1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

## SSC MOCK TEST - 348 (SOLUTION)

1. (C) As, $8 \times 3=24 \Rightarrow \frac{24}{2}=12$

Similarly, $9 \times 2=18 \Rightarrow \frac{18}{2}=9$
2. (C) The body is fish remains covered with scales externally. Similarly the body of bear remains covered with fur.
3. (D) Kiwi is the only flightless bird in the group.
4. (D) (A) $125=5^{3}$
(B) $27=3^{3}$
(C) $64=4^{3}$
(D) $121=11^{2}$
5. (C) As,


And,


Similarly,

6. (B)

7. (B)

8. (B)


Therefore, required number of students between Ramesh and Suresh $=33-(13+6)=14$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (D) As, $13 \Rightarrow(1+3)^{3}=64$
$64 \Rightarrow(6+4)^{3}=1000$
Similarly, $15 \Rightarrow(1+5)^{3}=216$
$216 \Rightarrow(2+1+6)^{3}=729$
10. (A) abcaab/caabbbc/aabbca
11. (B)

12. (D)
13. (B) $175 \times 25 \div 5+625-32=-20$

After changing 5 and 625,
$175 \times 25 \div 625+5-32=-2$
$\frac{175 \times 25}{625}+5-32=-20$
$12-32=-20$
$-20=-20$
14. (D)


Thus, Radhika is vikram's sister.
15. (D) 5. Apartment $\rightarrow$ 1. Apple $\rightarrow$ 4. Application $\rightarrow$ 3. Apply $\rightarrow 2$. Appreciate
16. (A)


Hence, he is facing East direction now.
17. (A)

I. False
II. True
III. False

Hence, only conclusions II follows.
18. (B) 19. (B)
20. (D) As, $641-125=516 \Rightarrow \frac{516}{2}=258$

Similarly, $512-120=392 \Rightarrow \frac{392}{2}=196$
21. (B) As,

| H | O | S | P | I | T | A | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ |
| 3 | 2 | 5 | 7 | 4 | 6 | 1 | 8 |


