QUANTITATIVE ABILITY - 90 (SOLUTION)

1. (B) $\left[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots .+\frac{1}{99 \times 100}\right]$
$\therefore \quad \mathrm{T} n=\frac{1}{n(n+1)}=\frac{1}{(n)}-\frac{1}{(n+1)} \quad$ [By partial fraction]
$\mathrm{S} n=\left[1-\frac{1}{2}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]+\ldots .+\left[\frac{1}{99}-\frac{1}{100}\right]$
$\therefore \quad \mathrm{S} n=\left[1-\frac{1}{100}\right]=[$ first term + last term $]=\frac{99}{100}$
2. (A) $1+1+1+1+1+1+1+1+1=9$

Sum of the digits of $11,11,11,111=9$, which is divisible by 3 .
Also, $11,11,11,111$ is not divisible by 11 . [difference of the sum of the digits at odd place and even places is not a multiple of 11]
3. (A) Let the 4 numbers are A, B, C and D.

According to question,
$(A+3)=(B-3)=(C \times 3)=(D \div 3)$
Let $(A+3)=(B-2)=(C \times 3)=(D \div 3)=k($ say $)$
Then, $\mathrm{A}=(k-3), \mathrm{B}=(k+3), \mathrm{C}=\left(\frac{k}{3}\right), \mathrm{D}=3 k$
Also, $A+B+C+D=64$
$\Rightarrow \quad(k-3)+(k+3)+\left(\frac{k}{3}\right)+(3 k)=64$
$\Rightarrow \quad 5 \mathrm{~K}+\frac{\mathrm{K}}{3}=64$
$\Rightarrow \quad 16 k=64 \times 3$
$\Rightarrow \quad k=12$
1 st number $=(k-3)=9=\mathrm{A}$
2 nd number $=(k+3)=15=B$
3rd number $=\left(\frac{k}{3}\right)=4=\mathrm{C}$
4 th number $=3 k=36=\mathrm{D}$
Required difference $=36-4=32$
4. (A) Total age of the 4 members of the family, 10 years ago $=24 \times 4=96$ years

Present age of 4 members $=96+40=136$ years
Total age of the 7 members presently $=22 \times 7=154$ years
Age of [twins + youngest - child] $=154-136=18$ years
Let the age of the one of the twins $=x$ years
$\therefore \quad$ Age of the youngest $=(x-3)$ years
Then,
$2 x+(x-3)=18$
or, $3 x=21$
$\therefore \quad x=7$
$\therefore \quad$ Age of children $=(7,7,4)$ years
5. (B) Average of 10 numbers $=40.2$
$\therefore \quad$ Sum of 10 numbers $=40.2 \times 10=402$
As per Question,
Actual Average $=\frac{402-18+(31-13)}{10}=\frac{402-18+18}{10}=40.2$
6. (D) Let Ram's rowing rate is ' x ' and speed of current is ' y '.

Downstream time taken $=\frac{12}{x+y}$

Upstream time taken $=\frac{12}{x-y}$
According to the question,
$\frac{12}{x-y}-\frac{12}{x+y}=6 \Rightarrow x^{2}-y^{2}=4 y$ \qquad (i)

Now, If speed of boat doubles $\Rightarrow 2 x$
Time is 1 hour less as compared to upstream,
$\frac{12}{2 x-y}-\frac{12}{2 x+y}=1 \Rightarrow 4 x^{2}-y^{2}=24 y$ \qquad (ii)

From (i) and (ii) we get,
$y=\frac{8}{3}=2 \frac{2}{3} \mathrm{mph}$
7. (D) Total CP of $[25 \mathrm{~kg}+35 \mathrm{~kg}]$ rice $=₹(25 \times 16.50+35 \times 24.50)$
$=₹(412.50+857.50)=₹ 1270$
SP at the rate of 25% profit $=₹[1270 \times 1.25]=₹ 1587.5$
$\therefore \quad$ Required rate $=\frac{1587.5}{60} \approx ₹ 26.50$ per kg
8. (A) Initial amount of mixture $=8$ litres

Using by option A , total amount released $=2$ litres
So, After first release oxygen $=1.28-16 \%$ of 2
After second release, oxygen $=9.96-0.24=0.72$ litres (which is 9% of 81)
9. (A) Let Ram and Shyam weights are $=4 x$ and $5 x$ respectively.

Now,
Their previous weight $($ sum $)=\frac{82.8}{115} \times 100=72 \mathrm{~kg}$
According to question,
$\Rightarrow \quad 5 x+4 x=72$
$\therefore \quad x=8$
$\therefore \quad$ Ram's weight $=8 \times 4=32 \mathrm{~kg}$

Shyam's weight $=5 \times 4=40 \mathrm{~kg}$
Their increased weight $=82.8-72=10.8 \mathrm{~kg}$
Ram's weight $=32 \times 10 \%=3.2 \mathrm{~kg}$
Shyam's increased weight $=[10.8-3.2]=7.6 \mathrm{~kg}$
$\therefore \quad \%$ increase $=\frac{7.6}{40} \times 100=19 \%$
10. (A) Let the cost of one saree $=₹ x$ and the cost one shirt $=₹ y$.

According to question,
$20 x+4 y=1600$
$\Rightarrow \quad x+2 y=800$ \qquad
and $x+6 y=1600$ \qquad (i)
on solving equations (i) and (ii), we get
$x=400 ; y=200$
$\therefore \quad$ cost of 12 shirts $=12 \times 200=₹ 2400$
11. (C) According to question,

