QUANTITATIVE ABILITY - 87 (SOLUTION)

1. (A) $-0.2,(-0.2)^{2},(-0.2)^{3}$ and $(-0.2)^{4}$
$=-0.2,0.04,-0.008$ and 0.0016
Lowest value $=-0.2$
2. (D) One part of the number is the square of 6 .

36 must be present in the number and among the options given, none of the options fulfills this criteria.
3. (C) Let the numbers be A and B.
then $\frac{1}{5}$ of $\mathrm{A}=\frac{5}{8}$ of B
$\therefore \quad \frac{A}{B}=\frac{5}{8} \times \frac{5}{1}=\frac{25}{8}$
Let $\mathrm{A}=25 x, \mathrm{~B}=8 x$
According to question:-
$(\mathrm{A}+35)=(\mathrm{B} \times 4)$
or, $(25 x+35)=8 x \times 4$
$\therefore \quad x=5$
$\therefore \quad 2$ nd number $=8 \mathrm{x}=8 \times 5=40$
4. (B) Population of literates $=50 \%$ of 296000
$=0.50 \times 296000=148000$
Number of males literates $=70 \%$ of 166000
$=0.7 \times 166000=116200$
Number of female literates $=148000-116200=31800$
5. (B) For 1 st year $=5000+5 \%$ of $5000=₹ 5250$
tax $=20 \%$ of interest $=\frac{20}{100} \times 250=50$
At the end of 1 st year $=5250-50=₹ 5200$ invested
Similarly,
For 2 nd year $=\left[5200+\frac{5}{100} \times 5200-52\right]=₹ 5408$
For 3rd year $=\left[5408 \times \frac{105}{100}\right]=$ ₹ 5678.40
At the end of 3rd year $=₹[5678.40-\operatorname{tax}]$
= ₹ [5678.40-54.08] = ₹ 5624.32
6. (A)

Let the speed of $\mathrm{A}=u \mathrm{~km} / \mathrm{hr}$
Speed of $\mathrm{B}=v \mathrm{~km} / \mathrm{hr}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
As per question,
$\frac{100}{(u+v)}=1 \mathrm{hr}$
$(v+u)=100$
Again from question,
$\frac{100}{(u-v)}=5$,
$5 v-5 u=100$
From equation (i) and (ii),
$10 v=600$
$v=60 \mathrm{~m} / \mathrm{hr}$
7. (A) Ratio of $\mathrm{CP}=$

Ratio of Number of articles sold= $\underline{2} \quad: \quad \underline{5}$
Ratio of \% profit $=10 \%: 20 \%: 25 \%$
Total SP = $1.1+6+5=12.1$
So, Net \% profit $=\frac{12.1-10}{10} \times 100=21 \%$
8. (C) Given that,

Invested ratio of A:B:C=5:7:6
After 6 months,
Invested ratio of $\mathrm{A}: \mathrm{B}: \mathrm{C}=60: 84: 54$
Now,
Share of profit of $C=\frac{9}{33} \times 33000=₹ 9000$
9. (B) Let the Family have both, car and phone $=x \%$

According to question,
$20+15+x=35$ [given]
$\therefore \quad x=5 \%$
Now,
5% comprises 2000 family.
$\therefore \quad 100 \%=2000 \times 20=40000$
10. (D) Logical solution:-

Let the initial no. of total passengers $=x$
\Rightarrow Initial ratio of male to female passengers $=3: 1$ (Given)
\Rightarrow Initial no. of total passengers (x) must be completely divisible by 4.

$$
\begin{equation*}
(\because 3+1=4) \tag{i}
\end{equation*}
$$

Also, change in the number of initial passengers $=(-16+6)=-10$
and finally no. of male to female passengers $=2: 1$
\Rightarrow Final no. of total passengers (i.e. $x-10$) must be completely divisible by 3.
$(\because 2+1=3)$ \qquad condition (ii) And among the options given only option (D) $=64$ fulfills both the criteria.
11. (A)

1st: 2nd: 3rd
Ratio of fare $=8: 6: 3$
New ratio $=8 \times \frac{5}{6}: 6 \times \frac{11}{12}: 3=\frac{20}{3}: \frac{11}{2}: 3$
Ratio of passenger $=9: 12: 26$
Collection from 1 st class $=\frac{60}{60+66+78} \times 1088$
$=\frac{65280}{204}=₹ 320$
12. (B) Let CP of 1 st horse $=₹ x$

Selling price of 1 st horse $=₹ \frac{90}{100} x$
$\therefore \quad$ Selling price of 2nd horse $=\left[1710-\frac{90}{100} x\right]=[1710-0.9 x]$
According to question,
$x=1710-0.9 x$
or, $1.9 x=1710$
$x=900$
$\therefore \quad$ Selling price of 2 nd horse $=1710-90=810$
\therefore Total gain $=[900-810]=₹ 90$
13. (D) If $a+b+c=0$
then, $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=$?
$\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}$
$\frac{a^{3}+b^{3}+c^{3}}{a b c}=\frac{3 a b c}{a b c}=3 \quad\left[\because\right.$ If $a+b+c=0$, then $\left.a^{3}+b^{3}+c^{3}-3 a b c=0\right]$
14. (B) $\sin (n+1) \mathrm{A} \sin (n+2) \mathrm{A}+\cos (n+1) \mathrm{A}+\cos (n+2) \mathrm{A}$

Here n is variable,
Put $n=0$
$\sin A \cdot \sin 2 A+\cos A \cdot \cos 2 A$
$\cos (A-2 A)=\cos (-2 A)=\cos A$
15. (A) Given that,
$\sin \alpha+\sin \beta=a$ and
$\cos \alpha+\cos \beta=b$
Squaring and adding them:-
$a^{2}+b^{2}=\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \cdot \sin \beta+$
$\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta$
$=2+2[\sin \alpha \sin \beta+\cos \alpha \cos \beta]$
$\mathrm{a}^{2}+\mathrm{b}^{2}=2+2 \cos (\alpha+\beta)$
$\therefore \quad \cos (\alpha+\beta)=\frac{a^{2}+b^{2}-2}{2}$