22. (D)
23. (C)
24. (B)
25. (B)
26. (C) Transactions made via UPI (Unified Payments Interface), USSD, AEPS (Aadhaar Enabled Payment System) and RuPay cards will be eligible for participation nder this scheme.
27. (C) The compound zinc oxide ( ZnO ) is called philosopher's wool. Alchemists, as part of their rituals, would burn zinc in air and collect the residue, which formed into white woolly tufts. They called it lana philosophica in Latin, meaning philosopher's wool.
28. (D) Corynebacteria are characterized by their diverse origins. They are found in numerous ecological niches and are most often used in industry for the mass production of amino acids and nutritional factors.
29. (A) X-ray computed tomography (CT) is a medical imaging method employing tomography created by computer processing. This technique is used to generate a three-dimensional image of the inside of an object.
31. (A) The Archaeological Survey of India is an attached office of the Ministry of Culture. Under the provisions of the AMASR Act of 1958, the ASI administers more than 3650 ancient monuments, archaeological sites and remains of national importance.
32. (B) Active transport is the movement of molecules across a cell membrane from a lower concentration to a region of higher concentration against the concentration gradient.
33. (C) IRNSS is an indigenously developed Navigational Satellite system. IRNSS is an acronym for The Indian Regional Navigation Satellite System (IRNSS). IRNSS is officially called NAVIC (Navigation with Indian Constellation). Operated by ISRO (Indian Space Research Organisation).
34. (A) The Nagaland Police recently launched 'Call your Cop' mobile App, which will enable all citizens of the state and those in distress to get in touch with the police, in a single click.
35. (A) A solar eclipse happens when the moon positioned between Earth and the sun, and the moon casts a shadow over Earth.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
36. (D) The National Human Rights Commission (NHRC) of India is a Statutory public body constituted on 12 October 1993. The chairman of NHRC can be a retired Chief Justice of India.
37. (C) Hyder Ali is an Indian Ruler who defeated the British in their early stage of the rule in India. Hyder Ali was the Sultan of the Mysore kingdom in south India. He is well known as the father of the famous ruler Tipu Sultan. He was in command of the entire Mysorean army by 1759 .
38. (D) The BioCarbon Fund Initiative for Sustainable Forest Landscapes (ISFL) is a multilateral fund, supported by donor governments and managed by the World Bank.
40. (D) Nitroglycerine is a liquid chemical substance used for making Dynamite by mixing highly sensitive Nitroglycerine with sawdust \& powered Silica.
41. (B) Bajirao was appointed as Peshwa at the age of 20 years under the reign of Chhatrapati Shahu. Chhatrapati Shahu (Shahu Bhosale I) was the fifth Chhatrapati of the Maratha Empire. He was the grandson of Chatrapati Shivaji Maharaj.
42. (A) He is appointed by the President of India. ... The Attorney General of India is the highest law officer of the country. He is responsible to assist the government in all its legal matters.
43. (D) Black soil is most suited for the cultivation of cotton. Black soil is a volcanic origin. Black soil is also called as cotton soil.
45. (B) Fundamental rights in India are the rights guaranteed under Part III (Articles 12-35) of the Constitution of India.
46. (B) The Indian National Congress, on 19 December 1929, passed the historic 'Purna Swaraj' (total independence) resolution - at its Lahore session. A public declaration was made on 26 January 1930 - a day which the Congress Party urged Indians to celebrate as 'Independence Day'.
47. (B) In telecommunications and signal processing frequency modulation FM conveys information over a carrier wave by varying its instantaneous frequency. FM is most commonly used for radio and television broadcasting.
49. (B) Born on 25 th August 1981 in Manali, Shiva Keshavan is the first Indian Luger who has the honour of being the youngest luge Olympian in the history of the sport. Shiva has set various records in the Asian Championship.
50. (C) India's 1st Certified Organic Fruit - Arunachal Pradesh Kiwis have been launched by the Union Minister Kiren Rijiju.
51. (A) $\mathrm{x}=\sqrt{y+37437 \times 37439}$
$\mathrm{x}=\sqrt{y+(37437-1) \times(37439+1)}$
$x=\sqrt{y+37437^{2}-1^{2}}$
For $\mathrm{y}=1$, the value of x is possible to find.
As, $x=\sqrt{1^{2}+37438^{2}-1^{2}}=\sqrt{37438^{2}}=37438$
52. (B) $x^{2}=2 x-1$
$\therefore \quad \mathrm{x}^{2}\left(\mathrm{x}^{2}-2\right)=(2 \mathrm{x}-1)(2 \mathrm{x}-1+2)$
$=(2 \mathrm{x}-1)(2 \mathrm{x}+1)=\left(2 \mathrm{x}^{2}\right)^{2}-1=4 \mathrm{x}^{2}-1$
53. (C)

| 3 more than multiple of 5 | 53 | 58 | 63 | $\mathbf{6 8}$ | 73 | 78 | 83 | 88 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 more than multiple of 6 | 56 | 62 | $\mathbf{6 8}$ | 74 | 80 | 86 |  |  |

$\therefore \quad$ Required number of questions $=68$

## $K D$ <br> Campus <br> K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (C)


$$
\begin{align*}
& \mathrm{AP}=\mathrm{AS}  \tag{i}\\
& \mathrm{BP}=\mathrm{QB}  \tag{ii}\\
& \mathrm{DR}=\mathrm{DS}  \tag{iii}\\
& \mathrm{CR}=\mathrm{CQ} \tag{iv}
\end{align*}
$$

(Length of two tangents drawn from an external point of a circle are equal)
Adding equations (i), (ii), (iii) and (iv),
$\mathrm{AP}+\mathrm{BP}+\mathrm{DR}+\mathrm{CR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{DS}+\mathrm{CQ}$
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{DR}+\mathrm{CR})=(\mathrm{BQ}+\mathrm{CQ})+(\mathrm{DS}+\mathrm{AS})$
$\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{AD}$
$9+7=12+\mathrm{AD}$
$\mathrm{AD}=16-12=4 \mathrm{~cm}$
55. (A) ₹ 100 invested in CI becomes 200 in 5 years

