2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS PO SPECIAL PRELIMS - 370 (SOLUTION)

1. (3)
2. (1)
3. (4)
4. (3)
5. (2)
6. (4) Given statements
$\mathrm{C} \geq \mathrm{D}=\mathrm{E}<\mathrm{G}$
$\mathrm{L} \geq \mathrm{T}>\mathrm{N}=\mathrm{G}$
Combining both statements
$\mathrm{C} \geq \mathrm{D}=\mathrm{E}<\mathrm{G}=\mathrm{N}<\mathrm{T} \leq \mathrm{L}$
I. $\mathrm{T}>\mathrm{D} \rightarrow$ True
II. $\mathrm{L}>\mathrm{E} \rightarrow$ True
III. $\mathrm{C} \geq \mathrm{T} \rightarrow$ False
IV. $\mathrm{D} \leq \mathrm{E} \rightarrow$ False

Only I and II are true
7. (4) Given statements
$\mathrm{W} \leq \mathrm{V}=\mathrm{Q}<\mathrm{R}$
$\mathrm{P}>\mathrm{S}=\mathrm{T} \geq \mathrm{W}$
Combining both statements
$\mathrm{P}>\mathrm{S}=\mathrm{T} \geq \mathrm{W} \leq \mathrm{V}=\mathrm{Q}<\mathrm{R}$
I. $\mathrm{P} \leq \mathrm{Q} \rightarrow$ False
II. $\mathrm{S} \leq \mathrm{V} \rightarrow$ False
III. $\mathrm{R} \leq \mathrm{T} \rightarrow$ False
IV. $\mathrm{P}>\mathrm{V} \rightarrow$ False

None is true.
8. (4) Given statements
$\mathrm{H} \geq \mathrm{W}<\mathrm{M}$
$\mathrm{N}=\mathrm{P}>\mathrm{H}$
$\mathrm{K} \leq \mathrm{L}<\mathrm{N}$

Combining all these statements $\mathrm{K} \leq \mathrm{L}<\mathrm{N}=\mathrm{P}>\mathrm{H} \geq \mathrm{W}<\mathrm{M}$
I. $\mathrm{N}>\mathrm{W} \rightarrow$ True
II. $\mathrm{M} \geq \mathrm{N} \rightarrow$ False
III. $\mathrm{K}=\mathrm{H} \rightarrow$ False
IV. $\mathrm{P}>\mathrm{L} \rightarrow$ True

Only I and IV are true.
9. (2) Given statements

$$
\begin{equation*}
\mathrm{G}=\mathrm{C} \geq \mathrm{P}=\mathrm{T} \tag{i}
\end{equation*}
$$

$\mathrm{U} \leq \mathrm{N}=\mathrm{J}<\mathrm{G}$
Combining both statements
$\mathrm{U} \leq \mathrm{N}=\mathrm{J}<\mathrm{G}=\mathrm{C} \geq \mathrm{P}=\mathrm{T}$
I. $\mathrm{U} \leq \mathrm{P} \rightarrow$ False
II. $\mathrm{G}>\mathrm{N} \rightarrow$ True
III. $G \geq T \rightarrow$ True
IV. $\mathrm{U}<\mathrm{G} \rightarrow$ True

Only II, III and IV are true.
10. (2) Given statements
$\mathrm{R} \leq \mathrm{S}<\mathrm{Q}=\mathrm{P}$
$T=U>E \geq P$
Combining both statements
$\mathrm{R} \leq \mathrm{S}<\mathrm{Q}=\mathrm{P} \leq \mathrm{E}<\mathrm{U}=\mathrm{T}$
I. $\mathrm{S}>\mathrm{T} \rightarrow$ False
II. $\mathrm{E}<\mathrm{Q} \rightarrow$ False
III. $\mathrm{S}<\mathrm{U} \rightarrow$ True
IV. $\mathrm{T}>\mathrm{R} \rightarrow$ True

Only III and IV are true
(11-15) :

Person	Floor	Game
J	7	Badminton
I	6	Polo
N	5	Chess
L	4	Hockey
M	3	Rugby
O	2	Cricket
K	1	Ludo