Again, squaring and subtracting equation (i) and (ii),
$b^{2}-a^{2}=\cos ^{2} \alpha-\sin ^{2} \alpha+\cos ^{2} \beta-\sin ^{2} \beta+2[\cos \alpha \cos \beta-\sin \alpha \sin \beta]$
$=\cos 2 \alpha+\cos 2 \beta+2 \cos (\alpha+\beta)$
$=2 \cos (\alpha+\beta) \cos (\alpha-\beta)+2 \cos (\alpha+\beta)$
$=2 \cos (\alpha+\beta)[\cos (\alpha-\beta)+1]$
$=2 \cos (\alpha+\beta)\left[\frac{a^{2}+b^{2}-2}{2}+1\right]$
$=2 \cos (\alpha+\beta)\left[\frac{a^{2}+b^{2}}{2}\right]$
$\therefore \quad \cos (\alpha+\beta)=\frac{b^{2}-a^{2}}{a^{2}+b^{2}}$
16. (A)

Given that,
$\angle \mathrm{RPQ}=30^{\circ}$ and $\mathrm{RS}|\mid \mathrm{PQ}$
In $\triangle \mathrm{PQR}$,
$\mathrm{PR}=\mathrm{PQ}, \angle \mathrm{P}=30^{\circ}$
Let $\angle \mathrm{R}=x^{\circ}$
$\therefore \quad x^{\circ}+x^{\circ}+30^{\circ}=180^{\circ}$
$x=75^{\circ}$
Now,
$\angle \mathrm{RQP}=\angle \mathrm{QRS}=75^{\circ}$ [Alternate angle]
In $\triangle \mathrm{RQS}$,
$\angle \mathrm{R}=\angle \mathrm{S}=75^{\circ}$
$\angle \mathrm{R}+\angle \mathrm{S}+\angle \mathrm{Q}=180^{\circ}$
$\angle \mathrm{Q}+150^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{Q}=30^{\circ}$
17. (D)

Let the side of right isosceles triangle $=a$ unit

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Now,
In $\triangle \mathrm{BCD}$ [equilateral triangle]
Height $=\frac{\sqrt{3}}{2} a$
Area $(\triangle \mathrm{BCD})=\frac{\sqrt{3}}{2} \times a \times \sqrt{2}=\frac{\sqrt{6}}{2} a$
Area $(\triangle \mathrm{AEC})=\frac{1}{2} \times b \times h$
$=\frac{1}{2} \times a \sqrt{2} \times \frac{\sqrt{6}}{2} a=\frac{\sqrt{12}}{4} a^{2}=\frac{2 \sqrt{3}}{4}$

Now, $\frac{\operatorname{ar}(\triangle B C D)}{\operatorname{ar}(\triangle A E C)}=\frac{\frac{\sqrt{3}}{4} a^{2}}{\frac{2 \sqrt{3}}{4} a^{2}}=\frac{1}{2}=1: 2$
18. (B)

$$
\begin{aligned}
\Delta \mathrm{DG} & \sim \Delta \mathrm{BAF} \\
\Rightarrow \quad \frac{\mathrm{BG}}{\mathrm{BF}} & =\frac{\mathrm{DG}}{\mathrm{AF}} \\
\frac{\mathrm{BG}}{6} & =\frac{6}{24} \\
\mathrm{BG} & =\frac{36}{24}=1.5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Similarly, } \mathrm{HC}=1.5 \mathrm{~cm}
$$

$$
\Rightarrow \quad \mathrm{GH}=12-(1.5+1.5)=9 \mathrm{~cm}
$$

Area of rectangle GHEF $=\mathrm{GH} \times \mathrm{EH}$
$=9 \times 6=54 \mathrm{~cm}^{2}$
19. (C)

12 m

Area of the two apertures of 2 m diameter $=2 \times \frac{22}{7} \times(1)^{2}=\frac{44}{7}$ sq. m.

Area of an aperture of diameter $1 \mathrm{~m}=\frac{22}{7} \times \frac{1}{2} \times \frac{1}{2}=\frac{11}{14} \mathrm{~m}^{2}$
Area of the remaining portion of the plate $=6 \times 12-\left(\frac{44}{7}+\frac{11}{14}\right)$ sq. m.
$=72-\left(\frac{88+11}{14}\right)$ sq. m. $=\frac{1008-99}{14}=\frac{909}{14}$
$=64.928$ sq.m. ≈ 65 sq. m .
20. (C) Side of the cube $=\sqrt[3]{343}=7 \mathrm{~cm}$

Height of the cone $=7 \mathrm{~cm}$
Radius $=\frac{7}{2} \mathrm{~cm}$
Volume of the cone $=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7$
$=\frac{539}{6}=89.8 \overline{3} \mathrm{~cm}=90 \mathrm{~cm}^{2}$ (approx.)
21. (B) Volume of the silver ball $=\frac{4}{3} \pi \times 6^{3} \mathrm{~mm}^{3}$

Volume of the gold ball $=\frac{2}{3} \times \frac{4}{3} \pi \times 6^{3} \mathrm{~mm}^{3}$
$\frac{4}{3} \pi \times \mathrm{R}^{3}=\frac{4}{3} \pi \times \frac{2}{3} \times 216$
$\mathrm{R}^{3}=2 \times 72$
$R=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 3 \times 3}=2 \sqrt[3]{18} \mathrm{~mm}$
Diameter $=2 \times 2 \sqrt[3]{18}=4 \sqrt[3]{18} \mathrm{~mm}$
22. (D) The required number must also be divisible by $\left(2^{32}+1\right)$ and among the options given, $\left(2^{96}+1\right)$ is divisible by $\left(2^{32}+1\right)$.
$\because \quad 2^{96}+1=2^{96}+1^{96}$
$=\left(2^{32}\right)^{3}+\left(1^{32}\right)^{3}$, which is divisible by $2^{32}+1$
$\left[\because\right.$ when n is odd, $\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}\right)$ is always divisible by $\left.(\mathrm{a}+\mathrm{b})\right]$
23. (B) Given that,
H.C.F. of the two numbers $=27$

So, Let the numbers are $27 x$ and $27 y$ where x and y are co-prime nos. i.e. prime to each other.
ATQ,
$27 x+27 y=216$
$27(x+y)=216 \Rightarrow x+y=8$
possible pairs of x and y are $(1,7) \&(3,5)$
The possible pairs of two numbers will be $(27,189)$ and $(81,135)$.
The possible number of pairs is 2 .

