IBPS PO SPECIAL PHASE - I - 351 (SOLUTION)

REASONING
(1-5) :

School	Person	Day
III	Aman	Tuesday
IV	Anjali	Wednesday
I	Mahendra	Thursday
VI	Raghu	Saturday
VII	Karan	Sunday
II	Rinku	Monday
V	Bharat	Friday

1. (3)
2. (4)
3. (2)
4. (3)
5. (4)
(6-10) :

6. (1)
7. (5)
8. (5)
9. (1)
10. (4)
(11-14) :
11. (3) Combining all these statements, $\mathrm{P}=\mathrm{Q} \geq \mathrm{I}$
I. $\quad \mathrm{I}=\mathrm{P} \rightarrow$ Doubt
II. $\quad \mathrm{P}>\mathrm{I} \rightarrow$ Doubt

Either conclusion I or II follows
12. (4) Combining all these statements,
$\mathrm{L} \geq \mathrm{A} \leq \mathrm{B}>\mathrm{D}$
I. $\quad \mathrm{B}>\mathrm{L} \rightarrow$ False
II. $\quad \mathrm{D} \geq \mathrm{L} \rightarrow$ False

Neither conclusion I nor II follows
13. (2) Combining all these statements,
$\mathrm{V}=\mathrm{X}>\mathrm{U}<\mathrm{U}$
I. $\quad \mathrm{U}>\mathrm{V} \rightarrow$ False
II. $\quad \mathrm{V}>\mathrm{Y} \rightarrow$ True

Only Conclusion II follows
14. (5) Combining all these statements,
$\mathrm{L} \leq \mathrm{K}<\mathrm{R}=\mathrm{S}$
I. $\quad \mathrm{S}>\mathrm{L} \rightarrow$ True
II. $\mathrm{K}<\mathrm{S} \rightarrow$ True

Both conclusion I and II follow

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(15-17) :
According to the given information,

15. (2) J is standing in North Direction with respect to N .
16. (4) As total Distance between Z and L is not given, so this question can not be ditermined
17. (1) K is the North-West direction from P.
(18-22) :

Floor	Person
7	V
6	H
5	T
4	F
3	U
2	E
1	G

18. (2)
19. (3)
20. (4)
21.(4)
21. (3)
(23-27) :
22. (3) First letter of the second word from the left $=B$

Second letter of the first word from the right $=\mathrm{I}$
There are six letters between B and I in the alphabetical order.
24. (4) SLY \rightarrow LSY

BUD \rightarrow BDU
MET \rightarrow EMT
DYE \rightarrow DEY
Then, AIM \rightarrow AIM
25. (1) $\mathrm{SLY} \rightarrow \mathrm{RKX}$

BUD \rightarrow AVC
MET \rightarrow LFS
DYE \rightarrow CXF
AIM \rightarrow BJL
26. (5) SLY \rightarrow SMY

BUD \rightarrow CUD
$\mathrm{MET} \rightarrow$ MFT
DYE \rightarrow EYE
AIM \rightarrow BIM

$K D$
 Campus
 KD Campus

27. (5) SLY BUD MET DYE AIM

AIM BUD DYE MET SLY
(28-30) :

28. (5) If G has no son then F must be daughter of G. So, F is aunt of L.
29. (2) 30. (1)
(31-35) :
31. (3)

I. $\quad \rightarrow$ True

Only I and II follow
II. \rightarrow True
III. $\quad \rightarrow$ False
2)
I. \rightarrow True
II. $\quad \rightarrow$ False
III. \rightarrow False
Only I follows
33. (5)

I. $\quad \rightarrow$ True
II. $\quad \rightarrow$ True
III. \rightarrow False
34. (1)

I. $\quad \rightarrow$ False II. $\quad \rightarrow$ False
III. \rightarrow False

None follows
35. (5)

