Campus

KD Campus

IBPS PO SPECIAL PHASE - I - 345 (SOLUTION)

REASONING
(1-5) :

Friends	Day	Show
P	Tuesday	Monolog ue
Q	Thursday	Play
R	Saturday	Debate
S	Monday	Speech
T	Sunday	Music
U	Wednesday	Dance
V	Friday	Mimicry

1. (2)
2. (4)
3. (1)
4. (5)
5. (4)
(6-10) :

6. (2)
(2) 7. (1)
7. (1)
8. (5)
9. (4)
(11-15) :

10. (1)
11. (5)
12. (3)
13. (4)
14. (4)
(16-20) :
15. (3)

I. Doubt
III. Doubt
II. Doubt
IV. Doubt

Only either II or IV follows.

Campus

KD Campus

17. (2)

I. True
III. Doubt
II. Doubt
IV. Doubt

Only I follows.
18. (4)

I. Doubt
III. Doubt
II. Doubt
IV. Doubt

Only either I or III follows.
19. (1)

I. True
III. Doubt
II. True
IV. Doubt

Only I, II and either III or IV follow.
20. (1)

I. Doubt
III. Doubt
II. Doubt
IV. Doubt

None follows.
(21-23) :

21. (2)
22. (4)
23. (3)
(24-28) :

24. (4)
25. (2)
26. (1)
27. (4)
28. (3)

Campus

KD Campus

(29-33) :
@ $\rightarrow \geq \quad \# \rightarrow>\quad$ > $\rightarrow=\quad * \rightarrow<$
29. (1) $\mathrm{T}>\mathrm{V}>\mathrm{M}=\mathrm{F}$
I. $\mathrm{T}>\mathrm{M} \rightarrow$ True
II. $\mathrm{T} \geq \mathrm{F} \rightarrow$ False

Only conclusion I is true.
30. (5) $R=L \leq M<F$
I. $\mathrm{F}>\mathrm{R} \rightarrow$ True
II. $\mathrm{R}<\mathrm{N} \rightarrow$ True

Both conclusions I and II are true.
31. (1) $\mathrm{H}>\mathrm{I} \geq \mathrm{J} \leq \mathrm{P}$
I. $\mathrm{H}>\mathrm{J} \rightarrow$ True \quad II. $\mathrm{H}>\mathrm{P} \rightarrow$ False

Only conclusion I is true.
32. (4) $\mathrm{L}<\mathrm{D}>\mathrm{K} \leq \mathrm{J}$
I. L $>\mathrm{K} \rightarrow$ False \quad II. $\mathrm{L} \leq \mathrm{K} \rightarrow$ False

Neither conclusion I nor II is true.
33. (4) $\mathrm{Q}<\mathrm{W}=\mathrm{E} \geq \mathrm{K}$
I. $\mathrm{Q} \leq \mathrm{K} \rightarrow$ False
II. W $\geq \mathrm{K} \rightarrow$ False

Neither conclusion I nor II is true.
34. (5)
35. (3)

$\mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}$
$=\sqrt{35^{2}+12^{2}}=\sqrt{1225+144}$
$=\sqrt{1369}=37 \mathrm{~m}$
\therefore Required distance $=37-20=17 \mathrm{~m}$

MATHS

36. (3) $(\text { ? })^{2}=63.9872 \times 9449.8780 \div 243.0034$

Taking approximate integral values,
(?) $=64 \times 9450 \div 240$
$\approx \frac{64 \times 9450}{240}=2520 \approx 2500$
$\therefore \quad ?=\sqrt{2500}=50$
37. (4) $?=5237.897-6629.010+7153.999-2205.102$
$\approx 5238-6629+7154-2205$
$=(5238+7154)-(6629+2205)$
$\approx 12392-8834=3558$

Campus

KD Campus

38. (2) $?=4985.0346 \div 215.987-3768.112 \div 206.868$
$\approx 4985 \div 216-3768 \div 207$
$=23.078-18.202$
$=4.876 \approx 5$
39. (1) ? $\sqrt{956240} \approx 977.8 \approx 979$
40. (5) $?=459 \%$ of $849.947+266 \%$ of $6284.012-1486.002$
$\approx \frac{460 \times 850}{100}+\frac{260 \times 6280}{100}-1486$
$=3910+16328-1486=18752$
41. (3) No. of employess who are managers in company $B=\frac{1800}{6} \times 11=3300$
$\therefore \quad$ No of male employees who are supervisor for company $B==\frac{3300}{20} \times 80 \times \frac{7}{10}=9240$
42. (1) Number of female employees who are manager for company $D=2000 \times \frac{35}{100} \times \frac{3}{7}=300$
43. (3) No. of employees who are supervisor in company $E=\frac{2100}{7} \times 15=4500$
\therefore Total employees of company $E=\frac{4500}{40} \times 100=11250$
44. (2) No. of emplyees who are manager in company $C=\frac{1500}{3} \times 10=5000$