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
24. (D) Initial bowling average $=12.4$

After improving bowling average by 0.2
New bowling average $=12.4-0.2=12.2$
Now, let x be the number of wickets taken before the last match.
ATQ,
$\frac{12.4 x+26}{x+4}=12.2$
$12.4 x+26=12.2 x+48.8$
$0.2 x=22.8$
$x=\frac{22.8}{0.2}=114$
Number of wickets taken before the last match $=114$
25. (D) ₹ 1
coins
50 p
coins
Ratio of respective values $=13: 11$
Ratio of value of 1 coin of each $=2: 1$

So, Ratio of number of coins $=\frac{13}{2}: \frac{11}{1}=13: 22$
$\because \quad$ Total number of coins $=210$
So, number of $₹ 1$ coins $=\frac{13}{13+22} \times 210$
$=\frac{13}{35} \times 210=78$ coins
26. (C) $n=2$ years, $r=10 \%$
$\therefore \quad$ C.I. $=525$
$\therefore C . I .=P\left[\left(1+\frac{r}{100}\right)^{n}-1\right]$
$525=P\left[\left(1+\frac{10}{100}\right)^{2}-1\right]=P\left[\frac{121-100}{100}\right]$
$\Rightarrow P=\frac{525 \times 100}{21}=₹ 2500$
According to the question,
$\mathrm{n}_{1}=4$ years, $\mathrm{r}_{1}=5 \%$
S.I. $=\frac{P \times r_{1} \times n_{1}}{100}=\frac{2500 \times 5 \times 4}{100}=₹ 500$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
27. (A) Let $₹ x$ be the marked price of the shirt.

ATQ,
Difference of discounts $=2 \%$
2% of $x=15$
$\frac{x \times 2}{100}=15$
$x=\frac{15 \times 100}{2}=₹ 750$
28. (D) Let the printed price of the book $=₹ x$

So, Selling price $=90 \%$ of $x=₹ \frac{9 x}{10}$
Now, if the CP of the book $=₹ y$ (let)
ATQ,
$y \times \frac{112}{100}=\frac{9 x}{10}$
$\frac{y}{x}=\frac{9}{10} \times \frac{100}{112}=\frac{45}{56}$
Required ratio $=45: 56$
29. (A) Let $x=$ number of months (from starting) after which C joined the business.

So, Ratio of shares of Profit $=30,000 \times 12: 40,000 \times 8: 50,000 \times x=32: 36: 5 x$
C's share $=\frac{5 x}{36+32+5 x}=\frac{5 x}{68+5 x}$
Given, $\frac{5 x}{68+5 x}=\frac{15000}{49000}$
$\Rightarrow \quad x=6$
$\Rightarrow C$ joined the business (i.e. $6-4)=2$ months after joining of B
30. (A) Let 1 child's 1 day's work $=x$

1 adult's 1 day's work $=y$
Then, $12 x=\frac{1}{16} \Rightarrow x=\frac{1}{192}$
and $8 y=\frac{1}{12} \Rightarrow y=\frac{1}{96}$
Work done in 3 days by 16 adults $=16 \times \frac{1}{96} \times 3=\frac{1}{2}$ part
Remaining work $=\frac{1}{2}$ part
Now, (6 adults +4 children)'s 1 day's work $=\frac{6}{96}+\frac{4}{192}=\frac{1}{12}$
i.e. $\frac{1}{12}$ work is done by them is 1 day

So, $\frac{1}{2}$ work will be done by them in $=12 \times \frac{1}{2}=6$ days

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
31. (B) In such type of questions, required ratio of the speeds of the two trains $=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}=3: 2$
32. (B)

Let the height of the tower be x unit
In $\triangle \mathrm{CBA}$,
$\tan \alpha=\frac{C B}{B A}=\frac{x}{B A}$
$\Rightarrow \quad \mathrm{BA}=\frac{x}{\tan \alpha}=x \cot \alpha$
In $\Delta \mathrm{DBA}$,
$\tan \beta=\frac{D B}{B A}=\frac{h+x}{x \cot \alpha} \quad(\because \mathrm{BA}=\mathrm{x} \cot \alpha)$
$\Rightarrow x \cot \alpha=\frac{h+x}{\tan \beta}=(h+x) \cot \beta$
$\Rightarrow \mathrm{x}(\cot \alpha-\cot \beta)=\operatorname{hcot} \beta$
$\Rightarrow x=\frac{h \cot \beta}{\cot \alpha-\cot \beta}$
$\Rightarrow \frac{\frac{h}{\tan \beta}}{\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}}=\frac{h}{\tan \beta} \times \frac{\tan \alpha \tan \beta}{\tan \beta-\tan \alpha}=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$
33. (B) $2\left(\sin ^{6} q+\cos ^{6} q\right)-3\left(\sin ^{4} q+\cos ^{4} q\right)+1=2\left[\left(\sin ^{2} q\right)^{3}+\left(\cos ^{2} q\right)^{3}\right]-3\left[\left(\sin ^{2} q\right)^{2}+\left(\cos ^{4} q\right)^{2}\right]+1$
$=2\left[\left(\sin ^{2} q+\cos ^{2} q\right)^{3}-3 \sin ^{2} q \cos ^{2} q\left(\sin ^{2} q+\cos ^{2} q\right)\right]-3\left[\left(\sin ^{2} q+\cos ^{2} q\right)^{2}-2 \sin ^{2} q \cdot \cos ^{2} q\right]+1$
$=2\left[1^{3}-3 \sin ^{2} q \cdot \cos ^{2} q \cdot(1)\right]-3\left[(1)^{2}-\sin ^{2} q \cdot \cos ^{2} q\right]+1$
$=2-6 \sin ^{2} q \cos ^{2} q-3+6 \sin ^{2} q \cos ^{2} q+1=2-3+1=0$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
34. (B)