I. \rightarrow False II. \rightarrow True \quad III. \rightarrow True

MATHS

(36-40) :
36. (2) $(47.1)^{2}-(7-9)^{2}-(12.01)^{2}=$?
? $\approx(47)^{2}-(-2)^{2}-(12)^{2}$
$=2209-4-144=2061 \approx 2070$
37. (5) $\sqrt{\sqrt{48} \div \sqrt{4900}} \times \sqrt{76}=184-? \div 7$
$\sqrt{\sqrt{49} \div \sqrt{4900}} \times \sqrt{81} \approx 184-? \div 7$
$\sqrt{7 \div 70} \times 9=184-? \div 7$
$\frac{?}{7}=184-2.85$
? $=1268.07 \approx 1267$
38. (4) $\left(10^{11} \times 3.465+10^{12} \times 0.253\right) \div\left(120 \times 10^{5}\right)=10$? $\div 2$
$10^{11}(3.465+2.53) \div 120 \times 10^{5}=10^{?} \div 2$
$10^{11} \times 6 \div 120 \times 10^{5} \approx 10^{?} \div 2$
$10^{6} \times \frac{1}{20} \times 2=10^{\text {? }}$
? = 5
39. (4) $\frac{1863 \div 6.5-184}{?}=851 \div 37$

$$
\frac{103}{?} \approx 23
$$

$$
?=\frac{103}{23}=4.47 \approx 5
$$

40. (3) $(\sqrt{1756} \times \sqrt{567} \div \sqrt{477})^{2}=$?

$$
\begin{aligned}
& ? \approx(42 \times 24 \div 22)^{2} \\
& =2099.30 \approx 2100
\end{aligned}
$$

(41-45) :
41. (4) $\frac{\sqrt{(15+24 \times 0.5)}}{\sqrt{10.2 \div ?}}=3$

$$
\begin{aligned}
& \frac{\sqrt{27}}{\sqrt{10.2 \div ?}}=3 \\
& \frac{27}{10.2 \div ?}=9 \\
& \frac{27}{9}=10.2 \div ? \\
& ?=\frac{10.2}{3}=3.4
\end{aligned}
$$

42. (2) $\sqrt{\left(2+\frac{1}{144}\right)} \div \sqrt{\left(1+\frac{49}{576}\right)} \times \frac{27}{34}=? \div 25$
$\sqrt{\frac{289}{144}} \div \sqrt{\frac{625}{576}} \times \frac{27}{34}=? \div 25$
$\frac{17}{12} \div \frac{25}{26} \times \frac{27}{34}=? \div 25$
$\frac{17}{12} \times \frac{26}{25} \times \frac{27}{34}=\frac{?}{25}$
$?=\frac{27}{25} \times 25$
$\therefore \quad ?=27$
43. (5) $65 \times 9 \div ?-101=\sqrt{256}$
$\frac{65 \times 9}{?}=16+101$
$?=\frac{65 \times 9}{117}=5$
44. (1) $1 \frac{2}{3}$ of $1440+40 \%$ of $3550-?=61^{2}$
$\frac{5}{3} \times 1440+\frac{40}{100} \times 3550-?=3721$
$2400+1420-?=3721$
? $=3820-3721=99$
45. (2) $? \div\left(25 \%\right.$ of $\left.289-32 \frac{3}{4}\right)=0.2$
$? \div\left(\frac{25}{100} \times 289-\frac{131}{4}\right)=0.2$
$? \div 39.5=0.2$
$?=0.2 \times 39.5=7.9$
(46-50) :
46. (3) The number series is:
$2 \times 7=14$
$14 \times 6=84$
$84 \times 5=420$
$420 \times 4=1680$
$1680 \times 3=5040$
$5040 \times 2=\mathbf{1 0 0 8 0}$
47. (1) The number series is:
$11^{3}+1=1332$
$12^{3}+1=1729$
$13^{3}+1=2198$
$14^{3}+1=2745$
$15^{3}+1=3376$

$K 入$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
48. (1) The number series is :
$16 \times 0.5=8$
$8 \times 1=8$
$8 \times 1.5=12$
$12 \times 2=24$
$24 \times 2.5=60$
$60 \times 3=180$
49. (3) The number series is:
$1 \times 1+2=3$
$3 \times 2+3=9$
$9 \times 3+4=31$
$31 \times 4+5=129$
$129 \times 5+6=651$
50. (5) The number series is:
$1^{2}+1=2$
$2^{2}-1=3$
$3^{2}+1=10$
$4^{2}-1=15$
$5^{2}+1=26$
51. (5) $\mathrm{A}: \mathrm{B}=2: 1$
and $\mathrm{B}: \mathrm{C}=7: 3$
A: B:C = 14:7:3
ATQ,
$(7+3)$ unit $\rightarrow 25000$
$\therefore 14$ unit $\rightarrow \frac{25000}{5} \times 14=₹ 70,000$
52. (1) Principal $=\frac{3800 \times 100}{8 \times 5}=₹ 9,500$