11. (4)
12. (1)
13. (2)
14. (3)
15. (4)
(16-20) :
Input : all in one 2779 every 63589054
Step I : all in one 2779 every second 6358 5490
Step II : all every in one 27 second 635854 9079

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Step III : all every in one 27 second 585490 7963
Step IV : all every in one 27 second 549079 6358

Step V : all every in one second 27907963 5854
Step VI : all every in one second 90796358 5427
Hence, in this illustration step VI is the final step.
16. (1)
17. (3)
18. (5)
19. (5)
20. (3)
(21-23) :

21. (3)
22. (3)
23. (3)
(24-28) :

24. (1)
25. (2)
26. (2)
27. (4)
28. (2)
(29-30) :

29. (4)
30. (4)
(31-35) :
31. (3) Statement :

Conclusion :

I. Can't say
II. Can't say
I. True
IV. True Only III and IV follow.
32. (1) Statement :

Conclusion :

I. Can't say
II. Can't say
III. Can't say
IV. Can't say

None follows.
33. (5) Statement :

Bottles

Conclusion :
I. Can't say
II. Can't say
III. Can't say
IV. Can't say

But after comparing, we find that either I or III is true.
34.
(1) Statement :

Conclusion :

I. True
II. Can't say
III. True
IV. Can't say

Only I and III follow.
35. (2) Statement :

Conclusion :

I. Can't say
II. True
III. True
IV. True

Only II, III and IV follow.

Maths

36. (4) Let there are n no. of males
$\therefore(n+15) \times 18=240+20 n$
$\Rightarrow \mathrm{n}=15$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
37. (2) Let Deepak's present age $=(7 x+7)$ years

Arun's present age $=(5 x+7)$ years
ATQ,
$7 x-5 x=14$
$\mathrm{x}=7$
\therefore Deepak's present age $=49+7=56$ years
38. (2) Difference between C.I. \& S.I. $=450$

So, $450=\frac{p \times 15 \times 15}{100 \times 100}$
$\Rightarrow P=20000$
So, amount invested $=$ Rs. 20,000
39. (3) Total letters = D, R, A, S, T, I, C (7)

Total vowels = A, I (2)
\therefore Required no. of ways $=6!\times 2!=1440$
40. (1) Marking of balls are $1,5,7,10,14,15$, 20

Required probability $=\frac{4}{20}+\frac{2}{20}=\frac{1}{\mathrm{~s}}+\frac{1}{10}$
$=\frac{3}{10}$
41. (1) Required difference
$=(15 \%-5 \%)$ of 500 lakhs $=50$ lakhs
42. (1) Fund left from government agencies
$=45 \%$ of 500 lakhs -20% of 45% of 500 lakhs = 180 lakhs
43. (2) Required percentage $=\frac{15}{35} \times 100=43 \%$
44. (3) Total amount used by school for payment
$=\frac{30}{100} \times 500$ lakhs
= Rs. 150 lakhs
45. (4) Amount acquired by school from government agencies $=45 \times 5=225$ lakhs
46. (5)

47. (3)

$$
\begin{array}{lll}
1^{3} \Rightarrow 1 & ; & 2^{3} \Rightarrow 8 \\
3^{3} \Rightarrow 27 & ; & 4^{3} \Rightarrow 64 \\
5^{3} \Rightarrow \mathbf{1 2 5} & ; & 6^{3} \Rightarrow 216 \\
7^{3} \Rightarrow 343 & &
\end{array}
$$

48. (1)

49. (4)

50. (5)

4.5	7	18	68	335	2004
$L_{\times 2-2}$	$L_{\times 3-3}$	$L_{\times 4-4}$	$L_{\times 5-5}$	$\times 6-6$	