Sohan $=25000 \times(36$ months $)=₹ 900000$
Aditya $=[15000 \times 30+15000 \times 24]=₹ 810000$
$\therefore \quad$ Profit share of Aditya $=\frac{\text { Sohan }}{\text { Sohan }+ \text { Mohan }} \times 247000$
$=\frac{9}{19} \times 247000=₹ 1,17,000$
12. (A) 25 men and 15 women complete a piece of work in 12 days.
$\therefore \quad$ Work of 8 days $=\frac{1}{12} \times 8=\frac{2}{3}$
Remaining work $=1-\frac{2}{3}=\frac{1}{3}$
Now,
$\frac{1}{3}$ piece of work completed by 25 men in 6 days.
$\therefore \quad 1$ work can be completed by 25 men in 18 days.
Now,
\therefore Total work done by women $=\frac{1}{12}-\frac{1}{18}=\frac{3-12}{36}=\frac{1}{36}=36$ days
13. (D) Let the CP of product $=₹ x$
$\therefore \quad \mathrm{SP}=\frac{80}{100} x$ [after discounted 20%]
Again discount of 6.25%, then new selling price
$\mathrm{SP}=\frac{83.75}{100} \times \frac{80}{100} \times x$
According to question,
$x-\frac{83.75}{100} \times \frac{80}{100} \times x=37.50$
or, $(x-0.75 x)=37.50$
$\therefore \quad x=\frac{37.5}{0.25}=₹ 150$
Selling price $=150-37.50=112.50$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
14. (B) Given that,
$\frac{1}{x+1}+\frac{2}{y+2}+\frac{1009}{z+1009}=1$
Then,
$\frac{x}{(x+1)}+\frac{y}{(y+2)}+\frac{z}{(1009+z)} \ldots$. (A)
Now,
x, y and z are distributed or divided over 1 .
$\therefore \quad x=\frac{1}{3}, y=\frac{1}{3}$ and $z=\frac{1}{3}$
From equation (i) and (ii), we conclude that,
$x=2, y=4$ and $z=2 \times 1009 \quad$ [from equation (i)] Then the arrangement will divide into three parts.
Now, putting the value of following in equation (A),
$\Rightarrow \quad \frac{2}{(2+1)}+\frac{4}{(4+2)}+\frac{2 \times 1009}{2 \times 1009+1009}$
$\Rightarrow \quad \frac{2}{3}+\frac{2}{3}+\frac{2}{3}=2$
15. (B)

Given that,

$\angle \mathrm{AOB}=100^{\circ}$
$\therefore \quad \angle \mathrm{ADB}=50^{\circ}$
$\angle \mathrm{ACB}=50^{\circ}[\therefore$ angle on minor sections $]$
Now,

$$
\angle \mathrm{DAP}=30^{\circ} \text { (Given) }
$$

In $\triangle \mathrm{ADP}$,
$\angle \mathrm{A}+\angle \mathrm{D}+\angle \mathrm{P}=180^{\circ}$
$\therefore \quad \angle \mathrm{P}=180^{\circ}-30^{\circ}-50^{\circ}$
$\angle \mathrm{P}=100^{\circ}$
$\therefore \quad \angle \mathrm{APB}=180^{\circ}-100^{\circ}=80^{\circ}$
16. (B)

Given that,
$\mathrm{AB}=10 \mathrm{~cm}$
$\therefore \quad \mathrm{AO}=[5 \mathrm{~cm}]=$ radius
$\mathrm{AE}=2 \mathrm{~cm}$
$\therefore \quad \mathrm{EO}=3 \mathrm{~cm}$
Construction: Join OD,
In \triangle OED,
$\mathrm{OD}^{2}=\mathrm{OE}^{2}+\mathrm{DE}^{2}$ [Pythagoras theorem]
or, $25-9=\mathrm{ED}^{2}$
$\therefore \quad \mathrm{ED}=4 \mathrm{~cm}$
17. (A)

$\mathrm{AB}=\mathrm{AF}+\mathrm{FB}$
Now,
$\mathrm{AF}=\mathrm{AE}=(b-r)$
$\mathrm{BF}=\mathrm{BD}=(a-r)$
and $\mathrm{AB}=\mathrm{C}$
Substitute the value of following in equation (i)
$\mathrm{C}=(b-r)+(a-r)$
$\therefore \quad r=\frac{a+b-c}{2}$
18. (C) Volume $=\frac{4}{3} \pi\left[R_{1}^{3}+R_{2}^{3}+R_{3}^{3}\right]=\frac{4}{3} \times 3.14[1+8+27]$
$=\frac{4}{3} \times 3.14 \times 36=150.72$
25% Reduced $=\frac{75}{100} \times 150.72=113.04$
According to question,

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=113.04 \\
& R^{3}=27
\end{aligned}
$$

. $\quad R=3$
19. (C)

Area of region gazed $=\frac{\angle A+\angle B+\angle C}{360^{\circ}}\left(\pi R^{2}\right)=\frac{180^{\circ}}{360^{\circ}}\left[\frac{22}{7} \times 7 \times 7\right]=77$ sq. meters
20. (D) Let the Radius of sphere $=\mathrm{Rcm}$

According to question,
$4 \pi(R+2)^{2}-4 \pi R^{2}=704$
or, $4 \pi\left[R^{2}+4+4 R-R^{2}\right]=704$
or, $4 \pi[4 R+4]=704$
or, $16 \times \frac{22}{7}[1+\mathrm{R}]=704$
$\therefore \quad(R+1)=\frac{704 \times 7}{16 \times 22}=14$
$(R+1)=14$
$\mathrm{R}=13 \mathrm{~cm}$
21. (B) Given that,
$\tan \mathrm{A}-\tan \mathrm{B}=x$, and
$\cot \mathrm{A}-\cot \mathrm{B}=y$, then $\cot (\mathrm{A}-\mathrm{B})=$?
$\Rightarrow \quad \cot (\mathrm{A}-\mathrm{B})=\frac{1}{\tan (\mathrm{~A}-\mathrm{B})}=\frac{1+\tan \mathrm{A} \tan \mathrm{B}}{\tan \mathrm{A}-\tan \mathrm{B}}$
$\cot (\mathrm{A}-\mathrm{B})=\frac{1+\tan A \tan B}{x}$
Now,
$\frac{1}{\tan A}+\frac{1}{\tan B}=y$
$\Rightarrow \frac{\tan A-\tan B}{\tan A \cdot \tan B}=y$
$\Rightarrow \quad \frac{-x}{\tan A \cdot \tan B}=\frac{y}{1}$
$\therefore \quad \tan A \cdot \tan B=\frac{-x}{y}$
From (i) and (ii),

$$
\begin{aligned}
& \cot (\mathrm{A}-\mathrm{B})=\frac{1-\frac{x}{y}}{x} \\
& \cot (\mathrm{~A}-\mathrm{B})=\frac{1}{x}-\frac{1}{y}
\end{aligned}
$$

22. (B) $2 \cos \left(\frac{\pi}{13}\right) \cos \left(\frac{9 \pi}{13}\right)+\cos \left(\frac{3 \pi}{13}\right)+\cos \left(\frac{5 \pi}{13}\right)$
or, $2 \cos \left(\frac{\pi}{13}\right) \cos \left(\frac{9 \pi}{13}\right)+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right)+\cos \left(\frac{\frac{5 \pi}{13}-\frac{3 \pi}{13}}{2}\right)$
or, $\quad 2 \cos \left(\frac{\pi}{13}\right) \cos \left(\pi-\frac{4 \pi}{13}\right)+2 \cos \left(\frac{4 \pi}{13}\right) \cos \left(\frac{\pi}{13}\right)$
or, $\quad-2 \cos \left(\frac{\pi}{13}\right) \cos \left(\frac{4 \pi}{13}\right)+2 \cos \left(\frac{4 \pi}{13}\right) \cos \left(\frac{\pi}{13}\right)=0$
23.

