NDA (MATHS) MOCK TEST - 37 (SOLUTION)

1. (B) $y=\ln \left(e^{m x}+e^{-m x}\right)$

On differentiating it w.r.t.x, we get
$\frac{d y}{d x}=\frac{1}{e^{m x}+e^{-m x}} \cdot \frac{d}{d x}\left(\mathrm{e}^{\mathrm{m} x}+\mathrm{e}^{-\mathrm{m} x}\right)$
$=\frac{1}{e^{m x}+e^{-m x}}\left(\mathrm{me}^{\mathrm{m} x}-\mathrm{me}^{-\mathrm{m} x}\right)$
$\therefore\left(\frac{d y}{d x}\right)_{\text {at } x=0}=m\left(\frac{1-1}{1+1}\right)=0$
2. (B) $f(x)=x^{2}-x^{-2}$
$f\left(\frac{1}{x}\right)=\frac{1}{x^{2}}-\left(\frac{1}{x}\right)-2$
$=\frac{1}{x^{2}}-\frac{1}{x^{2}}$
$=\frac{1}{x^{2}}-x^{2}$
$=-\left(x^{2}-x^{-2}\right)=-f(x)$
3. (C) We know that, in a GP the product of two terms equidistant from the beginning and end is a constant and is equal to the product of first term and last term, i.e., if $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{2} \ldots, \mathrm{a}_{(\mathrm{n}-2)}, \mathrm{a}_{\mathrm{n}-1}, \mathrm{a}_{\mathrm{n}}$ are in GP, then $a_{1} a_{n}=a_{2} a_{n-1}=a_{3} a_{n-2}=\ldots \ldots$.
Given that,
$\mathrm{S}_{2} \mathrm{~S}_{\mathrm{u}}=\mathrm{S}_{\mathrm{p}} \mathrm{S}_{8} \Rightarrow(\mathrm{p}+8)=(2+11)$
4. (A) Remainder $\Rightarrow=5$

$$
\begin{array}{r}
182 \div 2=91+0 \\
91 \div 2=45+1 \\
45 \div 2=22+1 \\
22 \div 2=11+0 \\
11 \div 2=5+1 \\
5 \div 2=2+1 \\
2 \div 2=1+0
\end{array}
$$

$\therefore(182)_{10}=(10110110)_{2}$
5. (B) $\left|\begin{array}{lll}b c & a & a^{2} \\ c a & b & b^{2} \\ \underline{a b} & c & c^{2}\end{array}\right|=\frac{1}{a b c}\left|\begin{array}{lll}a b c & a^{2} & a^{3} \\ a b c & b^{2} & b^{3} \\ \underline{a b c} & c^{2} & c^{3}\end{array}\right|$

$$
\frac{a b c}{a b c}\left|\begin{array}{ccc}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
\underline{1} & c^{2} & c^{3}
\end{array}\right|=\left|\begin{array}{ccc}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|
$$

6. (B) Radius of the circle $=\sqrt{2}$
\therefore area of the circle $=\pi(\sqrt{2})^{2}$

$$
=2 \pi \text { sq. units }
$$

7. (B) $\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 60^{\circ}+\tan 45^{\circ}}{1-\tan 60^{\circ} \cdot \tan 45^{\circ}} \\
& \quad\left[\because \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}\right] \\
& =\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1}=\frac{\sqrt{3}+1}{1-\sqrt{3}}
\end{aligned}
$$

8. (B) Let $\alpha=\omega$ and $\beta=\omega^{2}$

$$
\text { Then, } x y z=(a+b)\left(a \omega+b \alpha^{2}\right)\left(a \omega^{2}+b \omega\right)
$$

$$
=a^{3}+b^{3}
$$

9. (C) $\mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin 2 \theta}{\cos 2 \theta+\sin 2 \theta} \mathrm{~d} \theta$

$$
\begin{aligned}
& \text { also } \mathrm{I}=\int \frac{\sin \left(\frac{\pi}{2}-2 \theta\right)}{\sin \left(\frac{\pi}{2}-2 \theta\right)+\cos \left(\frac{\theta}{2}-2 \theta\right)} \\
& =\int_{0}^{\pi / 2} \frac{\cos 2 \theta}{\cos 2 \theta+\sin 2 \theta} \mathrm{~d} \theta
\end{aligned}
$$

Now $\mathrm{I}+\mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin 2 \theta+\cos 2 \theta}{\sin 2 \theta+\cos 2 \theta} \mathrm{~d} \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} 1 \mathrm{~d} \theta \\
& =[\theta]_{0}^{\pi / 2}=\frac{\pi}{2} \Rightarrow \mathrm{I}=\frac{\frac{\pi}{2}}{2}=\frac{\pi}{4}
\end{aligned}
$$

10. (D) $\frac{d y}{d x}=1-\mathrm{e}^{x}$ is positive. if $\mathrm{e}^{x}<1$.

$$
\Rightarrow x<0 \Rightarrow x \forall(-\infty, 0)
$$

So, the interval $(-\infty,-1)$ is part of interval $(-\infty, 0)$.
11. (A) Factories both numerator and denominator.

$$
\begin{aligned}
& \lim _{x \rightarrow \pi / 4} \frac{(1-\cot x)\left(1+\cot x+\cot ^{2} x\right)}{(1-\cot x)\left(2+\cot x+\cot ^{2} x\right)} \\
& =\frac{1+1+1}{2+1+1}=\frac{3}{4}
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

12. (B) $\because x^{2}-2 x+\sin ^{2} \theta=0$
$\therefore x=\frac{2 \pm \sqrt{4-4 \sin ^{2} \theta}}{2}$
$\Rightarrow x=1 \pm \cos \theta$
$\because-1 \leq \cos \theta \leq 1$
$\therefore 0 \leq 1 \pm \cos \theta \leq 2 \Rightarrow 0 \leq \cos \theta \leq 2 \Rightarrow x \in[0,2]$
13. (B) Requred probability $=P$ (Indian wins first and third test) +P (India wins second and third test)
$=\frac{1}{2}\left(1-\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$
14. (C) $100101+101$ is

100101
$\begin{array}{r}+101 \\ \hline 101010\end{array}$
$100101+101+1101$ is
101010
+1101
110111
$\therefore 100101+101+1101+100$ is
110111
$\frac{100}{111011}$
15. (D) $f[f(x)]=\mathrm{f}\left(\frac{\alpha x}{x+1}\right)=\frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\frac{\alpha x}{x+1}+1}=\frac{\alpha^{2} x}{\alpha x+x+1}$
$\because f[f(x)]=x$
$\therefore \frac{\alpha^{2} x}{\alpha x+x+1}=x \Rightarrow \alpha^{2} \mathrm{x}=\alpha x^{2}+x^{2}+x$
By inspection, we get $\mathrm{a}=-1$
16. (B)
17. (C) Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{1} \rightarrow R_{2}-R_{3}$ and take $(x-1)$ common from R_{1} and R_{2},

$$
\Delta=(x-1)^{2}\left|\begin{array}{ccc}
x+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|=(x-1)^{3}
$$