51. (3) Suppose the ages of father and son are 5 x year and 2 x year
After four years, the age of son $=(2 x+4)$ year
After four years, the age of mother $=(4 x$ + 8) year
So, the present age of mother $=(4 \mathrm{x}+4)$ year
Ratio of the age of father and mother
$=5 \mathrm{x}: 4 \mathrm{x}+4$
Since, data is insufficient, so cannot be determined.
52. (1) Amount of mixture in the container $=60$ liters
Given, the ratio of water to spirit is $4: 1$ Therefore, Amount of water
$=\frac{4}{5} \times 60=48$
Amount of spirit $=\frac{1}{5} \times 60=12$
Let the amount of spirit added be x
Therefore,
$\frac{\text { Amount of water }}{\text { Amount of spirit }}=\frac{3}{2}$
$\frac{48}{12+x}=\frac{3}{2}$
$96=36+3 x$
$3 x=60 ; x=20$
53. (1) If the investment is the ratio of $8: 7$ then the profit will be in the ratio of $8: 7$
so, $\frac{8}{15} \times 6000=3200 \rightarrow$ A's share
54. (2) Initial ratio of red and blue marbles = 99 : 1
Final ratio of Red and blue marbles becomes 98:2 = 49: 1
As only red marbles are taken out, therefore amount of blue marbles remain constant. Thus, it can be seen that $99-49=50$ parts were taken out. These 50 parts are equal to number of red marbles taken out.
We are given total initial marbles $=200$
$=99+1=100$ parts
1 part = 2 marbles
50 parts $=100$ marbles

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
55. (2) Let the income be $\rightarrow 100$

So, $100 \rightarrow 120$
And saving is 10 so, expenditure raises from $90 \rightarrow 110$