(C) $\frac{\cos \theta}{1+\sin \theta}=\frac{\sin \left(\frac{\pi}{2}-\theta\right)}{1+\cos \left(\frac{\pi}{2}-\theta\right)}=\frac{2 \sin \left(\frac{\pi}{2}-\frac{\theta}{2}\right) \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}=\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)$
24. (C) Number of digits required $=[\{(9-1)+1\} \times 1+\{(50-10)+1\} \times 2]$
$=9 \times 1+41 \times 2=9+82=91$
25. (B) Required height at the $1^{\text {st }}$ bounce $=32 \times \frac{3}{4}$

Required height at the $2^{\text {nd }}$ bounce $=32 \times\left(\frac{3}{4}\right)^{2}$

Required height at the $3^{\text {rd }}$ bounce $=32 \times\left(\frac{3}{4}\right)^{3}=32 \times \frac{27}{64}=13 \frac{1}{2} \mathrm{~m}$
26. (A) Average speed during the entire journey $=\frac{\text { Total distance }}{\text { Total time }}=\frac{3584 \mathrm{~km}}{2 \text { days } 8 \mathrm{hours}}=\frac{3584 \mathrm{~km}}{56 \mathrm{hours}}$
$=64 \mathrm{~km} /$ hour
Now, Average speed during the remaining part (last 8 hr .) of journey
$=\frac{3584-(1440+1608)}{8} \mathrm{~km} / \mathrm{hr}=\frac{3584-3048}{8}=67 \mathrm{~km} / \mathrm{hr}$
So, required difference $=(67-64) \mathrm{km} / \mathrm{hr}=3 \mathrm{~km} / \mathrm{hr}$ more
27. (B) weight of lead per kg in the new alloy $=\frac{3}{(5+4+3) 2}=\frac{3}{24}=\frac{1}{8} \mathrm{~kg}$
28. (C) Let the income of Sanjay two years ago $=₹ x$

Saving of Sanjay two yrs ago $=20 \%$ of $₹ x=₹ \frac{x}{5}$
\Rightarrow Expenditure of Sanjay two years ago $=\left(x-\frac{x}{5}\right)=\frac{4}{5} x$
\Rightarrow Two years later now,
Income of Sanjay $=₹ \frac{120}{100} x=₹ \frac{6}{5} x$
and saving of Sanjay $=₹ \frac{x}{5}$
\Rightarrow Expenditure of Sanjay $=₹\left(\frac{6}{5} x-\frac{x}{5}\right)=x$
So,
$\%$ increase in the expenditure $=\frac{x-\frac{4}{5} x}{\frac{4}{5} x} \times 100 \%=\frac{x}{4 x} \times 100 \%=25 \%$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
29. (B) Let the maximum marks $=x$

Case (i) Pass marks $=32 \%$ of $x+16$
Case (ii) Pass marks $=36 \%$ of $x-10$
From Case (i) and Case (ii), we get,
32% of $x+16=36 \%$ of $x-10$
or, 4% of $x=26$
or, $\frac{4}{100} \times x=26$
$\Rightarrow \quad x=\frac{26 \times 100}{4}=650$
So,
$\operatorname{Pass} \%=32 \%+\left(\frac{16}{650} \times 100\right) \%=32 \%+2 \frac{6}{13} \%=34 \frac{6}{13} \%$
30. (D) Let the original number of boys and girls be $5 x$ and $3 x$ respectively and that of new boys and girls be $5 y$ and $7 y$ respectively.
$\therefore \quad 5 x+3 x+5 y+7 y=1200$
$\Rightarrow \quad 2 \mathrm{x}+3 \mathrm{y}=300$
and $\frac{5 x+5 y}{3 x+7 y}=\frac{7}{5}$
$\Rightarrow \quad 25 x+25 y=21 x+49 y$
$\Rightarrow \quad 4 x=24 y$
$\Rightarrow \quad x=6 y$
From equation (i),
$4 x+6 y=600$
$\Rightarrow \quad 5 \mathrm{x}=600$
$\Rightarrow \quad x=120$
$\therefore \quad$ Original number of students $=8 x=960$
31. (C) Repaired gain $=2 \times\left(6 \frac{1}{4}-4\right) \%$ of $5000=2 \times 2 \frac{1}{4} \%$ of 5000
$=2 \times \frac{9}{4 \times 100} \times 5000=₹ 225$
32. (C) For the first trader,

Let the CP of the article $=₹ 100$
$\Rightarrow \quad \mathrm{SP}=$ Rs. 120
Now, For the second trader,
SP of the article = ₹ 120
And gain $=20 \%$
Let the CP be ₹ x.
$\therefore \quad \frac{120-x}{120} \times 100=20$
$\therefore \quad 120-x=20 \times \frac{6}{5}=24$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\therefore \quad x=120-24=₹ 96$
$\therefore \quad$ Gain = ₹ 24
Now when difference of gains $=₹ 4$
Then, SP = ₹ 120
So, When the difference $=₹ 85$,
Then, $\mathrm{SP}=\frac{120}{4} \times 85=₹ 2550$
33. (A) Let the marked price of the article $=₹ x$