$\therefore \mathrm{k}=3$
18. (B) $\mathrm{y}=\mathrm{Ae}^{3 x}+\mathrm{Be}^{3 x}$
$y_{1}=3 \mathrm{Ae}^{3 x}+5 \mathrm{Be}^{3 x}$
$y_{2}=9 \mathrm{Ae}^{3 x}+25 \mathrm{Be}^{3 x}$
Eliminating A and B from the above three equations, we get
$\left|\begin{array}{ccc}e^{3 x} & e^{5 x} & -y \\ 3 e^{3 x} & 5 e^{5 x} & -y_{1} \\ 9 e^{3 x} & 25 e^{5 x} & -y_{2}\end{array}\right|=0 \Rightarrow-\mathrm{e}^{3 x} \times \mathrm{e}^{5 x}$
$\left|\begin{array}{ccc}1 & 1 & y \\ 3 & 5 & y_{1} \\ 9 & 25 & y_{2}\end{array}\right|=0$
Exapnding, we get $30 \mathrm{y}-16 \mathrm{y}_{1}+2 \mathrm{y}_{2}=0$
of $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0$
19. (B) We know that,

$$
\tan \frac{A-B}{2}=\sqrt{\frac{1-\cos (A-B)}{1+\cos (A-B)}}=\sqrt{\frac{1-\frac{31}{32}}{1+\frac{31}{32}}}
$$

$$
=\frac{1}{\sqrt{63}} \Rightarrow \frac{a-b}{a+b} \cdot \cot \frac{c}{2}=\frac{1}{\sqrt{63}}
$$

$$
\left(\because \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}\right)
$$

$\Rightarrow \frac{1}{9} \cot \frac{C}{2}=\frac{1}{\sqrt{63}} \Rightarrow \tan \frac{C}{2}=\frac{\sqrt{7}}{3}$
Now, $\cos \mathrm{C}=\frac{1-\tan ^{2} \frac{C}{2}}{1+\tan ^{2} \frac{C}{2}}=\frac{1-\frac{7}{9}}{1+\frac{7}{9}}=\frac{1}{8}$
20. (B) $\because c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\therefore c^{2}=25+16-40 \times \frac{1}{8}=36 \Rightarrow c=6$
21. (B) We know that, $\sin \mathrm{A}=\frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}$
$\Rightarrow(\sin \mathrm{A}) \tan ^{2} \frac{A}{2}-2 \tan \frac{A}{2}+\sin \mathrm{A}=0$
$\Rightarrow \frac{2 \pm \sqrt{4-4 \sin ^{2} A}}{2 \sin A}=\frac{2 \pm 2 \cos A}{2 \sin A}=\frac{1 \pm \cos A}{\sin A}$
$\tan \frac{A}{2}=\frac{1 \pm \sqrt{1-\sin ^{2} A}}{\sin A}$
Eq. (i) gives two values of $\tan \frac{A}{2}$, when $\sin \mathrm{A}$ is given but $(\sin A \neq 0)$

Campus

K D Campus Pvt. Ltd

22. (D) $\mathrm{R}=[x: x$ is a set of all children of a same father]
Reflexive Let p be the children of same father.
Hence, pRp is a reflexive.
Symmetry Let p and q be the children of same father.
So, q and p be the children of same father.
And q and p be the children of same father.
Hence, R is symmetric.
Transitive Let p and q be the children ofsame father. And q and r be the children of same father.
So, p and r be the children of same father R. Hence, R is transitive.
Since, R have all three properties such that reflexive, symmetry and transitive, so R is an equivalence relation.
23. (B) $1=\int \frac{x(1-x)}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x$
$=\int \frac{x}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x+\int \frac{-x^{2}}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x$
$=\frac{1}{2} \int \frac{2 x}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x+\int \frac{1-x^{2}-1}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x$
$=-\frac{1}{2} \times 2 \sqrt{\left(1-x^{2}\right)}+\int \sqrt{\left(1-x^{2}\right)} \mathrm{d} x$
$-\int \frac{1}{\sqrt{\left(1-x^{2}\right)}} \mathrm{d} x$
$=\left(\frac{x}{2}-1\right) \sqrt{1-x^{2}}-\frac{1}{2} \sin ^{-1} x+C$
24. (D) Apply $\mathrm{C}_{1}+\mathrm{C}_{2}$, thus making two zero in C_{1} and expanding we get
$\Delta=\left(\omega^{2}+2 \omega\right)\left|\begin{array}{ll}\omega^{2} & -\omega \\ \omega & -\omega^{2}\end{array}\right|$
$=(-1+\omega)\left(-\omega^{4}+\omega^{2}\right) \quad\left(\because \omega^{2}+\omega=-1\right)$
$=(-1+\omega)\left(-\omega+\omega^{2}\right) \quad\left(\because \omega^{3}=1\right)$
$=\omega^{2}-\omega^{3}-2 \omega^{2}=1+\omega-2 \omega^{2}$
$=-\omega^{2}-2 \omega^{2}=-3 \omega^{2}$
25. (B) every element of A can be image to ten elements of the set.
\therefore Total number of mapping $=10^{10}$
26. (C)
27. (C) $\because y^{2}=P(x)$
$2 \mathrm{y} \frac{d y}{d x}=\mathrm{P}^{\prime}(x)$
and $2 \mathrm{y} \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=\mathrm{P}^{\prime \prime}$
$\Rightarrow 2 \mathrm{y} \frac{d^{2} y}{d x^{2}}=\mathrm{P}^{\prime \prime}(x)-2\left(\frac{d y}{d x}\right)^{2}$
$\Rightarrow 2 \mathrm{y}^{3} \frac{d^{2} y}{d x^{2}}=\mathrm{y}^{2} \mathrm{P}^{\prime \prime}(x)-2\left(y \frac{d y}{d x}\right)^{2}$
$\Rightarrow 2 \mathrm{y}^{3} \frac{d^{2} y}{d x^{2}}=\mathrm{P}(x) \mathrm{P}^{\prime \prime}(x)-2\left\{\frac{P^{\prime}(x)}{2}\right\}^{2}$
[using Eqs. (i) and (ii)]
$\Rightarrow 2 \mathrm{y}^{3} \frac{d^{2} y}{d x^{2}}=\mathrm{P}(x) \mathrm{P}^{\prime \prime}(x)-\frac{1}{2}\left\{\mathrm{P}^{\prime \prime}(x)\right\}^{2}$
$\Rightarrow 2 \frac{d}{d x}\left\{y^{3} \frac{d^{2} y}{d x^{2}}\right\}=\mathrm{P}(x) \mathrm{P}^{\prime \prime}(x)+\mathrm{P}^{\prime}(x) \mathrm{P}^{\prime \prime}(x)$
$-\frac{1}{2} \times 2^{\prime}(x) \mathrm{P}^{\prime \prime}(x)$
$=\mathrm{P}(x) \mathrm{P}^{\prime \prime}(x)$
28. (A)
29. (C)
30. (D) Suppose and number p is placed in envelope number q, then card number q must be placed in a wrong envelope.
Hence, at least two cards must be palced in wrong envelope if all of them are not kept in their corresponding envelops.
31. (C) We know that
$(A B)^{n}=A^{n} B^{n}$ is true only when $A B=B A$
32. (A)
33. (A) By cosine rule,

$$
\begin{gathered}
\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos 60=\frac{(3)^{2}+c^{2}-(4)^{2}}{2 \times 3 \times c} \\
\Rightarrow \\
\frac{1}{2}=\frac{9+c^{2}-16}{2 \times 3 \times c} \\
\Rightarrow 3 c=c^{2}-7=c^{2}-3 c-7=0
\end{gathered}
$$