Amount $=9500\left(1+\frac{8}{100}\right)^{2}=₹ 11,080.80$
\therefore Compound interest $=11080.80-9500=₹ 1,580.80$
53. (5) Required third number $=344 \times 5-(650 \times 2+100 \times 2)$
$=1720-(1300+200)=1720-1500=220$
54. (1) Required time $=$ L.C.M of 30 and 90 minutes $=90$ minutes
\therefore Required time $=11 \mathrm{pm}+90$ minutes $=12: 30$ a.m.
55. (3) 12 women work in 5 days

3 women work in $\frac{12 \times 5}{3}=20$ days

9 children work in $\frac{20}{1}=20$ days
$\therefore \quad 36$ children work in $\frac{20 \times 9}{36}=5$ days

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(56-60) :
56. (3) Required ratio $=900 \times \frac{23}{100}: 450 \times \frac{44}{100}$
= 207: 198 = $23: 22$
57. (5) Required total $=840 \times \frac{55}{100}+540 \times \frac{60}{100}$
$=462+324=786$
58. (4) Required $\%=\left(\frac{360}{220} \times 100\right) \%=163.63 \% \approx 164 \%$
59. (1) Total no. of females in departments D and B together $=360 \times \frac{65}{100}+220 \times \frac{35}{100}$ $=234+77=311$

Total no. of males in department D and B together $=360 \times \frac{35}{100}+220 \times \frac{65}{100}$
$=126+143=269$
\therefore Required ratio $=311: 269$
60. (2) Required total $=840+220+900+360+450+540=3,310$
61. (2) A tap can fill a tank in 6 hours.

After half the tank is filled, i.e. after 3 hours, three more similar taps are opened.
No. of taps to fill remained half tank $=4$ taps
1 tap take 3 hours to fill the tank
4 taps take 45 minutes to fill the tank
Total time taken $=3$ hours $+45 \mathrm{~min}=3$ hours 45 min
62. (1) Total expnditure $=(32+12+10) \%=54 \%$

Remaining salary $=(100-54) \%=46 \%$
Amount invested in fixed deposit on entire year $=54550 \times \frac{23}{100} \times 12=₹ 1,50,558$
63. (3) Let the price of type 2 sugar be ₹ x per kg.

CP of mixture $=\frac{75.60}{120} \times 100=₹ 63$
ATQ,
$\frac{75-63}{63-x}=\frac{3}{1}$
$\frac{12}{63-x}=\frac{3}{1}$
$\frac{12}{63-x}=\frac{3}{1}$
$12=189-3 x$
$3 x=177$
$x=₹ 59$ per kg.
64. (1) Let the amount invested in first scheme is $₹ 100$ and that of second scheme $=100 \times 1.5=₹ 150$

CI of first scheme $=150 \times \frac{120}{100} \times \frac{120}{100}-100=₹ 66$

Kampus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
CI of second scheme $=100 \times \frac{110}{100} \times \frac{110}{100}-100=₹ 21$
ATQ,
(66-21) unit $\rightarrow 2025$
45 unit \rightarrow ₹ 2025
$\therefore \quad 100$ unit $\rightarrow ₹ \frac{2025}{45} \times 150=₹ 6,750$
65. (2) Total marks obtained by Nitin in Sanskrit, Science and Social Science $=68 \times 3=204$

Correct total marks $=204-72+81=213$
\therefore Required $\%=\left(\frac{213}{360} \times 100\right) \%=59.16 \% \approx 59 \%$
(66-70) :
66. (4) Average no. of votes acquired by Q during the year 2012 to 2016
$=\frac{3.8+3.4+4.3+4.2+4.1}{5}=\frac{19.8}{5}$ lakhs $=3.96$ lakhs
Average no. of votes acquired by P during the year 2012 to $2016=\frac{2.4+2.8+3.35+4.4+4.45}{5}$
$=\frac{17.4}{5}$ lakh $=3.48$ lakhs
\therefore Required more $\%=\left(\frac{3.96-3.48}{3.48} \times 100\right) \%=13.79 \% \approx 14 \%$ more
67. (2) No. of votes acquired by P in the year $2016=4.45$ lakhs