Single discount for successive discounts of 30% and $20 \%=\left(30+20-\frac{30 \times 20}{100}\right) \%$
$=(50-6) \%=44 \%$ discount
According to question,
$(100-44) \%$ of $x=2240$
$\Rightarrow \quad \frac{x \times 56}{100}=2240$
$\Rightarrow \quad x=\frac{2240 \times 100}{56}=₹ 4000$
34. (C) $x^{2}+8 \Rightarrow x^{3}+2^{3} \Rightarrow(x+2)\left(x^{2}-2 x+4\right)$
$x^{2}+5 x+6 \Rightarrow(x+3)(x+2)$
$x^{3}+4 x^{2}+4 x \Rightarrow x\left(x^{2}+4 x+4\right) \Rightarrow x(x+2)(x+2)$
L.C.M. $=x(x+2)^{2}(x+3)\left(x^{2}-2 x+4\right)$
35. (D) Part of tank filled in one hour by inlet pipe $=\frac{1}{12}-\frac{1}{15}=\frac{1}{60}$ part

So, the inlet pipe can fill the tank in 60 hrs .
$\because \quad$ Inlet pipe fills water at the rate of 5 litres per minute
\Rightarrow Capacity of tank $=(60 \times 60 \times 5)$ litres $=18000$ litres
36. (A) $\theta_{1}=\theta_{2}=\theta_{3}=0$
$\therefore \quad \sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0$
37. (C) $(y-z)+(z-x)+(x-y)=0\left[\because a^{3}+b^{3}+c^{3}=3 a b c\right.$ if $\left.a+b+c=0\right]$
$\Rightarrow \quad(y-z)^{3}+(z-x)^{3}+(x-y)^{3}=3(y-z)(z-x)(x-y)$
38. (C) $\sin B=\frac{1}{2}=\sin 30^{\circ}$
$\Rightarrow B=30^{\circ}$
Now, $3 \cos B-4 \cos ^{3} B=3 \cos 30^{\circ}-4 \cos ^{3} 30^{\circ}$
$=3 \times \frac{\sqrt{3}}{2}-4 \times \frac{3 \sqrt{3}}{8}$
$=\frac{3 \sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}=0$

Another method

$3 \cos B-4 \cos ^{3} B=-\cos 3 B$
$=-\cos 3 \times 30^{\circ}=-\cos 90^{\circ}=0$
39. (B)

$\because \quad \tan \alpha=\frac{5}{12}$
$\Rightarrow \quad \frac{A B}{B P}=\frac{5}{12}$

$$
\begin{equation*}
\Rightarrow \quad \frac{A B}{B C+300}=\frac{5}{12} \tag{i}
\end{equation*}
$$

\qquad
$\tan B=\frac{3}{4}$
$\frac{A B}{B C}=\frac{3}{4}$
On dividing (i) by (ii), We have
$\frac{B C}{B C+300}=\frac{5}{12} \times \frac{4}{3}=\frac{5}{9}$
$9 B C=5 B C+1500$
$\mathrm{BC}=\frac{1500}{4}=375 \mathrm{~m}$
Height of the pole $=\mathrm{AB}=\frac{3}{4} \times B C=\frac{3}{4} \times 375$
$=\frac{1125}{4}=281 \frac{1}{4} \mathrm{~m}$
40. (A)

$\mathrm{BD}=\sqrt{D^{2}+D^{2}}=\sqrt{2} D$
Required diameter $=\sqrt{2 D}-D=(\sqrt{2}-1) D$
41. (B)

ABCD is a $\| \mathrm{gm}$ whose diagonal $\mathrm{BD}=18 \mathrm{~cm}$
Let both the diagonals bisect at ' O '.
$\Rightarrow \mathrm{DO}=\mathrm{OB}=9 \mathrm{~cm}$
$\because \quad \mathrm{DO}$ and BO are medians of $\triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$
Also P and Q are centroids of $\triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{PO}=\frac{1}{3} \times \mathrm{BO}$ and $\mathrm{QO}=\frac{1}{3} \times \mathrm{DO}$ [centroid of a Δ divides each median in the ratio of 2:1]
$\mathrm{PO}=\frac{1}{3} \times 9$ and $\mathrm{QO}=\frac{1}{3} \times 9=3 \mathrm{~cm}$
$\Rightarrow \mathrm{PQ}=\mathrm{PO}+\mathrm{QO}=3+3=6 \mathrm{~cm}$
42. (C) $\mathrm{AM}=\mathrm{MB}$
$\angle \mathrm{AMC}=\angle \mathrm{BMD}$ and $\angle \mathrm{BAD}=\angle \mathrm{ABC}$
$\therefore \quad$ ASA Rule
43. (D) EF || DC (Given)
$\Rightarrow \triangle E G F \sim \triangle C G D$ (by AA Similarity)
$\Rightarrow \frac{E G}{G C}=\frac{E F}{D C}$
$\frac{5}{10}=\frac{E F}{18}$
$\Rightarrow \quad \mathrm{EF}=\frac{18 \times 5}{10}=9 \mathrm{~cm}$
44. (C) $C F \| A B$
$\Rightarrow \angle B C F=\angle A B C=85^{\circ}$ (alternate interior angles)
$\angle \mathrm{BCE}=\angle \mathrm{BCF}+\angle \mathrm{ECF}=85^{\circ}+20^{\circ}=105^{\circ}$
$\angle B A D=\angle B C F=105^{\circ}$ (Angles in the alternate segment)
45. (B) Volume of the wooden block $=5 \times 10 \times 20 \mathrm{~cm}^{3}$

Volume of the required solid wooden cube $=5 \times 10 \times 20 \times x^{3} \mathrm{~cm}^{3}$
(where x^{3} is an unknown number) -
$\because \quad$ Only ' 8 ' is the smallest perfect cube
$\Rightarrow \quad \mathrm{x}^{3}=8$
$\Rightarrow \quad$ Number of wooden block $=8$
46. (C)