Total employees in company $C=\frac{5000}{25} \times 100=2000$
No. of employees who are manager in company $A=\frac{1800}{2} \times 5=4500$

Total employees $=\frac{4500}{25} \times 100=18000$
\therefore Required ratio $=20000: 18000=10: 9$
45. (4) Total of employees in company $A=\frac{2500}{25} \times 100=10000$

No. of male employees in company D who are supervisor $=10000 \times \frac{75}{100} \times \frac{6}{10}=4500$
46. (4) The pattern is :
$8+6=14$
$14+18(=6+12)=32$
$32+38(=18+20)=70$
$70+66(=38+28)=136$
$136+102(=66+36)=\mathbf{2 3 8}$

Campus

KD Campus

47. (1) The pattern is:
$25+1 \times 16=41$
$41+3 \times 16=41+48=89$
$89+5 \times 16=89+80=169$
$169+7 \times 16=169+112=281$
$281+9 \times 16=281+144=425$
48. (2) The pattern is:
$461+13=474$
$474-9=465$
$465+13=478$
$478-9=469$
$469+13=482$
49. (5) The pattern is :
$(980 \div 2)+26=516$
$(516 \div 2)+26=284$
$(284 \div 2)+26=168$
$(168 \div 2)+26=110$
$(110 \div 2)+26=81$
50. (5) The pattern is :
$4+0=4$
$4+6=10$
$10+24(=6+18)=34$
$34+60(=6+54)=94$
$94+168(=6+162)=262$
51. (3) According to question, work done by A in 4 days $=\frac{4}{8}=\frac{1}{2}$

Net work done by $(A+B)$ in 1 day $=\left(\frac{1}{8}-\frac{1}{3}\right)=\frac{-5}{24}$

Work done by $(\mathrm{A}+\mathrm{B})$ in 2 days $=\frac{-5}{24} \times 2=\frac{-5}{12}$
Work done in 6 days $=\frac{1}{2}+\left(-\frac{5}{12}\right)=\frac{1}{12}$
\therefore Remaining $\frac{11}{12}$ of the wall is built by A in $\frac{8 \times 11}{12}=\frac{88}{12}=\frac{22}{3}=7 \frac{1}{3}$ days
52. (1) If the length of train-B be x metre, then

Speed of train $=\frac{240+x}{50}=\frac{240}{20}$
$\frac{240+x}{50}=12$
$240+x=600$
$x=360$ metre

Campus

KD Campus

53. (1) $\mathrm{S} . \mathrm{I}=\frac{\text { Principal } \times \text { Time } \times \text { Rate }}{100}=\frac{11200 \times 3 \times 8.5}{100}=₹ 2856$
\therefore Required amount $=₹(11200+2856)=₹ 14056$
54. (1) Numbers $=2 x$ and $3 x$
$\frac{2 x+4}{3 x+4}=\frac{5}{7}$
$15 x+20=14 x+28$
$x=28-20=8=$ Difference between numbers.
55. (3) According to question purchasing capacity $=₹ 160$

A reduction of 20% means, now a person gets $\frac{5}{2} \mathrm{~kg}$ for Rs 32 and this is the present price of that commodity.

Present price per $\mathrm{kg}=\frac{32}{5} \times 2=₹ 12.8$
Let the originai price be Rs x, then new price is arrived after reduction 20% of it.
$\therefore \quad x \times 0.8=12.8 \Rightarrow x=\operatorname{Rs~} 16$
56. (3) Required no. of students passed the examination $=360 \times \frac{90}{100} \times \frac{75}{100}=243$
57. (4) Total no. of students from all the colleges in the year 2012
$480+350+380+500+540=2250$
\therefore Required no. of student who enrolled for computer course $=2250 \times \frac{40}{100}=900$
58. (3) Average no. of students enrolled with colleges in the year $2014=\frac{460+360+430+470+480}{5}$ $=\frac{2200}{5}=440$
Average no. of students enrolled with colleges in the year $2015=\frac{470+340+390+530+530}{5}$ $=\frac{2260}{5}=452$
\therefore Required ratio $=440: 452=110: 113$
59. (1) Average no. of student enrolled from college M for all the years together
$=\frac{320+350+300+360+340}{5}=\frac{1670}{5}=334$
Average no. of students enrolled from colloage N for all the years together
$=\frac{400+380+410+430+390}{5}=\frac{2010}{5}=402$
$\therefore \quad$ Required $\%=\left(\frac{334}{402} \times 100\right) \%=83.08 \% \approx 83 \%$
60. (2) Total no. of students who enrolled in $2013=420+300+410+520+460=2110$
$\therefore \quad$ No of student went abroad $=2110 \times \frac{10}{100}=211$