ABCD is a quad. where diagonals AC and BD intersect each other at O . Also $\mathrm{AC} \perp \mathrm{BD}$
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$ (By using pythagoras Theorem)
$\mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{CO}^{2}$
$\mathrm{CD}^{2}=\mathrm{CO}^{2}+\mathrm{DO}^{2}$
$\mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2}$
Now, $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}+\mathrm{CO}^{2}+\mathrm{DO}^{2}$
$\mathrm{AD}^{2}+\mathrm{BC}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2}+\mathrm{BO}^{2}+\mathrm{CO}^{2}$
Hence, $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
35. (B) $\angle B C E=\angle C B D+\angle B D C$
(Exterior angle of a Δ is equal to the sum of opposite interior angles.)
$65^{\circ}=28^{\circ}+\angle \mathrm{BDC}$
$65^{\circ}-28^{\circ}=\angle \mathrm{BDC}$
$37^{\circ}=\angle \mathrm{BDC}$
Also, $\mathrm{AB}|\mid \mathrm{DC}$ and BD works as a transversal.
$\angle \mathrm{BDC}=\angle \mathrm{ABD}$ (Alternate interior angles)
$\angle \mathrm{ABD}=37^{\circ}$
36. (B) $\because \Delta \mathrm{BDE} \sim \Delta \mathrm{BCA} \quad(\because$ Both $\Delta \mathrm{s}$ are equilateral \Rightarrow equiangular $)$
$\operatorname{ar}(\triangle \mathrm{BDE}): \operatorname{ar}(\triangle \mathrm{ABC})=\mathrm{BD}^{2}: \mathrm{BC}^{2}=\left(\frac{1}{2} \mathrm{BC}\right)^{2}: \mathrm{BC}^{2}$
$=\frac{1}{4} \mathrm{BC}^{2}: \mathrm{BC}^{2}=1: 4$
37. (A) Let $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=4, \mathrm{~d}=8$
$\frac{b^{3}+c^{3}+d^{3}}{a^{3}+b^{2}+c^{3}}=\frac{8+64+512}{1+8+64}=8$
$\frac{d}{a}=\frac{8}{1}=8$
Hence, I is correct.
And, $\frac{a^{2}+b^{2}+c^{2}}{b^{2}+c^{2}+d^{2}}=\frac{1+4+16}{4+16+64}=\frac{21}{84}=\frac{1}{4}$
$\frac{a}{d}=\frac{1}{8}$
Hence, II is not correct.
38. (A) Let r_{1} : internal radius
r_{2} : external radius
h : height of the pipe
Volume of the metal $=\pi r_{2}^{2} h-\pi r_{1}^{2} h$
$748=\frac{22}{7}\left[9^{2}-\mathrm{r}_{1}^{2}\right] \times 14$
$\frac{748 \times 7}{22 \times 14}=81-\mathrm{r}_{1}{ }^{2}$
$17=81-\mathrm{r}_{1}{ }^{2}$
$r_{1}{ }^{2}=81-17=64$
$\mathrm{r}_{1}=\sqrt{64}=8 \mathrm{~cm}$
Thickness $=9-8=1 \mathrm{~cm}$
39. (B) Area of the tank $=2(l b+b h+l h)-l b$
$=2[25 \times 12+12 \times 6+25 \times 6]-25 \times 12$
$=2[300+72+150]-300$
$=2$ [522] -300
$=1044-300=744 \mathrm{~m}^{2}$
Cost of plastering $=744 \times 75=₹ 55800$
40. (A) h : height
c : curved surface area
$\mathrm{V}=$ Volume of the cone
$\mathrm{C}=\pi \mathrm{rl}$
$\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
$3 \mathrm{~V}=\pi \mathrm{r}^{2} \mathrm{~h}$
Now,
$\mathrm{qv}^{2}-\mathrm{c}^{2} \mathrm{~h}^{2}+3 \pi V \mathrm{~h}^{3}=\left(\pi \mathrm{r}^{2} \mathrm{~h}\right)^{2}-(\pi \mathrm{r})^{2} \mathrm{~h}^{2}+\pi\left(\pi \mathrm{r}^{2} \mathrm{~h}\right) \mathrm{h}^{3}$
$=\pi^{2} r^{4} h^{2}+\pi^{2} r^{2} l^{2} h^{2}+\pi^{2} r^{2} h^{4}$
$=\pi^{2} \mathrm{r}^{2} \mathrm{~h}^{2}\left(\mathrm{r}^{2}-l^{2}\right)+\pi^{2} \mathrm{r}^{2} \mathrm{~h}^{4}$
$=\pi^{2} r^{2} h^{2} \times-h^{2}+\pi^{2} r^{2} h^{4}$
$=-\pi^{2} r^{2} h^{4}+\pi^{2} r^{2} h^{4}=0$
41. (B) $\cos ^{2} \theta-3 \cos \theta+2=\sin ^{2} \theta$
$\cos ^{2} \theta-3 \cos \theta+2=1-\cos ^{2} \theta$
$2 \cos ^{2} \theta-3 \cos \theta+1=0^{\circ}$
$\cos \theta=\frac{1}{2}$ and 1
$\theta=60^{\circ}$ and 0°
But, $0<\theta<90^{\circ}$
$\therefore \quad \theta=60^{\circ}$ is the only solution.
42. (C) $a=(\sqrt{3}+\sqrt{2})^{-3}$,
$b=(\sqrt{3}-\sqrt{2})^{-3}$
$a \times b=[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^{-3}=[3-2]^{-3}=(1)^{-3}=1$
$=(a+1)^{-1}+(b+1)^{-1}=\frac{1}{a+1}+\frac{1}{b+1}$
$=\frac{b+1+a+1}{a b+b+a+1}==\frac{a+b+2}{1+a+b+1}$
$=\frac{a+b+2}{a+b+2}$
$[\therefore \mathrm{ab}=1]$
$=1$
43. (B) HCF of 36 and $40=4$