$\because \quad$ Incentre \& circumcentre of an equilateral Δ is same.
let ' a ' unit be the side of $\triangle \mathrm{ABC}$
Then $A D=\sqrt{\mathrm{AB}^{2}-\mathrm{BD}^{2}}=\sqrt{\mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}}=\frac{\sqrt{3}}{2} \mathrm{a}$
$\because \quad \mathrm{AI}: \mathrm{ID}: 2: 1$
$\Rightarrow \quad \mathrm{AI}=\frac{2}{3} \mathrm{AD}=\frac{2}{3} \times \frac{\sqrt{3}}{2} \mathrm{a}=\frac{\mathrm{a}}{\sqrt{3}}$ unit.
$\mathrm{ID}=\frac{1}{3} \mathrm{AD}=\frac{1}{3} \times \frac{\sqrt{3}}{2} \mathrm{a}=\frac{1}{2 \sqrt{3}}$ a unit.
Now, Area of circumcircle - area of incircle $=44$
$\pi \times\left(\frac{\mathrm{a}}{\sqrt{3}}\right)^{2}-\pi \times\left(\frac{\mathrm{a}}{2 \sqrt{3}}\right)^{2}=44$
$\Rightarrow \quad \frac{22}{7}\left[\frac{1}{3}-\frac{1}{12}\right] \mathrm{a}^{2}=44$
$\Rightarrow \quad \frac{22}{7}\left[\frac{4-1}{12}\right] a^{2}=44$
$a^{2}=\frac{44 \times 12 \times 7}{22 \times 3}=56$

Area of the $\Delta=\frac{\sqrt{3}}{4} \times \mathrm{a}^{2}=\frac{\sqrt{3}}{4} \times 56=14 \sqrt{3} \mathrm{~cm}^{2}$
47. (B) Area of quad. $\mathrm{ABCD}=\frac{1}{2} \times$ diagonal \times (Sum of offsets on the given diagonal)
$=\frac{1}{2} \times 16 \times(9+7)=8 \times 16=128 \mathrm{~cm}^{2}$
48. (C) Let the number be x.

ATQ,
$x^{2}=45 x-350$
Using options, we get $x=35$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (A)

	889
8	789654
8	64
168	1496
8	1344
1769	-15254
9	15921
	667

So, 667 must be added to obtain a perfect square.
50. (A)

Work done by A, B and C in one day $=6+12-3=15$ units
Now, time taken by A, B and C to complete the work $=\frac{60}{15}=4$ days
51. (A) Let pipe B takes x hours to fill the tank

Then, pipe A will take $(x+5)$ hours
ATQ,
$\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}$
On solving, we get $x=10$ hours
52. (B) ATQ,
S.P. after two successive discounts $=120 \times \frac{19}{20} \times \frac{19}{20}=108.3$

Profit $\Rightarrow 12 \frac{13}{16} \%=\frac{41}{320} \rightarrow$ Profit
$\rightarrow \mathrm{CP}$
$\mathrm{SP}=320+41=361$
$\mathrm{CP}=320$
Now,
361 units $=108.3$
$\Rightarrow \quad 1$ unit $=\frac{108.3}{361}$
Now, CP $=320$ units $=\frac{108.3 \times 320}{361}=96$
$\therefore \quad$ CP of the article $=₹ 96$
53. (B)

	Milk	Water
I	5	
II	2	$3 \rightarrow 8 \times 3 \times \mathbf{4}$
III	7	

Now, ratio of milk and water in the new mixture
$5 \times 12+2 \times 40+7 \times 12: 3 \times 12+1 \times 40+5 \times 12$
$\Rightarrow \quad 60+80+84: 36+40+60=28: 17$
$\therefore \quad$ Ratio of water and milk $=17: 28$

K>
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (A) Difference in the temperature of Monday and Thursday $=(30-27) \times 3=9^{\circ} \mathrm{C}$

Let the temperature of Thursday be $\mathrm{T}^{\circ} \mathrm{C}$
Then, Difference of temperature of Monday and Thursday $=T-\frac{2 T}{3}=9$
$\Rightarrow \quad \mathrm{T}=27^{\circ} \mathrm{C}$
$\therefore \quad$ Temperature of Thursday $=27^{\circ} \mathrm{C}$
55. (A) Abhi Bablu Surbhi
$\begin{array}{lll}75 & 100 & 60\end{array}$
Abhi's goods are 25\% costlier than Surbhi's, then
The selling price of the goods of Surbhi $=75 \times \frac{100}{125}=60$
Required percentage $=\frac{100-60}{100} \times 100=40 \%$
56. (D) Let the quantity sold be x and new price per article be y.

ATQ,
$\frac{3 x}{2} \times y=250 x \times\left(\frac{100-17.5}{100}\right)$
On solving we get, $y=137.5$
$\therefore \quad$ Reduction in price $=250-137.5=$ ₹ 112.5
57. (B) Difference between simple interest and compound interest for 3 years.
$=\mathrm{P}\left(\frac{\mathrm{r}}{100}\right)^{2}\left(3+\frac{r}{100}\right)$
$\mathrm{P}\left(\frac{1}{8}\right)^{2}\left(3+\frac{1}{8}\right)=125$
$P=\frac{125 \times 8 \times 8 \times 8}{25}=2560$
$\therefore \quad$ Principal amount $=₹ 2560$
58. (B) ATQ,
$1+b+h=25$
and $\sqrt{l^{2}+b^{2}+h^{2}}=15$
Applying the formula,
$(l+b+h)^{2}=1^{2}+b^{2}+h^{2}+2(l b+b h+h l)$
$\Rightarrow 25^{2}=(15)^{2}+2(l \mathrm{~b}+b h+h l)$
$\Rightarrow 625-225=2(l b+b h+h l)$
$\therefore \quad$ Surface area of cuboid $=400 \mathrm{~cm}^{2}$
59. (D) Percentage error $=\frac{\frac{4}{3}-\frac{3}{4}}{\frac{4}{3}} \times 100=\frac{700}{16}=43 \frac{3}{4} \%$

K D Campus Pvt. Ltd

60. (A) $\sin \theta=\frac{a-b}{a+b}$

Then, $\cos \theta=\frac{2 \sqrt{a b}}{a+b}$
$\Rightarrow \quad \frac{1}{\cos \theta}=\frac{a+b}{2 \sqrt{a b}}$
Using Componendo and Dividendo, we get
$\frac{1+\cos \theta}{1-\cos \theta}=\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}}$
$\Rightarrow \frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)^{2}$
$\Rightarrow \quad \cot \frac{\theta}{2}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$
$\Rightarrow \quad \frac{1}{\tan \frac{\theta}{2}}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$
$\Rightarrow \frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\Rightarrow \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\sqrt{\frac{a}{b}}$
61. (A)