34. (C)
35. (A) Given, $z=1+i \tan \alpha$, where $\pi<\alpha<\frac{3 \pi}{2}$.
36. (B) Given that,

$$
\begin{aligned}
& (x+1)^{2}-1=0 \\
\Rightarrow & (x+1)^{2}-(1)^{2}=0 \\
\Rightarrow & (x+1+1)(x+1-1)=0
\end{aligned}
$$

$$
\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]
$$

$\Rightarrow(x+2)(x)=0$
$\therefore \quad x=0,-2$
Hence, $(x+1)^{2}-1=0$ has two real roots.

$$
\begin{aligned}
& \Rightarrow|z|=\sqrt{1+\tan ^{2} \alpha} \Rightarrow|z|=\sqrt{\sec ^{2} \alpha} \\
& \alpha \\
& \left(\because \pi<\alpha<\frac{3 \pi}{2}\right)
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

37. (D)
38. (A)
39. (B) Let $\mathrm{BL}=x \mathrm{~m}$ and $\mathrm{PL}=\mathrm{h} \mathrm{m}$

In \triangle PBL

$$
\tan 45^{\circ}=\frac{h}{x}=1
$$

Now, in \triangle PAL,

$$
\tan 30^{\circ}=\frac{h}{10+x}=\frac{1}{\sqrt{3}} \Rightarrow \sqrt{3} \mathrm{~h}=10+x
$$

$\Rightarrow \sqrt{3} \mathrm{~h}=10+\mathrm{h}$
$\Rightarrow(\sqrt{3}-1) h=10$
$\therefore \mathrm{h}=\frac{10}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{10(\sqrt{3}+1)}{3-1}=\frac{10(\sqrt{3}+1)}{2}$

$$
=5(\sqrt{3}+1)=(5 \sqrt{3}+5) \mathrm{m}
$$

40. (b) $\because \Delta \Delta^{\prime}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|\left|\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
\Sigma a_{1} A_{1} & 0 & 0 \\
0 & \Sigma a_{2} A_{2} & 0 \\
0 & 0 & \Sigma a_{3} A_{3}
\end{array}\right|=\left|\begin{array}{lll}
\Delta & 0 & 0 \\
0 & \Delta & 0 \\
0 & 0 & \Delta
\end{array}\right|=\Delta^{3}
$$

$\therefore \quad \Delta^{\prime}=\Delta^{2}$
41. (B) $y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)=\tan ^{-1}\left[\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{1+2 \cos ^{2} \frac{x}{2}-1}\right]$

$$
\begin{aligned}
& =\tan ^{-1}\left(\tan \frac{x}{2}\right) \\
& \Rightarrow \mathrm{y}=\frac{x}{2} \Rightarrow \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
$$

42. (C) If r is radius of the circle, then $\pi r^{2}=154$
$\therefore \quad r^{2}=\frac{154 \times 7}{22}=49$ $\left(\right.$ taking $\left.\pi=\frac{22}{7}\right)$
$\Rightarrow \mathrm{r}=7$
Also, solving the equations of two given diameters, we get the coordinates of the centre as $(1,-1)$.
Hence, the equation of the circle is

$$
(x-1)^{2}+(y+1)^{2}=7^{2}=49
$$

$\Rightarrow x^{2}+y^{2}-2 x+2 y=47$
43. (C) Given that, (α, β) are the roots of the equation $x^{2}+x+2=0$, then
$\alpha+\beta=-1$
and $\alpha \cdot \beta=2$
(ii)

Now, we have $\frac{\alpha^{10}+\beta^{10}}{\alpha^{-10}+\beta^{-10}}=(\alpha \beta)^{10}=(2)^{10}$
[from eq. (ii)]
= 1024
44. (A) The number of diagonals which can be drawn by joining the angular points of a polygon of 100 sides $={ }^{100} \mathrm{C}_{2}-100$

$$
\begin{aligned}
& =\frac{100!}{2!98!}-100=\frac{100 \times 99 \times 98!}{2 \times 98!}-100 \\
& =50 \times 99-100=4950-100 \\
& =4850
\end{aligned}
$$

45. (A) of centroid

$$
\begin{aligned}
& =\left\{\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right\} \\
& =\left\{\frac{2\left(x_{1}+x_{2}+x_{3}\right)}{6}, \frac{2\left(y_{1}+y_{2}+y_{3}\right)}{6}\right\}
\end{aligned}
$$

$=\left\{\frac{4+3+2}{3}, \frac{2+3+2}{3}\right\}=\left(3, \frac{7}{3}\right)$
46. (A)
47. (C) $\because f(x)=\mathrm{k} x^{3}-9 x^{2}+9 x+3$

On differentiating w.r.t. x, we get

$$
f^{\prime}(x)=3 \mathrm{k} x^{2}-18 x+9
$$

For a function to be monotonically increasing .
$\Delta=\mathrm{b}^{2}-4 \mathrm{ac}<0$
$\Rightarrow 36-12 \mathrm{k}<0 \Rightarrow \mathrm{k}>3$
48. (B) $3 \mathrm{e}^{x} \tan \mathrm{y} d x+\left(1+\mathrm{e}^{x}\right) \sec ^{2} \mathrm{y} d y=0$

$$
\Rightarrow \int \frac{3 e^{x}}{1+e^{x}} \mathrm{~d} x+\int \frac{\sec ^{2} y}{\tan y} \mathrm{dy}=0
$$

Campus

K D Campus Pvt. Ltd

$\Rightarrow 3 \log \left(1+e^{x}\right)+\log \tan y=\log C$
$\Rightarrow \log \left(1+\mathrm{e}^{x}\right)^{3} \tan \mathrm{y}=\log \mathrm{C}$
$\left(1+e^{x}\right)^{3} \tan y=C$
49. (C) Given equation of parabola can be rewrit-
ten as $(x+3)^{2}=-\frac{2}{5}(y+7)$ or $X^{2}=4 \mathrm{AY}$
$4 A=-\frac{2}{5}$
$\mathrm{A}=-\frac{1}{10}$
Focus is $x=\mathrm{O}, \mathrm{Y}=\mathrm{A}$
or $x+3=\mathrm{O}, \mathrm{y}+7=-\frac{1}{10}$
$\therefore \quad\left(-3,-\frac{71}{10}\right)$
50. (*) Middle term $=\frac{4}{2}+1=3$ rd

Coefficient of $\mathrm{T}_{3}=$ Coefficient of T_{2+1}
$={ }^{4} \mathrm{C}_{2} 2^{2} \times 3^{2}=360$
51. (C) $x+y=20$ and $z=x y^{3}$ is maximum
$z=y^{3}(20-y)=20 y^{3}-y^{4}$
$\frac{d z}{d y}=60 \mathrm{y}^{2}-4 \mathrm{y}^{3}=0$
$\therefore 4 y^{2}(15-y)=0$
$\therefore \mathrm{y}=0,15$
Now, $\frac{d^{2} z}{d y^{2}}=120 \mathrm{y}-12 \mathrm{y}^{2}=12 \mathrm{y}(10-\mathrm{y})$
At $y=15, \frac{d^{2} Z}{d y^{2}}=12 \times 15(10-15)<0$
\therefore Two parts are $(15,5)$
52. (A) $\log \tan 89^{\circ}=\log \cot 1^{\circ}=-\log \tan 1^{\circ}$
\therefore Given expression becomes
$\log \tan 1^{\circ}+\log \tan 2^{\circ}+\ldots+\log \tan 44^{\circ}+\log$ $\tan 45^{\circ}-\log \tan 44^{\circ}-\ldots .-\log \tan 2^{\circ}-\log$ $\tan 1^{\circ}=\log \tan 45^{\circ}=\log 1=0$
53. (A) Let $1=\int_{0}^{a} x f(x) d x$