Then,
Pieces of pipe of length $36 \mathrm{~m}=\frac{36}{4}=9$
and, pieces of pipe of length $40 \mathrm{~m}=\frac{40}{4}=10$
Now, total pieces $=9+10=19$
44. (A) 5 times the quotient $=8$ times the remainder

So, quotient $=\frac{8 \times 35}{5}=56$
We know that,
Dividend $=$ divisor \times quotient + Remainder
$=5 \times 56 \times 56+35=15715$
45. (C) Remainder when 1351 is divided by $15=1$

Remainder when 1352 is divided by $15=2$
Remainder when 1353 is divided by $15=3$
Then, required remainder $=1 \times 2 \times 3=6$
46. (B)

A.T.Q,
$y-x=12.5$
and, $4 x+3 y=720$
On solving we get,
$3 y=330$ and $4 x=390$
$\therefore \quad$ cost of price of lower priced article $=3 y=₹ 330$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
47. (D) Using options,

We get $x=1, y=4$
$\therefore \quad x+y=5$
48. (D) Wine : Water
$1\left(\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right.$
Mixture that is drawn off $=\frac{1}{3}$ part $=\frac{1}{3} \times 24=8$ litres
49. (B) The weight of the teacher $=40+40 \times(500 \mathrm{gm})$
$=40+20=60 \mathrm{~kg}$
50. (C)

Remaining money $=100-(25+15+30)=30$ units
ATQ,
30 units $=12000$
$\therefore \quad$ Salary of Vivek $=₹ 40,000$
$\Rightarrow \quad 100$ units $=\frac{12000}{30} \times 100=₹ 40,000$
51. (B) Maths \Rightarrow Passed $=70 \%$

Failed = 30\%
English \Rightarrow Passed $=60 \%$
Failed $=40 \%$
Now, failed in both the subjects $=20 \%$
Then, passed in both the Subjects $=100-(30+40-20)=50$
ATQ,
$50 \%=500$
Then, $100 \%=\frac{500}{50} \times 100=1000$
$\therefore \quad$ Number of total students $=1000$
52. (A)

Income $\begin{array}{ll}\text { A } & \text { B } \\ 3 & 4 \\ 5\end{array}$
expenditure
5
9
New ratio $\Rightarrow A \quad B$
Income $\left.7 C_{5}^{12} \begin{array}{cc}16 \\ 5 & 9\end{array}\right) 7$
ATQ,
7 units $=6300$
1 unit $=900$
Then,
Difference between their salary $=4 \times 900=₹ 3600$

$K D$

 Campus

 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
53. (A) Let their speed be V_{A} and V_{B}

ATQ,
$\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}=\frac{30}{\frac{1}{2}}$
$V_{A}+V_{B}=60$
and $V_{A}-V_{B}=\frac{30}{6}$
$V_{A}-V_{B}=5$ \qquad
On solving equation (i) and (ii), we get
$\mathrm{V}_{\mathrm{A}}=\frac{60+5}{2}=32.5 \mathrm{~km} / \mathrm{h}$
54. (B) Compound interest $=\mathrm{P}\left(\left(1+\frac{r}{100}\right)^{2}-1\right)=\mathrm{P}\left(\frac{r}{100}\right)\left(2+\frac{r}{100}\right)$
$\mathrm{P}\left(\frac{1}{8}\right) \times\left(2+\frac{1}{8}\right)=3185.5$
$P=\left(\frac{3187.5 \times 8 \times 8}{17}\right)=₹ 12000$
55. (D) Let CP of 15 article be ₹ 15

Then, discount $=15 \times 6 \frac{2}{3} \%=₹ 1$
article which is free of cost $=1$
Total discount on 16 articles $=₹ 2$
ATQ,
$14 \rightarrow$ SP
$16 \rightarrow$ MP
$\begin{aligned} 7 & \rightarrow \mathrm{SP} \\ \frac{8}{8} & \rightarrow \mathrm{MP}\end{aligned}$
Now, 40% profit $\Rightarrow \frac{7}{5} \rightarrow \mathrm{SP}$
Here, $\mathrm{CP}=5$ and $\mathrm{MP}=8$
Then, Required percentage $=\frac{8-5}{5} \times 100=\frac{3}{5} \times 100=60 \%$
56. (D) $2\left(\sin ^{6} \alpha+\cos ^{6} \alpha\right)$
$=2\left[\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{3}-3 \sin ^{2} \alpha \cos ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)\right]$
$=2\left[1-3 \sin ^{2} \alpha \cos ^{2} \alpha\right]=2-6 \sin ^{2} \alpha \cos ^{2} \alpha$
and, $3\left[\sin ^{4} \alpha+\cos ^{4} \alpha\right]$
$=3\left[\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right]$
$=3-6 \sin ^{2} \alpha \cos ^{2} \alpha$
and, $4\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4$
Then, required value $=2-6 \sin ^{2} \alpha \cos ^{2} \alpha-3+6 \sin ^{2} \alpha \cos ^{2} \alpha+4=2-3+4=3$
57. (B) $\left(1+\tan 1^{\circ}\right)\left(1+\tan 44^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 43^{\circ}\right) \ldots \ldots .\left(1+\tan 45^{\circ}\right)$