Campus

KD Campus

61. (2) $n(S)=$ Number of ways of selecting 3 marbles out of marbles $={ }^{7} C_{3}=\frac{7 \times 6 \times 5}{1 \times 2 \times 3}=35$
$n(\mathrm{E})=$ Number of ways selecting 2 green marbles and 1 red marble $={ }^{4} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{1}=\frac{4 \times 3}{1 \times 2}=18$
\therefore Required probability $=\frac{n(E)}{n(S)}=\frac{18}{35}$
62. (3) Each man gives the votes for any of the four candidates.

Total number of ways $=4 \times 4 \times 4 \times 4 \times 4=10247$
(1) Firstly we fix the alternate position of men in a round table is $(6-1)$! ways $=5$!

In out of six position 5 women can be seated in ${ }^{5} \mathrm{P}_{\mathrm{K}}=6$!
Required no. of ways $=6!.5!5$.
(4) According to question, Total number of seats
$=1$ grandfather +5 sons and daughters +8 grandchildren $=14$ The grandchildren can occupy the 4 seats on either side of the table in $8 \mathrm{P}_{4} \times 4!=8!$
The grandfather can occupy a seat in 4 ways (ie, $\mathrm{S}_{6}, \mathrm{~S}_{7}, \mathrm{~S}_{8} \mathrm{~S}_{9}$)
And, the remaining seats can be occupied in $5!=5 \times 4 \times 3 \times 2=120$ ways
(5 seat for sons and daughters)
Hence, the total number of required ways
$=8!\times 480=19353600$
63. (5) Let the original fraction be $\frac{x}{y}$

According to the question,
$\frac{x \times 500}{y \times 600}=\frac{20}{27}$
$\frac{x}{y}=\frac{20}{27} \times \frac{6}{5}=\frac{8}{9}$
64. (5) Ratio of the earned profit = Ratio of the equivalent capitals of Tanvi and Anisha
$=45000 \times 12: 52000 \times 4=45 \times 3: 52=135: 52$
Sum of ratios $=135+52=187$
$\therefore \quad$ Anisha's share $=₹\left(\frac{52}{187} \times 56165\right)=₹ 15618.074$
65. (1) Let the value of second rate of interest be $x \%$ and equal amounts be P each.
$\mathrm{P} \times\left(1+\frac{5}{100}\right)^{6}=\mathrm{P} \times\left(1+\frac{x}{100}\right)^{3}$
$\left(1+\frac{5}{100}\right)^{2}=\left(1+\frac{x}{100}\right)$
$\frac{105 \times 105}{100 \times 100}=\frac{100+x}{100}$
$110.25=100+x$
$x=10.25 \%$
$x=10 \frac{25}{100}=10 \frac{1}{4} \%$

Campus

KD Campus

66. (5) I. $2 x^{2}-7 x+6=0$
$2 x^{2}-4 x-3 x+6=0$
$2 x(x-2)-3(x-2)=0$
$(x-2)(2 x-3)=0$
$x=2$ or $x=\frac{3}{2}$
II. $4 y^{2}=9$
$y^{2}=\frac{9}{4}$
$y= \pm \frac{3}{2}$
Obviously, $y \leq x$
67. (5) I. $4 x^{2}-4 x-3=0$
$4 x^{2}-6 x+2 x-3=0$
$2 x(2 x-3)+1(2 x-3)=0$
$(2 x-3)(2 x+1)=0$
$x=\frac{3}{2}$ or, $x=-\frac{1}{2}$
II. $4 y^{2}+12 y+5=0$
$4 y^{2}+10 y+2 y+5=0$
$2 y(2 y+5)+1(2 y+5)=0$
$(2 y+5)(2 y+1)=0$
$y=-\frac{5}{2}$ or, $y=-\frac{1}{2}$
Obviously, $x \geq y$
68. (1) I. $4 x^{2}=49$
$x^{2}=\frac{49}{4}$
$x= \pm \frac{7}{2}$
II. $9 y^{2}-66 y+121$
$9 y^{2}-33 y-33 y+121=0$
$3 y(3 y-11)-11(3 y-11)=0$
$(3 y-11)(3 y-11)=0$
$y=\frac{11}{3}$
Obviously, $x<y$
69. (2) I. $x^{2}+9 x+14=0$
$x^{2}+2 x+7 x+14=0$
$x(x+2)+7(x+2)=0$
$(x+2)(x+7)=0$
$x=-2$ or, $x=-7$