By using property,

$$
\begin{align*}
& \int_{0}^{a} f(x) \mathrm{d} x=\int_{0}^{a} f(a-x) \mathrm{d} x \\
\therefore \quad & \mathrm{I}=\int_{0}^{a}(a-x) f(\mathrm{a}-x) \mathrm{d} x \\
& =\int_{0}^{a}(a-x) f(x) \mathrm{d} x \tag{ii}
\end{align*}
$$

On adding Eqs. (i) and (ii), we get
$2 \mathrm{I}=\mathrm{a} \int_{0}^{a} f(x) \mathrm{dx} \Rightarrow \mathrm{I}=\frac{a}{2} \int_{0}^{a} f(x) \mathrm{d} x$
54. (D) Total number of numbers in a factory = worker + owner $=9+1=10$ Now, the total daily income of workers of a factory including that of the owner $=110 \times 10=1100$ and the total dialy income of workers of a factory excludin that of the Hence, the daily income of the owner $=(10-1) \times 76=9 \times 76=684$ Hence, the daily income of the owner $=₹(1100-684)=₹ 416$
55. (A) $1-\cos A=2 \sin ^{2}\left(\frac{A}{2}\right)$
$1+\cos \mathrm{A}=2 \cos ^{2}\left(\frac{A}{2}\right)$
Applying componendo and dividendo rule.

$$
\frac{1-\cos \theta}{1+\cos \theta}=\frac{a(1-\cos \phi)-b(1-\cos \phi)}{a(1+\cos \phi)+b(1+\cos \phi)}
$$

$$
\Rightarrow \tan ^{2} \frac{\theta}{2}=\frac{a-b}{a+b} \tan ^{2} \frac{\phi}{2}
$$

$\therefore \tan \frac{\theta}{2}=\sqrt{\frac{a-b}{a+b}} \tan \frac{\phi}{2}$
56. (D) $\left(\frac{1+2 i}{2+i} \times \frac{2-i}{2-1}\right)^{2}=\left(\frac{2-i+4-2 i^{2}}{5}\right)^{2}$

$$
\left(\frac{4+3 i}{5}\right)^{2}
$$

$\frac{16-9+24 i}{25}=\frac{7+24 i}{25}$
Conjutgate $=\frac{7}{25}-\frac{24}{5}$
57. (B) Selection of 3 points from given 14 points can be made in ${ }^{14} \mathrm{C}_{3}=364$
But selection of 3 points from the points on one line cannot give any triagnle. Such selections are
${ }^{3} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3}+{ }^{6} \mathrm{C}_{3}=1+10+20=31$
Hence, total number of triangle that can be formed $=364-31=333$
58. (A)
59. (C) Arrangement is $\times \mathrm{M} \times \mathrm{C} \times \mathrm{T} \times$, first we place 3 consonant in 3 ! ways and then 3 vowels. At four ' x ' places (2 between them and 2 on sides) in which on vowel E is repeated can be placed in ${ }^{4} \mathrm{P}_{3} / 2$! ways.
Hence, required number $=3 .{ }^{4} \mathrm{P}_{3} / 2!=72$
60. (B) Here, $P(A)=p, P(B)=q, P(\bar{A})=1-p, P(\bar{B})$ $=1-\mathrm{q}$
The probability that one person is alive

Campus

K D Campus Pvt. Ltd

$=P(A$ dies and B lives $)+P(B$ dies and A lives $)$
$=p(1-q)+q(1-p)$
$=p-p q+q-q p=p+q-2 p q$
61. (A) $\frac{d y}{d x}=\frac{y^{2}-y-2}{x^{3}+2 x-3} \Rightarrow \frac{d y}{y^{2}-y-2}$
$=\frac{d x}{x^{2}+2 x-3}$
$\Rightarrow \frac{1}{3}\left[\frac{1}{(y-2)}-\frac{1}{(y+1)}\right] \mathrm{dy}$
$=\frac{1}{4}\left[\frac{1}{(x-1)}-\frac{1}{(x+3)}\right] \mathrm{d} x$
$\therefore \quad \frac{1}{3} \log \left|\frac{y-2}{y+1}\right|=\frac{1}{4} \log \left|\frac{x-1}{x+3}\right|+C$
62. (C) Let $\mathrm{r}=x \mathrm{i}+\mathrm{yj}+\mathrm{zk}$, then

$$
\mathrm{r} \times \mathrm{a}=\mathrm{b} \times \mathrm{a} \Rightarrow(\mathrm{r}-\mathrm{b}) \times \mathrm{a}=0
$$

$\therefore z=-1, x-y=2$
and $\mathrm{r} \times \mathrm{b}=\mathrm{a} \times \mathrm{b} \Rightarrow(\mathrm{r}-\mathrm{a}) \times \mathrm{b}=0$
$\therefore \mathrm{y}=1, x+2 \mathrm{z}=1$
$\therefore \quad x=3, y=1$ and $z=-1$
$\therefore \mathrm{r}=3 \mathrm{i}+\mathrm{j}-\mathrm{k}$
63. (D) According to the question,

$$
1400=\frac{28 \times 1400}{100}+\frac{35 \times 1400}{100}
$$

$+\frac{12 \times 1400}{100}+\frac{8 \times 1400}{100}+105+$ Transport
$\Rightarrow 1400=392+490+168+112+105+$
Transport
\therefore Transport $=₹ 133$ crores
64. (D) Given, $\frac{d r}{d t}=3 \mathrm{~cm} / \mathrm{s}$

Since, area of circle $(A)=\pi r^{2}$
On differentiating it w.r.t.t, we get

$$
\begin{aligned}
& \frac{d A}{d t}=2 \pi \mathrm{r} \frac{d r}{d t}=2 \pi \times 10 \times 3 \quad(\because \mathrm{r}=10 \mathrm{~cm}) \\
& =60 \pi \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

65. (D) $\frac{1+2 i}{1-\left(1+i^{2}-2 i\right)}=\frac{1+2 i}{1-1+1+2 i}=\frac{1+2 i}{1+2 i}=1$

$$
\left|\frac{1+2 i}{1-(1-i)^{2}}\right|=|1|=1
$$

66. (D) $\therefore A=$ Event of getting an even sum
$=[(1,1),(1,3),(3,1),(2,2),(1,5),(5,1),(2$,$) ,$ $(4,2),(4,2),(3,3),(2,6),(6,2),(3,5)$, $(5,3),(4,4),(4,6),(6,4),(5,5),(6,6)]$
and $B=$ Event of getting sum less than 5
$=\{(1,1),(2,1),(1,2),(1,3),(3,1),(2,2)$
$A \cap B=\{(1,1),(1,3),(3,1),(2,2)\}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
=\frac{18}{36}+\frac{6}{36}-\frac{4}{36}=\frac{5}{9}
$$