Length of $\mathrm{DC}=\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)$ units $=40$
$\left(\frac{2}{\sqrt{3}}\right)$ units $=40$
Then, width of the river
$\mathrm{BC}=\left(\frac{1}{\sqrt{3}}\right)$ units $=\frac{40}{2}=20 \mathrm{~m}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
62. (B)

Since $A B C$ is equilateral triangle.
Then, $\angle \mathrm{OBE}=30^{\circ}$
In $\triangle \mathrm{OBE}$,
$\mathrm{BE}=\mathrm{OE} \cot 30^{\circ}=1 \times \sqrt{3}=\sqrt{3}$
Then, length of $A B=E M+B E+A M$
$=2+\sqrt{3}+\sqrt{3}=2+2 \sqrt{3}$
Now, Area of triangle $=\frac{\sqrt{3}}{4}(2+2 \sqrt{3})^{2}=\frac{\sqrt{3}}{4} \times 4(4+2 \sqrt{3})$
$=(6+4 \sqrt{3})$ square units
63. (C) $2 \mathrm{R}=\mathrm{b} \quad[\because$ circumradius is half of hypotenuse of right angled triangle] and, $2 \mathrm{r}=\mathrm{a}+\mathrm{c}-\mathrm{b}$
Then,
$2 \mathrm{R}+2 \mathrm{r}=\mathrm{b}+\mathrm{a}+\mathrm{c}-\mathrm{b}=\mathrm{c}+\mathrm{a}$
64. (D) We know that
$\operatorname{ar}(\Delta \mathrm{ODB})=\operatorname{ar}(\Delta \mathrm{OEC})$
And let $\operatorname{ar}(\triangle \mathrm{BOC})$ be t .

Since \triangle ODE is similar to \triangle OBC
Then,

$$
\begin{align*}
& \frac{3}{4+2 x+t}=\frac{1}{\mathrm{t}} \\
\Rightarrow \quad & 3 \mathrm{t}=4+2 x+\mathrm{t} \\
\Rightarrow \quad & 2 \mathrm{t}=2 x+4 \tag{ii}
\end{align*}
$$

Using (i) and (ii), we get $x=2$ and $t=4$
Then, $\operatorname{ar}(\triangle \mathrm{ABC})=3+1+2 x+\mathrm{t}=4+4+4=12$ unit 2

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
65. (A) Given, $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$
$\Rightarrow \quad 3^{\frac{x}{y}}\left[3-\frac{1}{3}\right]=24$
$\Rightarrow \quad 3^{\frac{x}{y}}=3^{2}$
$\Rightarrow \quad \frac{x}{y}=\frac{2}{1}$
Using Componendo and Dividendo method,
$\frac{x+y}{x-y}=\frac{2+1}{2-1}=3$
66. (A)

Ratio of the volume of
I and II part $=(8-1): 1=7: 1$
ATQ,
7 parts are emptied in 28 minutes
Then, time taken to empty part $1=\frac{28}{7}=4$ minutes
67. (C)

Let AC be $x \mathrm{~cm}$
Given $\operatorname{ar}(\triangle \mathrm{ADB})=15 \mathrm{~cm}^{2}$
$\Rightarrow \quad \frac{1}{2} \times \mathrm{BD} \times \mathrm{AC}=15$
$\Rightarrow \quad \mathrm{BD}=\frac{30}{x} \mathrm{~cm}$
Using angle bisector theorem,

$$
\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{CD}}{\mathrm{DB}} \quad \Rightarrow \frac{x}{10}=\frac{\mathrm{CD}}{\frac{30}{x}}
$$

$\Rightarrow \quad \mathrm{CD}=3 \mathrm{~cm}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
68. (B)

In $\Delta \mathrm{AOC}$,
$\angle \frac{A}{2}+\angle \frac{C}{2}+\angle \mathrm{AOC}=180^{\circ}$
$\angle \mathrm{AOC}=\angle \mathrm{DOF}$ (vertically opposite angle) \qquad
and, $\angle \mathrm{B}+\angle \mathrm{DOF}=180^{\circ}$ (B,D,O,F are concyclic)
(ii)

From (i), (ii) and (iii), we get,
$\mathrm{A}+\mathrm{C}=2 \mathrm{~B}$
We know that,
$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
$\Rightarrow \quad 2 \mathrm{~B}+\mathrm{B}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{B}=60^{\circ}$
69. (D) ATQ,
$\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$
$=\cot 9^{\circ}-\cot 27^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$
$=\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$=\left(\frac{\sin 9^{\circ}}{\cos 9^{\circ}}+\frac{\cos 9^{\circ}}{\sin 9^{\circ}}\right)-\left(\frac{\sin 27^{\circ}}{\cos 27^{\circ}}+\frac{\cos 27^{\circ}}{\sin 27^{\circ}}\right)$
$=\frac{\sin ^{2} 9^{\circ}+\cos ^{2} 9^{\circ}}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{\sin ^{2} 27^{\circ}+\cos ^{2} 27^{\circ}}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2}{\frac{\sqrt{5}-1}{4}}-\frac{2}{\frac{\sqrt{5}+1}{4}}=4$
70. (B) Average number of people using mobile service for all the years
$=\frac{20+25+10+35+25}{5}$ thousands $=23000$
71. (C) Required ratio $=20: 15=4: 3$
72. (A) Required percentage $=\frac{40}{50} \times 100=80 \%$
73. (A) Required percentage $=\frac{15}{75} \times 100=20 \%$
74. (D) Average number of people using all the mobile service throughout all the year
$=\frac{50+60+40+75+65}{5}$ thousands $=58000$
75. (C) $\frac{5}{6}=0.8 \overline{3}, \frac{8}{11}=0 . \overline{72}, \frac{7}{9}=0 . \overline{7}, \frac{15}{17}=0.88$
$\therefore \quad$ Required order $=\frac{15}{17}>\frac{5}{6}>\frac{7}{9}>\frac{8}{11}$
76. (B) $\mathrm{r}=32$ (given)
$\therefore \quad \mathrm{d}=32 \times 7=224$
And, $\mathrm{q}=\frac{224}{16}=14$
dividend $=($ divisor \times quotient $)+$ remainder
$\Rightarrow \quad$ Dividend $=(224 \times 14)+32$
\Rightarrow Dividend $=3168$
77. (B) Let $\mathrm{P}=(x+y)^{3}-\left(x^{3}+y^{3}\right)$
we know that,
$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$\therefore \quad \mathrm{P}=x^{3}+y^{3}+3 x y(x+y)-x^{3}-y^{3}$
$\Rightarrow \quad \mathrm{P}=3 x y(x+y)$
$\therefore \quad$ Required factor $=3 x y$
78. (A) Time taken by Meenu in doing whole work $=4 \times 3=12$ hours