Now, $\tan 45^{\circ}=\frac{\tan 1^{\circ}+\tan 44^{\circ}}{1-\tan 1^{\circ} \cdot \tan 44^{\circ}}$
$1=\frac{\tan 1^{\circ}+\tan 44^{\circ}}{1-\tan 1^{\circ} \cdot \tan 44^{\circ}}$
$1-\tan 1^{\circ} \cdot \tan 44^{\circ}=\tan 1^{\circ}+\tan 44^{\circ}$
$1=\tan 1^{\circ}+\tan 44^{\circ}+\tan 1^{\circ} \cdot \tan 44^{\circ}$
$1+\tan 1^{\circ}+\tan 44^{\circ}+\tan 1^{\circ} \cdot \tan 44^{\circ}=2$
$\left(1+\tan 1^{\circ}\right)\left(1+\tan 44^{\circ}\right)=2$
and this value is 23 times
i.e., the value of the expression $=2^{23}$
$\therefore \quad \mathrm{n}=23$
58. (D) $\frac{\operatorname{ar}(\Delta \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{DEF})}=\left(\frac{h_{1}}{h_{2}}\right)^{2}=\frac{256}{81}$
$\frac{h_{1}}{h_{2}}=\frac{16}{9}$
$h_{1}: h_{2}=16: 9$
59. (A) Given,
$\mathrm{CD}=16 \mathrm{~cm}$
$\mathrm{CM}=8 \mathrm{~cm}$
$\mathrm{OC}=17 \mathrm{~cm}$ (radius)

Using pythagoras theorem,
$\mathrm{OM}=\sqrt{17^{2}-8^{2}}$
Then, $\mathrm{ON}=23-15=8 \mathrm{~cm}$
Again, using pythagoras
$\mathrm{AN}=\sqrt{\mathrm{OA}^{2}-\mathrm{ON}^{2}}=\sqrt{17^{2}-8^{2}}=15 \mathrm{~cm}$
Then, $\mathrm{AB}=2 \times 15=30 \mathrm{~cm}$
60. (B) PA.PC = PB.PD
61. (B) On putting $x=c$, we get value of whole expression $=1$

On putting $x=\mathrm{b}$, we get value of whole expression $=1$
i.e, for any value of x. the value of whole expression will be 1 .
62. (B) Volume of the water flowing out from pipe = Volume of the conical tank

Let the time taken by pipe to fill the tank be t min.
Then,
$\pi r^{2} h=\frac{1}{3} \pi r^{2} h$
$\frac{1}{2} \times \frac{1}{2} \times 2000 \times t=\frac{1}{3} \times 30 \times 30 \times 30$
$\mathrm{t}=18 \mathrm{~min}$
63. (A)

Total Surface area of the solid $=$ C.S.A of cylinder $+2 \times$ C.S.A of hemisphere
$=2 \pi r h+2 \times 2 \pi r^{2}=2 \pi r[h+2 r]=2 \times \frac{22}{7} \times 7[26]=1144 \mathrm{~cm}^{2}$
64. (B)

Inside perimeter of running track
$=2 \times$ (length of straight portion) $+2 \times$ (length of semicircular part)
$396=2 \times 110+2 \pi r$
$r=28 \mathrm{~m}$
$\mathrm{R}=r+2=30 \mathrm{~m}$
Then, area of running track $=2 \times(110 \times 2)+\pi\left(R^{2}-r^{2}\right)$
$=440+\frac{22}{7}\left(30^{2}-28^{2}\right)=440+364.57=804.57 \mathrm{~cm}^{2}$
65. (C) The value of the given expression $=3-\frac{4}{7}-\frac{3}{7}=3-1=2$
66. (A) Nearest number to 107252 , which is divisible by $17=107253$

Hence, the number should be added is 1 .
67. (B) Let the number is x.

ATQ,
$x^{3}-25 x=1056$
Taking option (B),
$(11)^{3}-25(11)=1056$
$\Rightarrow \quad 1331-275=1056$
$\Rightarrow \quad 1056=1056$
Hence, Required number is 11 .

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
68. (D)

Rohan	$:$	Ankit
3×2	$:$	4
2	$:$	3

$\therefore \quad$ Time taken by Ankit $=\frac{24(2+3)}{3}=40$ days
69. (A)

ATQ,
We know that
$\mathrm{PT} \times \mathrm{TQ}=\mathrm{TS} \times \mathrm{RT}$
$6 \times 4=3 \times \mathrm{RT}$
$\mathrm{RT}=8 \mathrm{~cm}$
In $\Delta \mathrm{ROM}$,
$\mathrm{OR}^{2}=\mathrm{OM}^{2}+\mathrm{MR}^{2}$
$\mathrm{OR}^{2}=(1)^{2}+(5.5)^{2}$
$\mathrm{OR}^{2}=1+30.25$
$\mathrm{OR}=\sqrt{31.25} \mathrm{~cm}$
$\therefore \quad$ Area of circle $=\pi \mathrm{r}^{2}=\pi \times(\sqrt{31.25})^{2}=\frac{125}{4} \pi \mathrm{~cm}^{2}$
70. (C) Budget on clothing and grocery
$\Rightarrow 8 \%+20 \%=28 \%$
$\therefore 100 \%=₹ 32000$
$28 \%=₹ 320 \times 28=₹ 8960$
71. (A) $100 \%=₹ 32000$
$20 \%=₹ 320 \times 20=₹ 6400$
So, difference $=₹ 6400-₹ 4672=₹ 1728$
72. (B) Difference $=19 \%-6 \%=13 \%$

So, $100 \%=32000$
$13 \%=320 \times 13=₹ 4160$
73. (C) Miscellaneous expenditure $=₹ 320 \times 7=₹ 2240$
$\therefore \quad$ Increment $=₹ 3040-₹ 2240=₹ 800$
74. (D) Estimated electricity bill $=3200 \times \frac{19}{100}=₹ 6080$

Saved = ₹ 1920
$\therefore \quad$ Actual expense on electricity $=₹(6080-1920)=₹ 4160$
$\therefore \quad$ Required Percentage $=\frac{4160}{32000} \times 100=13 \%$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
75. (B) Let the initial length of rectangle $=x \mathrm{~m}$
and, the initial breath of rectangle $=y \mathrm{~m}$
ATQ,
$2 \times 4 x+2 \times y=480$
$\Rightarrow \quad 4 x+y=240$ \qquad
and, $4 x \times y=12800$
$\Rightarrow \quad x y=3200$ \qquad
Putting the value of $x=40$ in equation (i) and (ii), we get
$4(40)+y=240$
$\Rightarrow y=80$
and, $40 \times y=3200$
$\Rightarrow y=80$
Hence, the initial length of rectangle $=40$ meter
76. (C) Largest number $=420$