67. (*)
68. (A) $y=\tan ^{-1} x-x$

On differentiating w.r.t. x, we get

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{1+x^{2}}-1=\frac{-x^{2}}{1+x^{2}} \\
\because \quad \frac{d y}{d x} & <0, \forall \in \mathrm{R}
\end{aligned}
$$

Hence, y is a decreasing function
69. (C) let $\mathrm{I}=\int a^{x} e^{x} \mathrm{~d} x$

$$
=\mathbf{a}^{x} \int e^{x} d x-\int\left(\frac{d}{d x}\left(a^{x}\right) \int e^{x} d x\right) d x
$$

$=a^{x} \mathrm{e}^{x}-\int a^{x} \log a \mathrm{e}^{x} d x$
$a^{x} e^{x}-\log a \int a^{x} e^{x} d x$
$\mathrm{a}^{x} \mathrm{e}^{x}-\log \mathrm{a} \times \mathrm{I}$
$(1+\log a) I=a^{x} e^{x}$

$$
I=\frac{a^{x} e^{x}}{1+\log a}=\frac{a^{x} e^{x}}{\log a e}
$$

70. (D) $n=9, d=-\frac{1}{6}, a=\frac{1}{2} \Rightarrow S_{n}=\frac{3}{2}$
71. (D) Given $(1,3,2)_{1 \times 3}\left(\begin{array}{lll}1 & 3 & 0 \\ 3 & 0 & 2 \\ 2 & 0 & 1\end{array}\right)_{3 \times 3}\left(\begin{array}{l}0 \\ 3 \\ x\end{array}\right)_{3 \times 1}=(0)_{1 \times 1}$
$\Rightarrow(1+9+43+0+00+6+2)_{1 \times 3}\left(\begin{array}{l}0 \\ 3 \\ x\end{array}\right)_{31}$
$=(0)_{1 \times 1}$
$\Rightarrow\left(\begin{array}{lll}14 & 3 & 8\end{array}\right)\left(\begin{array}{l}0 \\ 3 \\ x\end{array}\right)_{31}=0_{1 \times 1}$
$\Rightarrow(0+9+8 x)=(0) \Rightarrow(8 x+9)=0$
On comparing,

$$
8 x+9=0 \Rightarrow x=-\frac{9}{8}
$$

72. (A) $\frac{d y}{d x}=-\frac{1}{1+\cos 2 x} \cdot \frac{1}{2 \sqrt{(\cos 2 x)}}(-2 \sin 2 x)$

Campus

K D Campus Pvt. Ltd

Now, put $\pi=\frac{\pi}{6}, \cos 2 x=\frac{1}{2}$ and $\sin 2 x=\frac{\sqrt{3}}{2}$
$\therefore\left(\frac{d y}{d x}\right)_{x=\frac{\pi}{3}}=-\frac{1}{\left(1+\frac{1}{2}\right)} \cdot \frac{1}{2 \sqrt{\frac{1}{2}}}(-2) \sqrt{\frac{3}{2}}=\sqrt{\frac{2}{3}}$
73. (B) Given differential equation is
$\log \left(\frac{d y}{d x}\right)+x=0$
$\Rightarrow \log \left(\frac{d y}{d x}\right)=-x \Rightarrow \frac{d y}{d x}=\mathrm{e}^{-x}$
On integrating both sides, we get $y=-e^{-x}+C$
Which is the required general solution.
74. (B) Breaking the given integral into partial fractions, we get
$\frac{1}{(x-2)^{2}(x-3)}=\frac{1}{(x-2)^{2}}-\frac{1}{x-2}+\frac{1}{x-3}$
$\therefore \int \frac{d x}{(x-2)^{2}(x-3)}=-\int(x-2)^{-2} d x$
$-\int \frac{d x}{x-2}+\int \frac{d x}{x-3}$
$=-\frac{(x-2)^{-1}}{-1}-\log (x-2)+\log (x-3)+\mathrm{C}_{3}$
$=\frac{1}{x-2}-\log \frac{x-2}{x-3}+\mathrm{C}_{3}$
$\therefore \mathrm{C}_{1}=1, \mathrm{C}_{2}=-1$
75. (A) $\therefore 2^{x}+3^{y}=17$
and $2^{x+2}-3^{y+1}=5$
(ii)
$\Rightarrow 4 \cdot 2^{x}-3 \cdot 3^{y}=5$
Solving Eqs. (i) and (ii).
$2^{x}=8$ and $3^{y}=9$
$\Rightarrow x=3$ and $\mathrm{y}=2$
76. (D) Let a GP series is a, ar, $\operatorname{ar}^{2}, \ldots$.
where, $\mathrm{a}=$ First term and $\mathrm{r}=$ Common ratio

Sum of infinite series $(S)=\frac{a}{1-r}$
or $6=\frac{a}{(1-r)}$ or $\mathrm{a}=6(1-\mathrm{r})$
Sum of first two term $\left(\mathrm{S}_{2}\right)=a+\operatorname{ar}$
or $\frac{9}{2}=a(1+r)$
by Eq. (i), put the value of a
$\frac{9}{2}=6(1-r)(1+r)$ or $\frac{3}{4}=1-r^{2}$
or $r=+\frac{1}{2}$
Case I if $\mathrm{r}=1 / 2$, then $\mathrm{a}=6\left(1-\frac{1}{2}\right)$ or $\mathrm{a}=3$ Case II if $\mathrm{r}=-1 / 2$, then $\mathrm{a}=6\left(1+\frac{1}{2}\right)$ or a $=3 \times 3=9$
77. (C)
78.(C) $\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 4 A}}}$

$$
\begin{aligned}
& \sqrt{2+\sqrt{2+\sqrt{2(1+\cos 4 A)}}} \\
= & \sqrt{2+\sqrt{2+2 \cos 2 A}}=\sqrt{2(1+\cos A)}=2 \cos \frac{A}{2}
\end{aligned}
$$

79. (D) Given that is $x=a+b t-c t^{2}$ and $y=a t+b t^{2}$

$$
\text { Acceleration in } x \text { direction }=\frac{d^{2} x}{d t^{2}}=-2 c
$$ and acceleration in y direction $=\frac{d^{2} x}{d t^{2}}=2 b$ Resultant acceleration

$$
=\sqrt{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}\left(\frac{d^{2} y}{d t^{2}}\right)^{2}}=\sqrt{(-2 c)^{2}+(2 b)^{2}}
$$

$$
=2 \sqrt{b^{2}+c^{2}}
$$

80. (C) Given, thedistance between the points
$(7,1,-3)$ and $(4,5, \lambda)=13$
$\Rightarrow \sqrt{(4-7)^{2}+(5-1)^{2}+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{(-3)^{2}+(-4)^{2}+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{9+16+(\lambda+3)^{2}}=13$
$\Rightarrow \sqrt{25+(\lambda+3)^{2}}=13$
On squaring both sides, we get

$$
25+(\lambda+3)^{2}=169
$$

$\Rightarrow 25+\lambda^{2}+9+6 \lambda-169=0$
$\Rightarrow \lambda^{2}+6 \lambda-135=0$
$\Rightarrow \lambda^{2}+15 \lambda-9 \lambda-135=0$
$\Rightarrow \lambda(\lambda+15)-9(\lambda+15)=0$
$\Rightarrow(\lambda+15)(\lambda-9)=0$
$\lambda=9,-15$
81. (A) $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{x}$
$=\lim _{x \rightarrow 0} 2\left(\frac{\sin x}{x}\right)^{2} x=2 \cdot 1 \cdot 0=0$