Time taken by Komal in doing whole work $=4 \times 4=16$ hours
Time taken by Nisha in doing whole work $=2 \times 3=6$ hours

Work done by them together in 1 hour $=15$ units
Time taken by them together doing the double work $=\frac{48 \times 2}{15}=\frac{96}{15}=6 \frac{2}{5}$ hours
79. (D)

$\Delta \mathrm{ADN} \cong \Delta \mathrm{ABM}$
Now,
$\frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{\frac{1}{2} \times a \times x}{\frac{1}{2} \times(a-x)(a-x)}$
$\Rightarrow \quad \frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{a \times x}{(a-x)^{2}}$
$\triangle \mathrm{AMN}$ is equilateral triangle
$\therefore \quad \mathrm{AM}=\mathrm{MN}=y$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
In $\triangle \mathrm{ABM}$,
$\mathrm{AM}^{2}=\mathrm{AB}^{2}+\mathrm{BM}^{2}$
$y^{2}=a^{2}+x^{2}$
In $\triangle \mathrm{MNC}$
$\mathrm{MN}^{2}=\mathrm{NC}^{2}+\mathrm{MC}^{2}$
$y^{2}=(a-x)^{2}+(a-x)^{2}$
$\Rightarrow \quad y^{2}=2(a-x)^{2}$
From equation (ii) and (iii), we get
$a^{2}+x^{2}=2(a-x)^{2}$
$\Rightarrow \quad a^{2}+x^{2}=2(a-x)^{2}$
$\Rightarrow 2 a x=a^{2}+x^{2}-2 a x$
$\Rightarrow \quad 2 \mathrm{a} x=(\mathrm{a}-x)^{2}$
$\frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{a x}{2 a x}=\frac{1}{2}$
$\therefore \quad$ Required ratio $=1: 2$
80. (A) Let the tomatoes produce this year $=x^{2}$ and, the tomatoes produce last year $=y^{2}$
ATQ,
$x^{2}-y^{2}=143$
$\Rightarrow \quad(x-y)(x+y)=143$
$\Rightarrow \quad(x+y)(x-y)=143 \times 1$
$\Rightarrow x+y=143$
$x-y=1$
$\Rightarrow \quad 2 x=144$
$\Rightarrow \quad x=72$
and $y=71$
$\therefore \quad$ Tomatoes produce this year $=(72)^{2}=5184$
81. (D)

$$
905 \frac{1}{7} \mathrm{~cm}^{2}
$$

Radius of semi-circle on $\mathrm{PQ}=\frac{1}{2} \mathrm{PQ}$
and Radius semi-circle on $\mathrm{QR}=\frac{1}{2} \mathrm{QR}$
Area of semi-circle on $\mathrm{PQ}=\frac{\pi}{2}\left(\frac{\mathrm{PQ}}{2}\right)^{2}$
$\Rightarrow \quad 77=\frac{22}{7 \times 2} \times \frac{\mathrm{PQ}^{2}}{4}$
$\Rightarrow P Q=14 \mathrm{~cm}$

Area of semi-circle on $\mathrm{QR}=\frac{\pi}{2}\left(\frac{Q R}{2}\right)^{2}$
$\Rightarrow \quad \frac{6336}{7}=\frac{22}{7 \times 2} \times \frac{Q R^{2}}{4}$
$Q R=48 \mathrm{~cm}$
Now, $\triangle \mathrm{PQR}$ is right angled triangle
$\therefore \quad \mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\Rightarrow \quad P R^{2}=(14)^{2}+(48)^{2}$
$\Rightarrow \quad \mathrm{PR}^{2}=256+2304$
$\Rightarrow \quad \mathrm{PR}^{2}=2560$
$\therefore \quad$ Required area $=\frac{\pi}{2} \times \frac{2560}{4}=320 \pi \mathrm{~cm}^{2}$
82. (C)

$\because \quad \mathrm{AB}$ is the diameter of circle
So, $\angle \mathrm{ACB}=90^{\circ}$ (angle made in semi-circle)
and $\mathrm{AB} \| \mathrm{CD}$
$\therefore \quad \angle \mathrm{ACD}+\angle \mathrm{BAC}=180^{\circ}$
and $\angle \mathrm{BAC}=\angle \mathrm{BPC}=52^{\circ}$
$\therefore \quad \angle \mathrm{BCD}=180^{\circ}-90^{\circ}-52^{\circ}=38^{\circ}$
83. (C) We know that,
$\mathrm{d}=\frac{|A m+B n+C|}{\sqrt{A^{2}+B^{2}}}$
\therefore Length of perpendicular $=\frac{|15 \times 4+8 \times 3+18|}{\sqrt{15^{2}+8^{2}}}=\frac{60+24+18}{\sqrt{225+64}}=\frac{102}{17}=6$ units
84. (B) Distance travel by first man in 1 hour $=6 \mathrm{~km}$
\therefore Time taken by second man to meet first man $=\frac{6}{8-6}=3$ hours
Total distance travel by first man in $(3+1)$ hours $=4 \times 6=24 \mathrm{~km}$
At 2 p.m first man will be 24 km away from the starting point.
and, At 2 pm third man will be 12 km away from the starting point.
$\therefore \quad$ Distance between first man and third man $=24-12=12 \mathrm{~km}$
$\therefore \quad$ They meet after $=\frac{12}{12+6}=\frac{12}{18}=40$ minutes
Required time $=2: 40 \mathrm{pm}$
So, first man meets to third man at 2:40 p.m.
85. (C)