Amount gets doubled again in 5 years
It means new amount $=₹ 400$ in another 5 years
So, we can say that in another 5 years ₹ 200 interest will be earned.
56. (A) Relative speed of train and $\operatorname{man}=\frac{270}{9}=30 \mathrm{~m} / \mathrm{s}=30 \times \frac{18}{5}=108 \mathrm{~km} / \mathrm{hr}$ Speed of train $=108+9=117 \mathrm{~km} / \mathrm{hr}$
$\therefore$ Required time to cross a platform $=\frac{270+380}{117 \times \frac{5}{18}}=\frac{650}{32.5}$ seconds $=20$ seconds
57. (D) $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=3$
$\sin \theta+\cos \theta=3 \sin \theta-3 \cos \theta$
$4 \cos \theta=2 \sin \theta$
$\frac{\sin \theta}{\cos \theta}=\frac{4}{2}=2$
$\therefore \sin ^{4} \theta-\cos ^{4} \theta=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)$
$=\sin ^{2} \theta-\cos ^{2} \theta=\cos ^{2} \theta\left(\tan ^{2} \theta-1\right)$
$=\frac{\tan ^{2} \theta-1}{1+\tan ^{2} \theta}=\frac{4-1}{1+4}=\frac{3}{5}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
58. (C)


$$
\angle \mathrm{BAC}=90^{\circ}, \angle \mathrm{ADC}=90^{\circ}
$$

$\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$

$$
\mathrm{AB}=\sqrt{8^{2}-6^{2}}=2 \sqrt{7} \mathrm{~cm}
$$

Now,

$$
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}
$$

$8 \times \mathrm{AD}=2 \sqrt{7} \times 6$
$\mathrm{AD}=\frac{3 \sqrt{7}}{2} \mathrm{~cm}$

Now,

$$
\mathrm{CD}=\sqrt{6^{2}-\left(\frac{3 \sqrt{7}}{2}\right)^{2}}=\sqrt{36-\frac{63}{4}}
$$

$$
=\sqrt{\frac{144-63}{4}}=\sqrt{\frac{81}{4}}=\frac{9}{2} \mathrm{~cm}
$$

$\therefore \frac{\operatorname{Ar} \cdot(\triangle \mathrm{ABC})}{\operatorname{Ar} \cdot(\triangle \mathrm{ACD})}=\frac{\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}}{\frac{1}{2} \times \mathrm{CD} \times \mathrm{AD}}$
$=\frac{2 \sqrt{7} \times 6}{\frac{9}{2} \times \frac{3 \sqrt{7}}{2}}=\frac{2 \sqrt{7} \times 6 \times 4}{9 \times 3 \times \sqrt{7}}=16: 9$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
59. (B)


OD is radius of smaller circle and BD is the tangent to the smaller circle.
So,
$\mathrm{OD} \perp \mathrm{BD}$
$\angle \mathrm{ODB}=90^{\circ}$
In the bigger circle, $P$ is a point in the semi circle of the bigger circle.
Now, $\angle \mathrm{APB}=90^{\circ}$
In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{OBD}$,
$\angle \mathrm{APB}=\angle \mathrm{ODB}=90^{\circ}$
$\angle \mathrm{ABP}=\angle \mathrm{OBD} \quad$ (Common)
$\triangle \mathrm{ABP} \sim \triangle \mathrm{OBD} \quad$ (By AA similarity)
Now,
$\frac{\mathrm{AP}}{\mathrm{OD}}=\frac{\mathrm{AB}}{\mathrm{OB}}$
$\frac{\mathrm{AP}}{8}=\frac{30}{15}$
$\mathrm{AP}=8 \times 2=16 \mathrm{~cm}$
60. (B) Required average $=\left(\frac{50.25 \times 16+45.15 \times 8}{16+8}\right)$
$=\left(\frac{804+361.20}{24}\right)=\frac{1165.20}{24}=48.55$
61. (A) We have, $\mathrm{AB}=5 \sqrt{3}$
$\mathrm{AL}=\mathrm{BL}=\frac{5 \sqrt{3}}{2}$
Let $\angle \mathrm{AOB}=20$
Then, $\angle \mathrm{AOL}=\angle \mathrm{BOL}=\theta$
In $\triangle$ OLA, We have
$\sin \theta=\frac{\mathrm{AL}}{\mathrm{OA}}=\frac{\frac{5 \sqrt{3}}{2}}{5}=\frac{\sqrt{3}}{2}$
$\theta=60^{\circ}$
$\angle \mathrm{AOB}=120^{\circ}$
Area of sector $\mathrm{AOB}=\frac{190}{360} \times \pi \times 5^{2} \mathrm{~cm}^{2}=\frac{25 \pi}{3} \mathrm{~cm}^{2}$