Increase $\rightarrow \frac{20}{90} \times 100=22.22 \%$
56. (5) I. $3 x^{2}-38 \sqrt{7} x+728=0$
$\Rightarrow 3 x^{2}-(26 \sqrt{7}+12 \sqrt{7}) x+728=0$
$\Rightarrow 3 x^{2}-26 \sqrt{7}-12 \sqrt{7} x+104(\sqrt{7})^{2}=0$
$\Rightarrow(3 x-26 \sqrt{7})-4 \sqrt{7}(3 x-26 \sqrt{7})=0$
$\Rightarrow(\mathrm{x}-4 \sqrt{7})(3 \mathrm{x}-26 \sqrt{7})=0$
$\Rightarrow x=4 \sqrt{7}, 26 \sqrt{7 / 3}=0$
$\Rightarrow \mathrm{x}=4 \sqrt{7}, 8.6 \sqrt{7}(\sqrt{7}=2.646)$
$\Rightarrow x=10.584,22.7556$
II. $3 y^{2}-104 y+805=0$
$\Rightarrow 3 y^{2}-104 y+805=0$
$\Rightarrow 3 y^{2}-69 y-35 y+805=0$
$\Rightarrow 3 y(y-23)-35(y-23)=0$
$\Rightarrow(3 y-35)(y-23)=0$
$\Rightarrow \mathrm{y}=35 / 3,23$
$\Rightarrow \mathrm{y}=11.66,23$
Hence, No relation
57. (5) I. $36 x^{2}-19 x-7=0$
$\Rightarrow 36 x^{2}-(28-9) x-7=0$
$\Rightarrow 36 x^{2}-28 x+9 x-7=0$
$\Rightarrow 4 \mathrm{x}(9 \mathrm{x}-7)+1(9 \mathrm{x}-7)=0$
$\Rightarrow(9 x-7)(4 x+1)=0$
$\Rightarrow \mathrm{x}=\frac{7}{9}, \frac{1}{4}$
II. $12 y^{2}-5 y-2=0$
$\Rightarrow 12 y^{2}-(8-3) y-2=0$
$\Rightarrow 12 y^{2}-8 y+3 y-2=0$
$\Rightarrow 4 y(3 y-2)+1(3 y-2)=0$
$\Rightarrow(3 y-2)(4 y+1)=0$
$\Rightarrow \mathrm{y}=\frac{2}{3},-\frac{1}{4}$
58. (5) I. $2 x^{2}+6 \sqrt{7} x-56=0$
$\Rightarrow 2\left(x^{2}+3 \sqrt{7} x-28\right)=0$
$\left.\Rightarrow \mathrm{x}^{2}+3 \sqrt{7} \mathrm{x}-28\right)=0$
$\Rightarrow \mathrm{x}^{2}+(4 \sqrt{7}-\sqrt{7}) \mathrm{x}-28=0$
$\Rightarrow x^{2}+4 \sqrt{7} x-\sqrt{7} x-28=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+4 \sqrt{7})-\sqrt{7}(\mathrm{x}+4 \sqrt{7})=0$
$\Rightarrow(\mathrm{x}-\sqrt{7})(\mathrm{x}+4 \sqrt{7})=0$
$\Rightarrow \mathrm{x}=\sqrt{7},-4 \sqrt{7}$
II. $2 y^{2}-9 y+7=0$
$\Rightarrow 2 \mathrm{y}^{2}-(7+2) \mathrm{y}+7=0$
$\Rightarrow 2 \mathrm{y}^{2}-7 \mathrm{y}-2 \mathrm{y}+7=0$
$\Rightarrow 2 y^{2}-7 y-2 y+7=0$
$\Rightarrow \mathrm{y}(2 \mathrm{y}-7)-1(2 \mathrm{y}-7)=0$
$\Rightarrow(2 y-7)(y-1)=0$
$\Rightarrow \mathrm{y}=\frac{7}{2}, 1$
59. (5) I. $(\sqrt{26}) x^{2}+\left(26^{3 / 2}-1\right) x-26=0$
$\Rightarrow(\sqrt{26}) x^{2}+26 \sqrt{26} x-x-26=0$
$\Rightarrow \frac{\sqrt{26} x^{2}}{\sqrt{26}}+\frac{26 \sqrt{26} x}{\sqrt{26}}-\frac{x}{\sqrt{26}}-\frac{26}{\sqrt{26}}=0$
$\Rightarrow x^{2}+26 x-\frac{x}{\sqrt{26}}-\frac{26}{\sqrt{26}}=0$
$\Rightarrow x(x+26)-\frac{1}{\sqrt{26}}(x+26)=0$
$\Rightarrow\left(x-\frac{1}{\sqrt{26}}\right)(x+26)=0$
$\Rightarrow \mathrm{x}=\left(\frac{1}{\sqrt{26}}=\frac{1}{5.01}\right),-26$
II. $y^{2}+0.7 y+0.1=0$
$\Rightarrow \mathrm{y}^{2}+0.5 \mathrm{y}+0.2 \mathrm{y}+0.1=0$
$\Rightarrow \mathrm{y}(\mathrm{y}+0.5)+0.2(\mathrm{y}+0.5)=0$
$\Rightarrow(y+0.2)(y+0.5)=0$
$\Rightarrow \mathrm{y}=-0.5,-0.2$
Hence, No relation
60. (5) I. $(x+3)^{2}<10 x+6$
$(x+3)^{2}-(10 x+6)<10 x+6-(10 x+6)$
$\Rightarrow(\mathrm{x}+3)^{2}-10 \mathrm{x}-6<0$
$\Rightarrow x^{2}+9+6 x-10 x-6<0$
$\Rightarrow x^{2}-4 \mathrm{x}+3<0$
$\Rightarrow \mathrm{x}^{2}-3 \mathrm{x}-1 \mathrm{x}+3<0$
$\Rightarrow x(x-3)-1(x-3)<0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}-1)<0$
$\therefore 1<\mathrm{x}<3$
II. $5-x=y$

If $x=1$, then
$\Rightarrow \mathrm{y}=5-1=4$

$K D$ Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

If $x=3$, then
$\Rightarrow y=5-3=2$
$\therefore 2<\mathrm{y}<4$
Hence, No relation can be established.
61. (1) A does 25% of work in 5 days, 100% work will be done in 20 days
D does $(100-(25+20+10+20))=25 \%$ of work in 4 days, 100% work will be done in 16 days
Total work $=\operatorname{LCM}(20,16)=80$ units
A does $=\frac{80}{20}=4$ units $/$ day
D does $=\frac{80}{16}=5$ units/day
$A+D=4+5=9$ units/day
So, total work will be done in $=\frac{80}{9}$ days
$=8.88$ days
62. (5) B does 20% work in 4 days then 100% will be done in 20 days.
Let the total amount of work be 100 units. B does 5 units/day.
$B+E=\frac{100}{9 \frac{1}{11}}$ units $/$ day $=11$ units / day
E does $(11-5)=6$ units/day
The required answer $=\frac{100}{6}=16.67$ days
63. (3) A's efficiency 20 days to do whole work B's efficiency 20 days to do whole work C's efficiency 40 days to do whole work D's efficiency 16 days to do whole work Total units of work $=\operatorname{LCM}(20,20,40,16)$ $=320$ units
A $=16$ units / day
$B=16$ units $/$ day
$\mathrm{C}=8$ units/day
$D=20$ units/day
40% of whole work is $=320 \times 0.4$
$=128$ units
$A+B=16+16=32$ units/day
$B+C=16+8=24$ units/day
$C+D=8+20=28$ units/day
Now left amount of target work
$=128-(32+24+28)=44$ units
4 th day work done $=\mathrm{A}+\mathrm{B}=32$,
So left = 44-32=12