Campus

K D Campus Pvt. Ltd

82. (C) The coefficients of three successive terms are ${ }^{n} C_{r-1},{ }^{n} C_{r},{ }^{n} C_{r+1}$.
$\Rightarrow \frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{1}{7}$ and $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r+1}}=\frac{7}{42}=\frac{1}{6}$
Simplifying $\frac{r}{n-r+1}=\frac{1}{7}$ and $\frac{r+1}{n-r}=\frac{1}{6}$
$\Rightarrow \mathrm{n}-8 \mathrm{r}=-1$ and $\mathrm{n}-7 \mathrm{r}=6$ Solving $\mathrm{n}=55$
83. (B) The centre and radius of circle $(x-\alpha)^{2}+$ $(y-\beta)^{2}=9$ are (α, β) and 3, respectively. Since, (α, β) lies on the straight line $\mathrm{y}=x$
$\therefore \alpha=\beta$
Now, the circle touches the circle $x^{2}+y^{2}=1$ externally.
$\alpha^{2}+\beta^{2}=3+1 \Rightarrow \alpha^{2}+\beta^{2}=4$
$\Rightarrow 2 \alpha^{2}=4$
$\Rightarrow \alpha= \pm \sqrt{2}$
$\Rightarrow \alpha= \pm \sqrt{2}$ and $\beta= \pm \sqrt{2}$
84. (C)

Slope of $A=\frac{2}{5}$

Slope of $A=\frac{-15}{6}=\frac{-5}{2}$
$\because \mathrm{m}_{1} \cdot \mathrm{~m}_{2}=\frac{2}{5} \times \frac{-5}{2}=-1$
i.e, angle between OA and OB is $\pi / 2$.

Hence, the line segment AB substend right angle at origin O .
85. (C) Any point on the given line is $(5 r-3,2 r+$ $1.3 \mathrm{r}-4$). If it is the foot of the perpendicular from $(0,2,3)$, then $5(5 r-3-0)+$ $2(2 r+1-2)+3(3 r-4-3)=0$
$\Rightarrow 38 \mathrm{r}=38 \Rightarrow \mathrm{r}=1$
So, foot the perpendicualr is $(2,3,-1)$
86. (C) $y=x^{3}$ is a curve known as semi-cubical parabola. If $x \rightarrow-x$ and $y \rightarrow-y$ the equation does not change. It is symmetrical in Ist and IIIrd quadrants. The line $\mathrm{y}=4 x$ meets is at $4 x=x^{3}$
$\therefore x=0,2,-2 \Rightarrow \mathrm{y}=0,8,-8$
\therefore Area in Ist quadrant $=\int_{0}^{2}\left(y_{1}-y_{2}\right) \mathrm{d} x$

$A=\int_{0}^{2}\left(4 x-x^{3}\right) d x$
$=\left[2 x^{2}-\frac{x^{4}}{4}\right]_{0}^{2}=4$
87. (C) Statement I A matrix is only an arrangement of numbers, it has no definite value.
e.g., $\quad[7] \neq 7$

Statement II Let $\Delta_{1}=\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right|_{3 \times 3}=(2-3)=-3$
and $\Delta_{2}=\left|\begin{array}{ll}1 & 3 \\ 2 & 3\end{array}\right|_{2 \times 2}=3-6=-3$
Hence, two determinants of different orders may have the same value.
88. (A) $f(x)=x\left(\frac{a^{x}-1}{a^{x}+1}\right)$

Put $x=-x$, we get

$$
f(-x)=(-x)\left(\frac{a^{-x}-1}{a^{-x}+1}\right)
$$

$=-(x)\left(\frac{\frac{1-a^{x}}{a^{x}}}{\frac{1+a^{x}}{a^{x}}}\right)=(-x)\left(\frac{1-a^{x}}{1+a^{x}}\right)$
$=x\left(\frac{a^{x}-1}{a^{x}+1}\right)=f(x)$
So, $f(x)$ is an even function.

K D Campus Pvt. Ltd

89. (D) frequency curve may be symmetrical, positive skew and negative skew.
For symmetry \Rightarrow Mean $=$ Median $=$ Mode
$\Rightarrow \bar{x}=M_{d}=M_{0}$

For positive skew, Mean > Median > Mode

For negative skew, Mean < Median < Mode

90. (B) $\because \mathrm{S}=4 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{d S}{d t}=\frac{8 \pi r d r}{d t} \text { and } \mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3} \\
& \Rightarrow \frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 \mathrm{r}^{2} \frac{d r}{d t}=4 \pi \mathrm{r}^{2} \frac{d r}{d t}=\frac{4 \pi r^{2}}{8 \pi r} \cdot \frac{d S}{d t} \\
& \quad=\frac{1}{2} \mathrm{r} \cdot \frac{d S}{d t}
\end{aligned}
$$

91. (B) First we arrnage the given data in ascending order, we get $3,6,6,7,7,7,8,9,9$, $10,10,10,12$
Total terms, $\mathrm{n}=13$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)$ th term $=\left(\frac{13+1}{2}\right)$ th therm $=7$ th term $=8$
92. (A) Given equations.

$$
\begin{equation*}
8 x-9 y=20 \tag{i}
\end{equation*}
$$

and $7 x-10 y=9$
On multiplying Eq. (i) by 10 and Eq. (ii) by 9 and then subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{aligned}
& 80 x-90 y=200 \\
& 63 x-90 y=81 \\
& -\quad+\quad- \\
& \hline 17 x=119
\end{aligned} \Rightarrow x=7
$$

and $10 y=7(7)-9=49-9$
$\Rightarrow 10 y=40$
$\Rightarrow \mathrm{y}=4$
$\therefore 2 x-y=2(7)-4=14-4=10$
93. (A) Let $\mathrm{I}=\int(x \cos x+\sin x) \mathrm{d} x$
$=\iint_{\text {I }}^{x} \cos d x+\int \sin x d x$
$=\left(x \sin x-\int \sin x d x\right)+\int \sin x d x=x \sin x+\mathrm{C}$
94. (C) Given, $\frac{1}{\sin x} \frac{d^{2} y}{d x^{2}}=\operatorname{cosec} x-2 \sin x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=1-2 \sin ^{2} x=\cos 2 x$
On integrating both sides w.r.t. x, we get
$\frac{d y}{d x}=\frac{\sin 2 x}{2}+\mathrm{C}_{1}$
Now, again integrating both sides w.r.t. x, we

$$
\text { get } \mathrm{y}=-\frac{\cos 2 x}{4}+\mathrm{C}_{1} x+\mathrm{C}_{2}
$$