Campus

II. $y^{2}+y-2=0$
$y^{2}+2 y-y-2=0$
$y(y+2)-1(y+2)=0$
$(y-1)(y+2)=0$
$y=1$ or, $y=-2$
Clearly, $y \geq x$
70. (1) I. $9 x^{2}-18 x+5=0$
$9 x^{2}-15 x-3 x+5=0$
$3 x(3 x-5)-1(3 x-5)=0$
$(3 x-5)(3 x-1)=0$
$x=\frac{5}{3}$ or, $x=\frac{1}{3}$
II. $2 y^{2}-9 y+10=0$
$2 y^{2}-5 y-4 y+10=0$
$y(2 y-5)-2(2 y-5)=0$
$(2 y-5)(y-2)=0$
$y=\frac{5}{2}$ or $y=2$
Clearly, $y>x$

ENGLISH LANGUAGE

91. (2) Add 'that' before 'the work'.
92. (4) Change 'indicates' into 'indicate'.
93. (3) Change 'to be' into 'being'.
94. (3) Remove 'the' before 'earth'.
95. (1) Change 'life' into 'lives'.
96. (1) Change 'have' into 'has'.
97. (2) Change 'linkage to into' 'linked to'.
98. (1) Change 'easy through' into 'eased through'.
99. (5) No error.
100. (1) Remove 'the' before 'Anglo - saxon'.

\qquad VOCABULARIES		
Words	Meaning in English	Meaning in Hindi
Burgeoning	increase rapidly	ते जे से बढ़ ता हु आ
Substantial	of considerable importance, size, or worth	प्य ${ }^{\text {c }}$
Prosperity	the state of being prosperous	समृ fिद्ध, स ¢ नता
Attractions	power of evoking interest	आ कठ ${ }^{\circ}$ प
Fever Pitch	a state of extreme excitement	उ $\overline{<}$ ते जाt की चरम से मा
Sanitation	conditions relating to public health	₹ वचछ ता
Rendered	provide or give	दे ना
Lymph tissues	a colorless fluid containing white blood cells	लसे का उ亏 तक
Aggression	hostile or violent behavior	आ क्रमक्ता
Derive (from)	obtain something from	उ ¢ ¢ न हा' ना

Campus

KD Campus

IBPS PO SPECIAL PHASE - I - 345 (ANSWER KEY)

1. (2)
2. (4)
3. (1)
4. (5)
5. (4)
6. (2)
7. (1)
8. (1)
9. (5)
10. (4)
11. (1)
12. (5)
13. (3)
14. (4)
15. (4)
16. (3)
17. (2)
18. (4)
19. (1)
20. (1)
21. (2)
22. (4)
23. (3)
24. (4)
25. (2)
26. (1)
27. (4)
28. (3)
29. (1)
30. (5)
31. (1)
32. (4)
33. (4)
34. (5)
35. (3)
36. (3)
37. (4)
38. (2)
39. (1)
40. (5)
41. (3)
42. (1)
43. (3)
44. (2)
45. (4)
46. (4)
47. (1)
48. (2)
49. (5)
50. (5)
51. (3)
52. (1)
53. (1)
54. (1)
55. (3)
56. (3)
57. (4)
58. (3)
59. (1)
60. (2)
61. (2)
62. (3)
63. (5)
64. (5)
65. (1)
66. (5)
67. (5)
68. (1)
69. (2)
70. (1)
71. (4)
72. (4)
73. (1)
74. (5)
75. (1)
76. (4)
77. (2)
78. (2)
79. (4)
80. (3)
81. (4)
82. (1)
83. (1)
84. (2)
85. (3)
86. (2)
87. (3)
88. (1)
89. (2)
90. (3)
91. (2)
92. (4)
93. (4)
94. (3)
95. (1)
96. (1)
97. (2)
98. (1)
99. (5)
100. (1)