## $K D$ <br> Campus <br> K D Campus Pvt．Ltd

1997，GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION，OUTRAM LINES，GTB NAGAR，NEW DELHI－ 09
62．（A）Let the number of boys be $5 x$ and number of girls be $4 x$ ．
ATQ，
$5 x+4 x=45$
$9 x=45$
$x=\frac{45}{9}=5$
Number of boys $=5 \times 5=25$
Number of girls $=5 \times 4=20$
Let the average score of girls be $y$ ．
So，average score of boys $=\mathrm{y} \times \frac{120}{100}=1.2 \mathrm{y}$
ATQ，
$20 x y+25 \times 1.2 y=3600$
$20 y+30 y=3600$
$50 y=3600$
$y=\frac{3600}{50}=72$
$\therefore \quad$ Average score of boys $=72 \times 1.2=86.4$

63．（A）


S

In right $\triangle \mathrm{ABC}$ ，
$\tan 60^{\circ}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\sqrt{3}=\frac{40 \sqrt{3}}{\mathrm{AB}}$
$A B=40$
In right $\triangle A D E$ ，
$\tan 45^{\circ}=\frac{\mathrm{DE}}{\mathrm{AD}}$
$1=\frac{40 \sqrt{3}}{\mathrm{AD}}$
$\therefore \mathrm{AD}=40 \sqrt{3} \mathrm{~m}$

Distance travelled by bird $=A B+A D=40(1+\sqrt{3})=109.2 \mathrm{~m}$
Now, Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{109.2}{120} \mathrm{~m} / \mathrm{s}=3.276 \mathrm{~km} / \mathrm{hr}$
64. (B) Time $=\frac{\text { Distance }}{\text { Speed }}$

Total distance $=61 \mathrm{~km}$
Let the distance travelled on foot $=\mathrm{d} \mathrm{km}$
Distance travelled on bicycle $=(61-\mathrm{d}) \mathrm{km}$
Given, speed on foot $=4 \mathrm{~km} / \mathrm{hr}$
Time taken to travel on foot $=\left(\frac{d}{4}\right) \mathrm{hr}$
Speed on cycle $=9 \mathrm{~km} / \mathrm{hr}$
Time taken to travel on cycle $=\frac{(61-d)}{9}$
Total time taken $=\frac{d}{4}+\frac{61-d}{9}$
Given, Total time $=9$ hours
$\therefore \frac{\mathrm{d}}{4}+\frac{61-\mathrm{d}}{9}=9$
$9 \mathrm{~d}+244-4 \mathrm{~d}=324$
$5 \mathrm{~d}=80$
$\mathrm{d}=16 \mathrm{~km} / \mathrm{hr}$
65. (C) Let ages of A and B be $x$ and $y$ respectively.

Therefore,
$x-y=3$
Age of $\mathrm{D}=2 \times$ age of $\mathrm{A}=2 x$
Age of $\mathrm{C}=\frac{1}{2}$ age of $\mathrm{B}=\frac{1}{2} y$

So, $2 x-\frac{y}{2}=30$
$4 x-y=60$
Subtracting equation (ii) from equation (i), we get
$-3 x=-57$
$x=19$
$y=16$
So, age of $\mathrm{A}=19$ years and age of $\mathrm{B}=16$ years
66. (B) Relative speed of man and woman is $(4+5)=9$ miles $/ \mathrm{h}$

Hence, time required to cover 81 miles $=\frac{81}{9}=9$ hours
In 9 hours, the women will travel $9 \times 4=36$ miles
67. (C) Let the cost price of an article be ₹ 100.