95. (B) Here, $n(S)=52$,
$\mathrm{n}\left(\mathrm{E}_{1}\right)=1, \mathrm{n}\left(\mathrm{E}_{2}\right)=1, \mathrm{n}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\phi$
$\therefore \quad\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)$

$$
=\frac{1}{52}+\frac{1}{52}-0=\frac{1}{26}
$$

96. (A) Given, $(2 x+3 y+4)+\lambda(6 x-y+12)=0$ $2 x+6 \lambda x+3 \mathrm{y}-\lambda \mathrm{y}+4+12 \lambda=0$ $2 x(3 \lambda+1)+y(3-\lambda)+4+12 \lambda=0$
Since, line (i) is parallel to Y-axis,
So, the coefficient of y must be zero.
$\therefore 3-\lambda=0 \Rightarrow \lambda=3$
97. (B) let α be a root of $x^{2}-x+\mathrm{k}=0$. The, 2α is a root of

$$
x^{2}-x+3 \mathrm{k}=0
$$

$\therefore 4 \alpha^{2}-2 \alpha+3 \mathrm{k}=0$ and $\alpha^{2}-\alpha+\mathrm{k}=0$
$\Rightarrow \frac{\alpha^{2}}{-2 k+3 k}=\frac{\alpha}{3 k-4 k}=\frac{1}{-4+2}$

Campus

K D Campus Pvt. Ltd

$\Rightarrow \alpha^{2}=-\frac{k}{2}$ and $\alpha=\frac{k}{2}$
Now, $\alpha^{2}=(\alpha)^{2}=\Rightarrow\left(-\frac{k}{2}\right)=\left(\frac{k}{2}\right)^{2}$
$\Rightarrow \mathrm{k}^{2}+2 \mathrm{k}=0 \Rightarrow \mathrm{k}=0$ or -2
98. (B)

$\mathrm{AC}=\mathrm{AB}+\mathrm{BC}=\mathrm{a}+\mathrm{b}$
$A D=2 B C=2 b$
$\therefore \mathrm{FA}=\mathrm{DC}=\mathrm{AC}-\mathrm{AD}$
99. (A) $\int \sec ^{n} x \tan x d x$
$=\int \sec ^{n-1} x \cdot \sec x \tan x d x$

$$
=\frac{(\sec)^{n-1+1}}{n-1+1}=\frac{1}{n} \sec ^{\mathrm{n}} x+\mathrm{c}
$$

100. (A) $\frac{\frac{1}{3} \log _{2} 17}{\frac{1}{2} \log _{3} 23}-\frac{\frac{2}{3} \log _{2} 17}{\log _{3} 23}=0$

$$
\Rightarrow \frac{\frac{2}{3} \log _{2} 17}{\log _{3} 23}-\frac{\frac{2}{3} \log _{2} 17}{\log _{3} 23}=0
$$

101. (D) Given, $2 \mathrm{a}=3(2 \mathrm{~b})$

$$
\begin{aligned}
& \therefore \frac{b^{2}}{a^{2}}=\frac{1}{9} \\
& \Rightarrow c^{2}=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{b^{2}}{9 b^{2}}}=\sqrt{\frac{8}{9}} \\
& \therefore e=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

102. (B) We know that two matrices A and B are defined for addition, if they are of the same type, Thus, if A be $m \times n$, then B should also be $m \times n$ order. Again, since $A B$ is also defined therefore number of columns in A i.e, n should be equal to number of rows in B i.e, m. Hence, $n=m$ and in that case both A and B will be square matrices of order equal to $m=n$.
103. (C) $y=\sin ^{-1} \frac{4 x}{1+4 x^{2}}=\sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}$, where $\tan \theta=2 x$
$\sin ^{-1} \sin 2 \theta$

$$
=2 \theta
$$

$=2 \tan ^{-1} 2 x$
$\frac{d y}{d x}=\frac{2}{1+(2 x)^{2}} \times 2=\frac{4}{1+4 x^{2}}$
104. (B) Given differential equation

$$
\begin{aligned}
& \left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}+4-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}=0 \\
\Rightarrow & \left(3 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-4\right)=\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}
\end{aligned}
$$

On cubing both sides,
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\left(3 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-4\right)^{2}$
Degree $=2$
105. (D) Given, $\left(x^{2}-\frac{1}{x}\right)^{9}$

General term,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\left(x^{2}\right)^{9-\mathrm{r}} \cdot\left(-\frac{1}{x}\right)^{r} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \quad x^{18-2 \mathrm{r}}(-1)^{\mathrm{r}} x^{-\mathrm{r}} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \quad x^{(18-3 \mathrm{r})}(-1)^{\mathrm{r}}
\end{aligned}
$$

For independent term,
Put $18-3 \mathrm{r}=0$
$\Rightarrow 3 \mathrm{r}=18$
$\Rightarrow r=6$
$\therefore \mathrm{T}_{(6+1)}={ }^{9} \mathrm{C}_{6} x{ }^{(18-18)} \cdot(-1)^{6}$

$$
\mathrm{T}_{7}={ }^{9} \mathrm{C}_{6} \cdot 1=\frac{9.8 .7}{3 \cdot 2 \cdot 1}=84
$$

106. (A) $\int_{-x / 2}^{x / 2}|\sin x| \mathrm{d} x=\int_{-x / 2}^{0}(-\sin x) \mathrm{d} x+$

$$
\begin{aligned}
& \int_{0}^{x / 2}(\sin x) \mathrm{d} x \\
& =-[-\cos x]_{\pi / 2}^{0}-[\cos x]_{0}^{\pi / 2} \\
& =[\cos 0-\cos (-\pi / 2)]-(\cos \pi / 2-\cos 0) \\
& =(1-0)-(0-1)=1+1=2
\end{aligned}
$$

107. (B) $\because \cos \left(\sin ^{-1} x\right)=\frac{1}{2}$
$\Rightarrow \sin ^{-1} x=\cos ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow \sin ^{-1} x=\sin ^{-1} \frac{\sqrt{3}}{2}$
$\Rightarrow x=\frac{\sqrt{3}}{2}$

Campus

K D Campus Pvt. Ltd

$\therefore \tan \left(\cos ^{-1} x\right)=\tan \left(\cos ^{-1} \frac{\sqrt{3}}{2}\right)$
$=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$
Hence, $\tan \left(\cos ^{-1} x\right)$ have two values.
108. (D) If each item of a data is increased or decreased by the same constant, then standard deviation of the data remains unchanged, i.e., $S D$ is 6 .
109.
(B) $\log _{81} 243=\log _{(3)^{4}}(3)^{5}=\frac{5}{4} \log _{3} 3$
$=\frac{5}{4} \times 1=\frac{5}{4}=1.25 \quad\left(\because \log _{a^{n}} a^{m}=\frac{m}{n}\right)$
110. (C) $\int_{\text {In }}^{x} \frac{1}{2 e^{x}-1} \mathrm{~d} x=\operatorname{In} \frac{3}{2}$