Circum-radius of $\triangle \mathrm{ABC}(\mathrm{AD})=\frac{6}{\sqrt{3}} \mathrm{~cm}=2 \sqrt{3} \mathrm{~cm}$
And, In radius of $\triangle A B C(D E)=\frac{6}{2 \sqrt{3}}=\sqrt{3} \mathrm{~cm}$
Hence, required difference $=\pi\left(r_{1}\right)^{2}-\pi\left(r_{2}\right)^{2}=\pi\left[(2 \sqrt{3})^{2}-(\sqrt{3})^{2}\right]$
$=\pi[12-3]=9 \pi \mathrm{~cm}^{2}$
86. (A) $\cot \theta+\cos \theta=p$
$\cot \theta-\cos \theta=q$
Now,
$p^{2}-q^{2}=\cot ^{2} \theta+\cos ^{2} \theta+2 \cot \theta \cos \theta-\cot ^{2} \theta-\cos ^{2} \theta+2 \cos \theta \cot \theta$
$\Rightarrow p^{2}-q^{2}=4\left(\frac{\cos ^{2} \theta}{\sin \theta}\right)=4\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)=4(\operatorname{cosec} \theta-\sin \theta)$
87. (B) $\frac{1}{\operatorname{cosec}^{2} \theta}+\frac{\sin ^{2} \theta\left(2 \cos ^{4}-\cos ^{2} \theta\right)}{\sin ^{2} \theta-2 \sin ^{4} \theta}=\sin ^{2} \theta+\frac{\sin ^{2} \theta \cos ^{2} \theta\left(2 \cos ^{2} \theta-1\right)}{\sin ^{2} \theta\left(1-2 \sin ^{2} \theta\right)}$
$=\sin ^{2} \theta+\cos ^{2} \theta=1$
88. (B) $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=\frac{1}{2}(a+b+c)\left(2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right]$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+\left(c-a^{2}\right)\right]$
now,
$\frac{a^{3}+b^{3}+c^{3}-3 a b c}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$
$=\frac{\frac{(a+b+c)}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)\right]^{2}}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$
$=\frac{35+20-15}{2}=20$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
89. (C)

$\therefore \quad$ Ratio of cost price of T.V. and A.C $=4: 7$
So, cost price of A.C. $=\frac{22000}{11} \times 7=₹ 14000$
90. (A) Ratio of their savings $=4: 1$
$\therefore \quad$ Savings of Ram and Shyam $=\frac{5000}{5} \times 4$ and $\frac{5000}{5} \times 1=₹ 4000$ and ₹ 1000
Now,
$2 x-5 y=4000$
$x-3 y=1000$
Solving equation (i) and (ii), we get
$x=7000$
Hence, monthly income of Mohan = ₹ 7000
91. (B) Let total number of article $=₹ x$

ATQ,
$\frac{36}{12} \times x+\frac{24}{12} \times x-\frac{27}{12} \times 2 x=90$
$\Rightarrow \quad \frac{60 x-54 x}{12}=90$
$\Rightarrow \quad 6 x=90 \times 12$
$\Rightarrow \quad 2 x=360$
$\therefore \quad$ Total number of articles $=360$
92. (B) Let profit $=x$
$\mathrm{CP}=100$
ATQ,
$2(100+x)=100+3 x$
$\Rightarrow \quad x=100$
Profit $=100 \%$
93. (B)

Work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 6 days $=(8+15+14+15+8+21)$
$\therefore \quad$ Work done in 12 days $=81 \times 2=162$
Now, remaining work $=168-162=6$
Hence, work must be done $=12+\frac{6}{8}=12 \frac{3}{4}$ days

K>
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
94. (B) Let the speed of the trains be $3 x \mathrm{~m} / \mathrm{s}$ and $4 x \mathrm{~m} / \mathrm{s}$

Then, length of each train $=\frac{(3 x+4 x) \times 20}{2}=70 x$
Now,
Distance travelled by faster train in 35 seconds $=35 \times 4 x=140 x$
and, $70 x+700=140 x$
$\Rightarrow 70 x=700$
Length of each train $=700 \mathrm{~m}$
95. (A) $\frac{x \times Q \times t}{100}+x=\frac{y \times P \times t}{100}+y$
$\Rightarrow \quad \frac{(Q x-P y) \times t}{100}=y-x$
$\Rightarrow \quad t=\frac{(y-x) \times 100}{Q x-P y}$
$\Rightarrow t=\frac{100(x-y)}{P y-Q x}$
96. (C) Required percentage increase $=\frac{120-100}{100} \times 100=20 \%$
97. (B) Average production at given years $=\frac{100+120+110+140+75+130}{6}$
$=\frac{675}{6}=112.5$
Hence, required years $=2013,2015$ and 2017
98. (D) Sum of production during odd years $=120+140+130=390$

Sum of production during even years $=100+110+75=285$
$\therefore \quad$ Required difference $=\frac{390}{285}=1.37$ times
99. (C) Total production in 2013 and $2015=120+140=260$

Production in $2017=130$
100. (B) Average production during given years $=\frac{100+120+110+140+75+130}{6}=112.5$
$\therefore \quad$ Required production $=113000$ tones

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

QUANTITATIVE ABILITY - 90 (ANSWER KEY)

1. (B)
2. (A)
3. (A)
4. (A)
5. (B)
6. (D)
7. (D)
8. (A)
9. (A)
10. (A)
11. (C)
12. (A)
13. (D)
14. (B)
15. (B)
16. (B)
17. (A)
18. (C)
19. (C)
20. (D)
21. (B)
22. (B)
23. (C)
24. (C)
25. (B)
26. (A)
27. (B)
28. (C)
29. (B)
30. (D)
31. (C)
32. (C)
33. (A)
34. (C)
35. (D)
36. (A)
37. (C)
38. (C)
39. (B)
40. (A)
41. (B)
42. (C)
43. (D)
44. (C)
45. (B)
46. (C)
47. (B)
48. (C)
49. (A)
50. (A)
51. (A)
52. (B)
53. (B)
54. (A)
55. (A)
56. (D)
57. (B)
58. (B)
59. (D)
60. (A)
61. (A)
62. (B)
63. (C)
64. (D)
65. (A)
66. (A)
67. (C)
68. (B)
69. (D)
70. (B)
71. (C)
72. (A)
73. (A)
74. (D)
75. (C)
76. (B)
77. (B)
78. (A)
79. (D)
80. (A)
81. (D)
82. (C)
83. (C)
84. (B)
85. (C)
86. (A)
87. (B)
88. (B)
89. (C)
90. (A)
91. (B)
92. (B)
93. (B)
94. (B)
95. (A)
96. (C)
97. (B)
98. (D)
99. (C)
100. (B)