Selling price of an article $=100 \times \frac{140}{100}=₹ 140$
New cost price of an article $=100 \times \frac{60}{100}=₹ 60$
New selling price of an article $=60 \times \frac{140}{100}=₹ 84$
ATQ,
(140-84) $\rightarrow 750.40$
$100 \rightarrow \frac{750.40}{56} \times 100=₹ 1340$
$\therefore \quad$ Cost price of an article $=₹ 1340$
68. (B) $\mathrm{P}=₹ 12,500$
$\mathrm{T}=\frac{11}{2}$ years $\quad$ (Compounded half yearly)
$\mathrm{T}=11$ years
$\mathrm{A}=13,000$
$\mathrm{SI}=\mathrm{A}-\mathrm{P}=13,000-12,500$
SI $=500$
$S I=\frac{P R T}{100}$
$500=\frac{12500 \times \mathrm{R} \times 11}{100}$
$\mathrm{R}=\frac{500 \times 1}{125 \times 11}=\frac{4}{11}$
For first half year
$\mathrm{R}=\frac{2 \times 4}{11}=\frac{8}{11} \%$
69. (D)

$B(8,12)$

$$
\begin{aligned}
& a=B C=\sqrt{0^{2}+(12-0)^{2}}=12 \\
& b=A C=\sqrt{(0-8)^{2}+(6-0)^{2}}=10
\end{aligned}
$$

$$
\mathrm{c}=\mathrm{AB}=\sqrt{8^{2}+6^{2}}=10
$$

$\therefore$ Incentre of triangle $A B C=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$

$$
\begin{aligned}
& =\left(\frac{12 \times 0+10 \times 8+10 \times 8}{12+10+10}, \frac{12 \times 6+10 \times 12+10 \times 0}{12+10+10}\right) \\
& =\left(\frac{160}{32}, \frac{192}{32}\right)=(5,6)
\end{aligned}
$$

70. (D)


Height of kite from ground $=\mathrm{AB}=75 \mathrm{~m}$
$\angle A C B=\theta$
We know that,
$\cot \theta=\frac{8}{15}$
$\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{8}{15}$
$\mathrm{BC}=\frac{8 \times 75}{15}=40 \mathrm{~m}$
Now, length of string $A C=\sqrt{(A B)^{2}+(B C)^{2}}$
$\mathrm{AC}=\sqrt{75^{2}+40^{2}}=\sqrt{5625+1600}=\sqrt{7225}=85 \mathrm{~m}$
71. (B) Required difference $=\frac{1}{6} \times(14+18+23+21+27+26)-15=21.5-15=₹ 6.5$ thousand
72. (D) Required ratio $=18: 15: 9=6: 5: 3$
73. (B) From graph the required year is 2000
74. (C) Required percentage $=\left(\frac{29}{35} \times 100\right) \% \approx 83 \%$
75. (A) Required percentage increase $=\left(\frac{27-18}{18} \times 100\right) \%=50 \%$

## MEANINGS IN ALPHABETICAL ORDER



## SSC MOCK TEST - 348 (ANSWER KEY)

| 1. (C) | 26. (C) |
| :---: | :---: |
| 2. (C) | 27. (C) |
| 3. (D) | 28. (D) |
| 4. (D) | 29. (A) |
| 5. (C) | 30. (A) |
| 6. (B) | 31. (A) |
| 7. (B) | 32. (B) |
| 8. (B) | 33. (C) |
| 9. (D) | 34. (A) |
| 10. (A) | 35. (A) |
| 11. (B) | 36. (D) |
| 12. (D) | 37. (C) |
| 13. (B) | 38. (D) |
| 14. (D) | 39. (D) |
| 15. (D) | 40. (D) |
| 16. (A) | 41. (B) |
| 17. (A) | 42. (A) |
| 18. (B) | 43. (D) |
| 19. (B) | 44. (C) |
| 20. (D) | 45. (B) |
| 21. (B) | 46. (B) |
| 22. (D) | 47. (B) |
| 23. (C) | 48. (C) |
| 24. (B) | 49. (B) |
| 25. (B) | 50. (C) |

51. (A)
52. (B)
53. (C)
54. (C)
55. (A)
56. (A)
57. (D)
58. (C)
59. (B)
60. (B)
61. (A)
62. (A)
63. (A)
64. (B)
65. (C)
66. (B)
67. (C)
68. (B)
69. (D)
70. (D)
71. (B)
72. (D)
73. (B)
74. (C)
75. (A)
76. (A)
77. (A)
78. (C)
79. (D)
80. (C)
81. (A)
82. (D)
83. (B)
84. (B)
85. (B)
86. (C)
87. (A)
88. (C)
89. (D)
90. (B)
91. (B)
92. (D)
93. (C)
94. (A)
95. (A)
96. (A)
97. (D)
98. (A)
99. (A)
100. (D)