No. of votes acquired by R in the year 2016 = 1.8 lakhs
Required ratio of voter in the year $2017(\mathrm{R}: \mathrm{P})=3: 2$
Total no. of votes acquired by R in the year $2017=\frac{3}{2} \times 4.45=6.675$ lakhs
\therefore No. of votes acquired in the year 2017 than in the year $2016=6.675-1.8=4.875$ lakhs
68. (5) Average of votes acquired by Q during the year 2012 to $2015=\frac{3.8+3.4+4.3+4.2}{4}$
$=3.925$ lakhs
Required decrease $\%=\left(\frac{4.1-3.925}{4.1} \times 100\right) \%=4.26 \%$ decrease
69. (3) No. of votes acquired by Q in the year $2015=4.2$ lakhs

No. of votes 12% more than that acquired by $Q=4.2 \times \frac{112}{100}=4.704$ lakhs
No. of votes acquired by R in the year $2015=2.6$ lakhs
Required $\%=\left(\frac{4.704-2.6}{2.6} \times 100\right) \%=80.9 \%$
70. (3) Total no. of votes acquired by all the three parties in the year $2013=2.8+3.4+2.2$ $=8.4$ lakhs
No. of votes acquired by Q in the year $2013=3.4$ lakhs
\therefore Required $\%=\left(\frac{3.4}{8.4} \times 100\right) \%=40.47 \% \approx 40 \%$

(71-77) :

71. (3) Change 'become' into 'becomes' as sentence is in singular form.
72. (1) Change 'investing' into 'invested'.
73. (1) Change 'to' in to 'from' as 'refrain' is followed by 'from'.
74. (1) Change 'estimate' into 'estimated'.
75. (2) Change 'for' into 'to'.
76. (1) Change 'have' into 'had'.
77. (4) Change 'above the plight' into 'on the plight'.

VOCABULARIES

Word	Meaning in English	Meaning in Hindi
Access	a means of approaching or intering a place	प्र दे प्र
Relevant	closely connected or appropriate to the matter at hand	उ पु क त, प्र T सं गिक
Contingent	subject to chance	अ कर् मक
Humdrum	dullness, monotony	नी रस
Hazardous	risky, dangerous	ख तरना क
Nourishment	the food or other substances necessary for growth, health	\% T T` ज़ य प' ठा T हा र
	and good condition	
Consistent	of a person, behavior, or process) unchanging in	सं गत
	achievemnt	
Apposite	apt in the circumistances or relation to something	उ चित
Outburst	a sudden release of strong emotion	विस्ष ${ }^{\prime}$ ' ट
Infant	a very young child or baby	शि

IBPS PO SPECIAL PHASE - I - 351 (ANSWER KEY)

1. (3)
2. (4)
3. (2)
4. (3)
5. (4)
6. (1)
7. (5)
8. (5)
9. (1)
10. (4)
11. (3)
12. (4)
13. (2)
14. (5)
15. (2)
16. (4)
17. (1)
18. (2)
19. (3)
20. (4)
21. (4)
22. (3)
23. (3)
24. (4)
25. (1)
26. (5)
27. (5)
28. (5)
29. (2)
30. (1)
31. (3)
32. (2)
33. (5)
34. (1)
35. (5)
36. (2)
37. (5)
38. (4)
39. (4)
40. (3)
41. (4)
42. (4)
43. (5)
44. (1)
45. (2)
46. (3)
47. (1)
48. (1)
49. (3)
50. (5)
51. (5)
52. (1)
53. (5)
54. (1)
55. (3)
56. (3)
57. (5)
58. (4)
59. (1)
60. (2)
61. (2)
62. (1)
63. (3)
64. (1)
65. (2)
66. (4)
67. (2)
68. (5)
69. (3)
70. (3)
71. (3)
72. (1)
73. (1)
74. (1)
75. (2)
76. (1)
77. (4)
78. (1)
79. (1)
80. (5)
81. (1)
82. (4)
83. (1)
84. (5)
85. (3)
86. (4)
87. (3)
88. (5)
89. (5)
90. (1)
91. (5)
92. (2)
93. (1)
94. (3)
95. (4)
96. (1)
97. (2)
98. (4)
99. (5)
100.(1)