Let $\mathrm{I}=\int_{\operatorname{In} 2}^{x} \frac{1}{e^{x}-1} \mathrm{~d} x$
Put $\mathrm{e}^{x}-1=\mathrm{t} \Rightarrow \mathrm{d} x=\frac{d t}{1+t}$
$\mathrm{I}=\int_{\text {in2 }}^{x} \frac{1}{t(1+t)} \mathrm{dt}=\int_{\text {in2 }}^{x}\left[\frac{1}{t}-\frac{1}{1+t}\right] \mathrm{dt}$
$\left.=[\operatorname{In} \mathrm{t}-\operatorname{In}(1+\mathrm{t})]_{\operatorname{In} 2}^{x}=\left[\operatorname{In}\left(\mathrm{e}^{x}-1\right)\right]-\operatorname{In} \mathrm{e}^{x}\right]_{\operatorname{In} 2}^{x}$
$=\left[\operatorname{In}\left(\frac{e^{x}-1}{e^{x}}\right)_{\operatorname{In2} 2}^{x}\right]=\operatorname{In}\left(\frac{e^{x}-1}{e^{x}}\right)-\operatorname{In} \frac{1}{2}$
$=\operatorname{In} 2\left(\frac{e^{x}-1}{e^{x}}\right) \Rightarrow 2\left(\frac{e^{x}-1}{e^{x}}\right)=\frac{3}{2}$ (Given)
$\Rightarrow \mathrm{e}^{x}=4 \Rightarrow x=\operatorname{In} 4$
111. (B) \therefore Required Area $=\operatorname{area}(\triangle \mathrm{OAB})$

$$
=\frac{1}{2} \times 4 \times 4=8 \text { sq units }
$$

112. (B) If the values of a set are measured in cm , then the variance has unit cm^{2}.
113. (B) Let required ratio be $\lambda: 1$. Then, the coordinates of point which divides the line joining $(-1,1)$ and $(5,7)$ in the ratio $\lambda: 1$, is $\left(\frac{5 \lambda-1}{\lambda+1}, \frac{7 \lambda+1}{\lambda+1}\right)$

But it lies on $x+y=4$
$\therefore \frac{5 \lambda-1}{\lambda+1}+\frac{7 \lambda-1}{\lambda+1}=4$
$\Rightarrow 12 \lambda=4 \lambda+4, \Rightarrow \lambda=1 / 2$
\therefore Required ratio $=1: 2$
114. (D) By the definition of the greatest integer function, $[x]=-1$ when $-1 \leq x<0$
and $[x]=0$ when $0 \leq x<1$
Hence, by the definition of the greatest integer function
$f(x)=\frac{\sin (-1)}{-1}=\sin 1$ when $-1 \leq x<0$
and $f(x)=\frac{\sin 0}{0}=\frac{0}{0}$
When $0 \leq x<1$
$\operatorname{Lf}(0-0)=\lim _{h \rightarrow 0} \sin 1=\sin 1$
and $\operatorname{Rf}(0+0)=\lim _{h \rightarrow 0} 0=0$
Since, $\mathrm{f}(0-0) \neq \mathrm{f}(0+0)$, then the limit of $\mathrm{f}(x)$ at $x=0$ does not exist.
115.
(D) $\because x+\mathrm{iy}=\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|$
$\Rightarrow x+\mathrm{iy}=6 \mathrm{i}\left(3 \mathrm{i}^{2}+3\right)+3 \mathrm{i}(4 \mathrm{i}+20)+1(12-60 \mathrm{i})$
$=-18 \mathrm{i}+18 \mathrm{i}-12+60 \mathrm{i}+12-60 \mathrm{i}=0$
116. (A)
117. (A)On taking log both sides, we get $\mathrm{p} \log x+q \log y=(p+q) \log (x+y)$
$\Rightarrow \mathrm{p} \frac{1}{x}+\mathrm{q} \frac{1}{y} \frac{d y}{d x}=(\mathrm{p}+\mathrm{q}) \frac{1}{x+y} \cdot\left(1+\frac{d y}{d x}\right)$
$\frac{p}{x}-\frac{p+q}{x+y}=\left(\frac{p+q}{x+y}-\frac{q}{y}\right) \frac{d y}{d x}$
$\Rightarrow \frac{p y-q x}{x(x+y)}=\frac{p y-q x}{y(x+y)} \frac{d y}{d x}$

$$
\frac{d y}{d x}=\frac{y}{x}
$$

118. (D)

K D Campus Pvt. Ltd

119. (D) Given equation of parabola and line are $x^{2}=y$
and $\mathrm{y}=1$
(ii)

On solving Eqs. (i) and (ii), we get
$x^{2}=1 \Rightarrow x= \pm 1$
\therefore Required area $=2 \times$ Area of OPBO
$=2 \int_{0}^{1} x d y=\int_{0}^{1} \sqrt{y} \mathrm{dy}=2\left[\frac{2 y^{2 / 3}}{3}\right]_{0}^{1}$
$=\frac{4}{3}(1-0)=\frac{4}{3}$ sq units
120. (B) Given that, $\alpha=k$ and $\gamma=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}$ Since, β is perpendicualr to both α and γ.

$$
\begin{aligned}
& \text { i.e., } \beta= \pm(\alpha \times \gamma)=+\left|\begin{array}{ccc}
i & j & k \\
0 & 0 & 1 \\
2 & 3 & 4
\end{array}\right| \\
& =+\mathrm{i}(0-3)-\mathrm{j}(0-2)+\mathrm{k}(0-0) \\
& =+(-3 \mathrm{i}+2 \mathrm{j})
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

NDA (MATHS) MOCK TEST - 37 (Answer Key)

1.	(B)
2.	(B)
3.	(C)
4.	(A)
5.	(B)
6.	(B)
7.	(B)
8.	(B)
9.	(C)
10.	(D)
11.	(A)
12.	(B)
13.	(B)
14.	(C)
15.	(D)
16.	(B)
17.	(C)
18.	(B)
19.	(B)
20.	(B)

21.	$(\mathrm{~B})$
22.	(D)
23.	(B)
24.	(D)
25.	$(\mathrm{~B})$
26.	(C)
27.	(C)
28.	(A)
29.	(C)
30.	(D)
31.	(C)
32.	(A)
33.	(A)
34.	(C)
35.	(A)
36.	(B)
37.	(D)
38.	(A)
39.	(B)
40.	(B)

41.	(B)
42.	(C)
43.	(C)
44.	(A)
45.	(A)
46.	(A)
47.	(C)
48.	(B)
49.	(C)
50.	(*)
51.	(C)
52.	(A)
53.	(A)
54.	(D)
55.	(A)
56.	(D)
57.	(B)
58.	(A)
59.	(C)
60.	(B)

61.	(A)
62.	(C)
63.	(D)
64.	(D)
65.	(D)
66.	(D)
67.	(*)
68.	(A)
69.	(C)
70.	(D)
71.	(D)
72.	(A)
73.	(B)
74.	(B)
75.	(A)
76.	(D)
77.	(C)
78.	(C)
79.	(D)
80.	(C)

81.	(A)
82.	(C)
83.	(B)
84.	(C)
85.	(C)
86.	(C)
87.	(C)
88.	(A)
89.	(D)
90.	(B)
91.	(B)
92.	(A)
93.	(A)
94.	(C)
95.	(B)
96.	(A)
97.	(B)
98.	(B)
99.	(A)
100.	(A)

101. (D)
102. (B)
103. (C)
104. (B)
105. (D)
106. (A)
107. (B)
108. (D)
109. (B)
110. (C)
111. (B)
112. (B)
113. (B)
114. (D)
115. (D)
116. (A)
117. (A)
118. (D)
119. (D)
120. (B)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

[^0]
[^0]: Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