The required answer is $=4.5$ days
64. (3) A, B, C and D separately can do the work in $20,20,40$ and 16 days respectively.
Total work $=\operatorname{LCM}(20,20,40,16)$
$=320$ units
$A=16$ units $/$ day
$B=16$ units $/$ day
$\mathrm{C}=8$ units/day
$D=20$ units / day
$A+B=16+16=32$ units/day
$B+C=16+8=24$ units/day
1
$\frac{1}{5^{\text {th }}}$ work will be done in $(320 / 5) / 32$
$=2$ days by A and B.
Half of the left work $=\frac{320-64}{2}=\frac{128}{20}$
$=6.4$ days
Rest is done $=\frac{128}{24}=5.33$ days
The answer is $=2+6.4+5.33$
$=13.73$ days
65. (5) A needs 20 days to do whole work

So, F will take 35 days to do the whole job.
The total work be 140 units (LCM of 20,35).
$\mathrm{F}=4$ units / day
50\% more efficiency means
$=6$ units $/$ day
So, the required answer is $=\frac{140}{6}$
$=23.33$ days
66. (2) $\simeq(17)^{2} \times(2)^{3}+(9)^{3} \times(5)^{2}$
$\simeq 289 \times 8+729 \times 25$
$\simeq 2312+18225 \simeq 20537$
67. (4) $\simeq\left(\frac{360 \times 75}{100}\right) \times\left(\frac{4}{7} \times 140\right) \div 8$
$\simeq 270 \times 80 \div 8$
$\simeq 2700$
68. (1) $768 \div 24 \times 15-30=? \times 9$
\Rightarrow ? $\times 9=450$
$?=50$
69. (4) $\simeq 55 \times 55+5$
$\simeq 3030$
70. (1) $23+9-?=23$
? $=32-23=9$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS PO SPECIAL PRELIMS - 370 (ANSWER KEY)

1. (3)
2. (1)
3. (4)
4. (3)
5. (2)
6. (4)
7. (4)
8. (4)
9. (2)
10. (2)
11. (4)
12. (1)
13. (2)
14. (3)
15. (4)
16. (1)
17. (3)
18. (5)
19. (5)
20. (3)
21. (3)
22. (3)
23. (3)
24. (1)
25. (2)
26. (3)
27. (2)
28. (4)
29. (2)
30. (4)
31. (4)
32. (3)
33. (1)
34. (5)
35. (1)
36. (2)
37. (4)
38. (2)
39. (2)
40. (3)
41. (1)
42. (1)
43. (1)
44. (2)
45. (3)
46. (4)
47. (5)
48. (1)
49. (4)
50. (5)
51. (3)
52. (1)
53. (1)
54. (2)
55. (2)
56. (5)
57. (5)
58. (5)
59. (5)
60. (5)
61. (1)
62. (5)
63. (3)
64. (3)
65. (5)
66. (2)
67. (4)
68. (1)
69. (4)
70. (1)
71. (4)
72. (2)
73. (3)
74. (2)
75. (1)
76. (3)
77. (4)
78. (2)
79. (3)
80. (5)
81. (1)
82. (3)
83. (2)
84. (4)
85. (5)
86. (3)
87. (4)
88. (4)
89. (1)
90. (1)
91. (3)
92. (4)
93. (2)
94. (1)
95. (3)
96. (3)
97. (2)
98. (1)
99. (4)
100.(2)