Smallest number $=204$
Average $=\frac{420+204}{2}=312$
77. (A)

Height of the cone $=\sqrt{l^{2}-r^{2}}=\sqrt{(17)^{2}-(8)^{2}}$
$=\sqrt{289-64}=\sqrt{225}$
$h=15 \mathrm{~cm}$
Now,
Volume of the cone $=$ Volume of sphere
$\frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi R^{3}$
$16 \times 15=R^{3}$
$\mathrm{R}=2 \sqrt[3]{30} \mathrm{~cm}$
$\therefore \quad$ Radius of the sphere $=2 \sqrt[3]{30} \mathrm{~cm}$
78. (C) $\frac{1}{3} \times \pi \times r_{1}^{2} \times 3 h=\frac{1}{3} \times \pi \times r_{2}^{2} \times 2 h$
$\frac{r_{1}}{r_{2}}=\frac{\sqrt{2}}{\sqrt{3}}$
$r_{2}=\frac{\sqrt{3}}{\sqrt{2}} r_{1}$
Required times $=\sqrt{\frac{3}{2}}$ times
79. (B)

ATQ,
$\angle \mathrm{BAE}=\angle \mathrm{DAE}=30^{\circ} \quad(\because \mathrm{AE}$ is the angle bisector of BAD$)$
and, $\angle \mathrm{BAD}=\angle \mathrm{BAE}+\angle \mathrm{DAE}=30^{\circ}+30^{\circ}=60^{\circ}$
$\angle \mathrm{DAC}=\angle \mathrm{BAD}=60^{\circ}$
$\angle \mathrm{EAC}=\angle \mathrm{EAD}+\angle \mathrm{DAC}$
$\angle \mathrm{EAC}=30^{\circ}+60^{\circ}=90^{\circ}$
So, $\angle E A C$ is right angle triangle
$\therefore \quad \mathrm{AC}^{2}=\mathrm{EC}^{2}-\mathrm{AE}^{2}$
$A C^{2}=(39)^{2}-(15)^{2}$
$\mathrm{AC}^{2}=1521-225$
$\mathrm{AC}^{2}=1296$
$\mathrm{AC}=36 \mathrm{~cm}$
$\therefore \quad$ Area of $\triangle \mathrm{AEC}=\frac{1}{2} \times 15 \times 36=270 \mathrm{~cm}^{2}$
80. (C)

$\therefore \quad$ Length of $\mathrm{SP}=9-x+0.7+x=9.7 \mathrm{~cm}$
81. (B) Total sum of page numbers $=\frac{40(41)}{2}=820$

Sum of the page numbers sheet $=820-795=25$
$\therefore \quad$ Required numbers $=12$ and 13
82. (C)

In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 30^{\circ}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{\sqrt{3}}$
$B C=\sqrt{3} \mathrm{AB}$
In $\triangle \mathrm{ABD}$,
$\frac{\mathrm{AB}}{\mathrm{BD}}=\tan 60^{\circ}$
$\frac{\mathrm{AB}}{\mathrm{BD}}=\sqrt{3}$
$B D=\frac{A B}{\sqrt{3}}$
And, $\mathrm{DC}=\mathrm{BC}-\mathrm{BD}$
$D C=\sqrt{3} A B-\frac{A B}{\sqrt{3}}$
$D C=\frac{3 A B-A B}{\sqrt{3}}=\frac{2 A B}{\sqrt{3}}$
Time taken by the car to travel distance of $\frac{2 \mathrm{AB}}{\sqrt{3}}=40$ minutes
$\therefore \quad$ Time taken by the car to travel distance of $\frac{A B}{\sqrt{3}}=\frac{40}{2 A B} \times \frac{\sqrt{3} \times A B}{\sqrt{3}}=20$ minutes
Hence, required time $=20+40=60$ minutes
83. (C)

Let the length of sides of regular Hexagon $=\mathrm{acm}$
$\therefore \quad$ Diagonal (AD) of Hexagon $=2 \mathrm{a} \mathrm{cm}$
In $\triangle \mathrm{ABO}$,
$\frac{h_{1}}{a}=\tan 30^{\circ}$
$\frac{h_{1}}{a}=\frac{1}{\sqrt{3}}$
$h_{1}=\frac{a}{\sqrt{3}} \mathrm{~cm}$
In $\Delta \mathrm{ADO}^{\prime}$,
$\frac{h_{2}}{A D}=\tan 60^{\circ}$
$\frac{h_{2}}{2 a}=\sqrt{3}$
$h_{2}=2 \sqrt{3} a \mathrm{~cm}$
$\therefore \quad$ Required ratio $=h_{1}: h_{2}=\frac{a}{\sqrt{3}}: 2 \sqrt{3} \mathrm{a}=1: 6$
84. (C) $\frac{1}{a}=\frac{x+y}{x y}, \frac{1}{b}=\frac{x+z}{x z}$ and $\frac{1}{c}=\frac{y+z}{y z}$

Now, $\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{x+y}{x y}+\frac{x+z}{x z}-\frac{y+z}{y z}$
$\frac{b c+a c-a b}{a b c}=\frac{z x+z y+x y+y z-x y-x z}{x y z}$
$\frac{b c+a c-a b}{a b c}=\frac{2 y z}{x y z}$
$x=\frac{2(a b c)}{b c+a c-a b}$
85. (B) $2^{64}-(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)$
$=2^{64}-(2-1)(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)$
$=2^{64}-\left(2^{64}-1\right)$
$=2^{64}-2^{64}+1=1$
86. (C)
$\frac{a^{2}+b c}{a^{2}-b c}+\frac{b^{2}+c a}{b^{2}-c a}+\frac{c^{2}+a b}{c^{2}-a b}=1$
Adding 3 on both sides, we get,
$\frac{a^{2}+b c}{a^{2}-b c}+1+\frac{b^{2}+c a}{b^{2}-c a}+1+\frac{c^{2}+a b}{c^{2}-a b}+1=1+3$
$\frac{2 a^{2}}{a^{2}-b c}+\frac{2 b^{2}}{b^{2}-c a}+\frac{2 c^{2}}{c^{2}-a b}=4$
$\frac{a^{2}}{a^{2}-b c}+\frac{b^{2}}{b^{2}-c a}+\frac{c^{2}}{c^{2}-a b}=2$
87. (A)

