$ and it is required
to find the value of Σx and Σx^a
 $Now, \overline{x} = \frac{fx}{200}$
 $\Rightarrow \Sigma x = N\overline{x} = 200 \times 48 = 9600$
 $Abso, \sigma^2 = \frac{Tx^2}{N} - \left|\frac{Tx}{N}\right|^2$
Substituting the value, we get
 $\sigma^2 = \frac{Tx^2}{200} - \frac{|9600|^2}{k}$
 $\sigma^2 = \frac{Tx^2}{200} - \frac{|9600|^2}{k}$
 $\Rightarrow \Sigma x^2 = 4602600$
77. (A) Center is (2, 3)
 $(\overline{8}, 4) = (2, 3) = (-4, 2)$
78. (C) Given $\frac{2b^2}{a} = b \Rightarrow a = 2b$...(a)
 $c = \sqrt{a^2 - b^2} = \sqrt{3b}$
 \therefore Eccentricity $= \frac{c}{a} = \frac{\sqrt{3b}}{2a} = \frac{\sqrt{3}}{2}$
 $(\cdot \ from [0])$
79. (D) $\overline{a}, \overline{b}, \overline{c}$ are LD vectors, so
 $(\overline{a}, \overline{b}, c) = \left| \frac{1}{1} + \frac{1}{3} + \frac{1}{a} = 1 = 9 = 0$
 $\Rightarrow \beta = 1$
 $Abso, (c) = \sqrt{3} = 1 + a^2 + \mu^2 = 3$
 $\Rightarrow a^2 - 1 \Rightarrow a = 4$
 $Tus u = z = 1$
 $Tus u = z$$

(M) 9555108888, 9555208888

(M) 9555108888, 9555208888 II

Campus KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

KД

NDA MOCK TEST-47 (ANSWER KEY)

	<u> </u>		<i>(</i>)		<i>(</i>)		(~)			
1.	(B)	21.	(B)	41.	(B)	61.	(C)	81.	(C)	101. (C)
2.	(A)	22.	(D)	42.	(A)	62.	(C)	82.	(D)	102. (C)
3.	(A)	23.	(B)	43.	(B)	63.	(D)	83.	(C)	103. (D)
4.	(B)	24.	(C)	44.	(D)	64.	(A)	84.	(A)	104. (C)
5.	(C)	25.	(D)	45.	(C)	65.	(A)	85.	(D)	105. (B)
6.	(A)	26.	(A)	46.	(C)	66.	(B)	86.	(B)	106. (C)
7.	(B)	27.	(Ć)	47.) (В)́	67.	(A)	87.	(A)	107. (D)
8.	(C)	28.	(B)	48.	(A)	68.	(B)	88.	(C)	108. (A)
9.	(C)	29.	(C)	49.	Ъ́	69.	(A)	89.	(A)	109. (B)
10.	(B)	30.	(B)	50.	(A)	70.	(C)	90.)	110. (B)
11.	(A)	31.	D)	51.	(B)	71.	(C)	91.	(A)	111. (D)
12.	(D)	32.	D)	52.	(D)	72.	(A)	92.	D)	112. (C)
13.	(B)	33.	(C)	53.	(B)	73.	(C)	93.	(D)	113. (B)
14.	(A)	34.	(A)	54.	(C)	74.	(B)	94.	(C)	114. (C)
15.	(C)	35.	(A)	55.	D)	75.	(B)	95.) (В)́	115. (B)
16.	(A)	36.	(A)	56.	(A)	76.	(B)	96.	(C)	116. (A)
17.	(C)	37.	(A)	57.	(D)	77.	(A)	97.	(C)	117. (C)
18.	(C)	38.	(B)	58.	(B)	78.	(C)	98.	(D)	118. (A)
19.	(B)	39.	(D)	59.	(D)	79.	(D)	99.	(B)	119. (B)
20.	(D)	40.	(B)	60.	(A)	80.	(A)	100.	(*)	120. (C)
20.	(-)	10.	(12)	00.	(* *)	50.	(* *)	100.	()	120. (0)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact : 9313111777

(M) 9555108888, 9555208888