Hence, profit $\%=\frac{26}{65} \times 100=40 \%$
88. (A) From option (A),
$23+13-\frac{299}{100}=36-2.99=33.01 \%$
89. (A) Let pipe A alone can fill the tank $=x \mathrm{hr}$ and pipe B alone can empty the tank $=y \mathrm{hr}$ ATQ,
$2\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)$
$2(y-x)=x+y$
$y=3 x$
$\frac{x}{y}=\frac{1}{3}$
$\therefore \quad$ Required ratio $=3: 1$
90. (C) Let total profit $=x$

ATQ,
Ratio of their investment $=3: 4: 5$
$\frac{x \times 12}{100}+\frac{x \times 73}{100} \times \frac{4}{12}=2180$
$x=6000$
Profit of $\mathrm{C}=\frac{6000 \times 73}{100} \times \frac{5}{12}=₹ 1825$
91. (B) Total weight of 7 different experiments $=7 \times 53.735=376.145 \mathrm{~kg}$

Weight of first three experiments $=54.005 \times 3=162.015 \mathrm{~kg}$
and, the weight of sixth and seventh experiment $=(54.005-0.010) \times 2=107.990 \mathrm{~kg}$
Now, the weight of fourth and fifth experiment $=376.145-162.015-107.990=106.14 \mathrm{~kg}$
and the difference of their weight $=0.004 \mathrm{~kg}$
Weight of fourth experiment $=\frac{106.14+0.004}{2}=53.072 \mathrm{~kg}$
92. (B) $(4 \mathrm{M}+3 \mathrm{~B}) \times 5=(2 \mathrm{~W}+3 \mathrm{~B}) \times 5=(4 \mathrm{M}+3 \mathrm{~W}) \times 5$

On comparing, we get
Ratio of efficiency of man, woman and boys $=1: 2: 2$
Now, total work $=(4 \mathrm{M}+3 \mathrm{~B}) \times 5$
$=(4 \times 1+3 \times 2) \times 5=50$ units
Then, time taken by one man, one woman and one boy to complete the work with double
efficiency $=\frac{50}{(1+2+2) \times 2}=\frac{50}{10}=5$ days

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
93. (B) Let the price of the third variety of tea per kg be ₹ x

ATQ,
$136 \times 1+147 \times 1+x \times 3=161 \times 5$
$136+147+3 x=805$
On solving, we get $x=174$
$\therefore \quad$ Price of the tea $=₹ 174$ per kg
94. (B)

Discount $=\frac{20}{120} \times 100=\frac{50}{3} \%$
$\therefore \quad \mathrm{CP}=\frac{100 \times 100 \times 3}{350}=\frac{600}{7}$
Required ratio $=\frac{50}{3}: \frac{600}{7}=7: 36$
95. (A) Let speed of boat $=x \mathrm{~km} / \mathrm{hr}$

Speed of stream $=y \mathrm{~km} / \mathrm{hr}$
ATQ,
$\frac{12}{x-y}+\frac{18}{x+y}=3$
$\frac{36}{x-y}+\frac{24}{x+y}=\frac{13}{2}$
Solving equation (i) and (ii), we get
$\therefore \quad$ Speed of boat $=2 \mathrm{~km} / \mathrm{hr}$
96. (B) Required area $=\frac{4}{20} \times(60+20)=16$ acres
97. (A) Required ratio $=72: 90=4: 5$
98. (C) 10% of $72^{\circ}=\frac{72 \times 10}{100}=7.2$

Required angle $=50^{\circ}+7.2^{\circ} \times \frac{2}{3}=50^{\circ}+4.8^{\circ}=54.8^{\circ}$
99. (B) Let the production of barley $=x$

ATQ,
Production of maize $=3 x$
Production of wheat $=12 x$
Required ratio $=\frac{12 x}{50}: \frac{x}{48}=288: 25$
100. (C) Wheat, Rice and Maize $=\left(\frac{50}{360} \times 100+\frac{72}{360} \times 100+\frac{60}{360} \times 100\right)$
$=51 \%$ (approximate)

Campus

 K D Campus Pvt. Ltd

 K D Campus Pvt. Ltd}

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

QUANTITATIVE ABILITY - 87 (ANSWER KEY)

1. (A)
2. (D)
3. (C)
4. (B)
5. (B)
6. (A)
7. (A)
8. (C)
9. (B)
10. (D)
11. (A)
12. (B)
13. (D)
14. (B)
15. (A)
16. (A)
17. (D)
18. (B)
19. (C)
20. (C)
21. (B)
22. (D)
23. (B)
24. (D)
25. (D)
26. (C)
27. (A)
28. (D)
29. (A)
30. (A)
31. (B)
32. (B)
33. (B)
34. (B)
35. (B)
36. (B)
37. (A)
38. (A)
39. (B)
40. (A)
41. (B)
42. (C)
43. (B)
44. (A)
45. (C)
46. (B)
47. (D)
48. (D)
49. (B)
50. (C)
51. (B)
52. (C)
53. (A)
54. (A)
55. (B)
56. (D)
57. (D)
58. (B)
59. (D)
60. (A)
61. (B)
62. (B)
63. (B)
64. (A)
65. (B)
66. (C)
67. (A)
68. (B)
69. (D)
70. (A)
71. (C)
72. (A)
73. (B)
74. (C)
75. (D)
76. (B)
77. (A)
78. (C)
79. (B)
80. (C)
81. (B)
82. (C)
83. (C)
84. (C)
85. (B)
86. (C)
87. (A)
88. (A)
89. (A)
90. (C)
91. (B)
92. (B)
93. (B)
94. (B)
95. (A)
96. (B)
97. (A)
98. (C)
99. (B)
100. (C)
