IBPS PO SPECIAL PHASE - I - 309 (SOLUTION)

REASONING
(1-5) :

Day	Subject	Lecturer	Hour
Monday	Art	M	3
Tuesday	Economics	O	2
Wednesday	Hindi	N	1
Thursday	Maths	S	4
Friday	Chemistry	Q	5
Saturday	English	R	1
Sunday	Physics	P	2

1. (4)
2. (5)
3. (5)
4. (2)
5. (4)
$(6-11):$

Teacher	Subject	Hobby
M	Science	Cooking
N	English	Painting
O	Geography	Shayari
P	History	Swiming
Q	Maths/Eco	Music/Tracking
R	Eco/Maths	Tracking/Music
S	Biology	Peotry
T	Chemistry	Singing

6. (1)
7. (3)
8. (1)
9. (4)
10. (3)
11. (4)
12. (4) $\mathrm{A}<\mathrm{B}=\mathrm{C}<\mathrm{F} \leq \mathrm{G} \leq \mathrm{D}=\mathrm{E}$
(i) $\mathrm{A}>\mathrm{F} \rightarrow \quad$ False
(ii) $\mathrm{G}>\mathrm{E} \rightarrow \quad$ False

If neither conclusion I nor II is true.
13. (4) $\mathrm{O} \geq \mathrm{P}=\mathrm{R} \leq \mathrm{S}<\mathrm{Q}=\mathrm{N} \leq \mathrm{M}$
(i) $\mathrm{N}<\mathrm{O} \quad \rightarrow \quad$ False
(ii) $\mathrm{M}>\mathrm{O} \rightarrow \quad$ False

If neither conclusion I nor II is true.
14. (1) $\mathrm{A} \geq \mathrm{P}=\mathrm{S}>\mathrm{T}=\mathrm{B} \geq \mathrm{X}>\mathrm{V}$
(i) $\mathrm{A}>\mathrm{S} \mathrm{X} \rightarrow$ True
(ii) $\mathrm{P}<\mathrm{B} \rightarrow$ False

If only conclusion I is true.
15. (1) $\mathrm{W}<\mathrm{X}>\mathrm{Z}>\mathrm{U}>\mathrm{V}>\mathrm{Y}<\mathrm{S}$
(i) $\mathrm{S}<\mathrm{Z} \rightarrow \quad$ False
(ii) $\mathrm{X}>\mathrm{Y} \rightarrow \quad$ True

If only conclusion II is true.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
16. (1) $\mathrm{R}<\mathrm{V}=\mathrm{A}<\mathrm{X} \leq \mathrm{Y}<\mathrm{S}<\mathrm{M}<\mathrm{B}$
(i) $\mathrm{V}<\mathrm{S} \rightarrow \quad$ True
(ii) $\mathrm{M}>\mathrm{R} \quad \rightarrow \quad$ True

If both conclusion I and II are true.
(17-21) :

16. (3)
17. (2)
18. (5)
19. (1)
20. (4)
17. (3)
18. (4)
19. (1)
20. (3)
21. (4)
22. (1)
23. (2)
24. (3)
25. (3)
26. (4)
(27-29) :

- $\mathrm{X} \rightarrow$ male \rightarrow Publication
- X and $Y \rightarrow$ Publication
- Y must be female
- U and $\mathrm{S} \rightarrow$ accounts
- T and $\mathrm{W} \rightarrow$ Brother \rightarrow different department one of work in accounts and other in operations. (all are male)
- $\mathrm{S} \rightarrow$ (Husband of V$) \rightarrow \mathrm{V} \rightarrow$ female
- U work in accounts must be female.
- V work in operation along with one of T and W
income $\rightarrow \mathrm{S}>\mathrm{X}, \mathrm{S}>\mathrm{T}, \mathrm{X}>\mathrm{W}, \mathrm{A}<\mathrm{H}$.
Since ${ }^{\circledR} G$ earns maximum and U earns minimum.
$\mathrm{Y}>\mathrm{V}>\mathrm{S}>[(\mathrm{W}>\mathrm{X}>\mathrm{T})$ or $(\mathrm{X}>\mathrm{W}>\mathrm{T})$ or $(\mathrm{W}>\mathrm{T}>\mathrm{X})$ or $(\mathrm{T}>\mathrm{W}>\mathrm{X})$ or $(\mathrm{T}>\mathrm{X}>\mathrm{W})$ or $(\mathrm{X}>\mathrm{T}>\mathrm{W})]$ $>\mathrm{C}$.

27. (3)
28. (3)
29. (1)
(30-31) :

30. (3) 31. (1)

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(32-35) :
Vipul $=$ Vimal $=$ Vikas
Vimal + Vikash + Anil $=32$
Anil = Vimal + Vikash
Put in equation
2 Anil $=32$, Anil $=16$
Vimal + Vikash $=16$
Vimal $=$ Vikash $=8$
Thus vipul $=8$.
32. (5)
33. (5)
34. (5)
35. (5)

MATHS

(36-40) :
36. (1) $212.5 \times 42.5-128.5 \times 33.2=$?
$?=9031.25-4266.20=4765.05$
37. (4) $(165)^{2}+(145)^{2}-(155)^{2}=? \div 25$
$\frac{?}{25}=27225+21025-24025$
$\frac{?}{25}=24225$
$\therefore \quad ?=24225 \times 25=605625$
38. (2) $1496 \times ? \times 36=861696$
$?=\frac{861696}{1496 \times 36}=16$
39. (3) $23 \times 15-60+? \div 31=292$
$345-60+\frac{?}{31}=292$
$\frac{?}{31}=292-285$
? $=31 \times 7=217$
40. (3) 14% of $1850+? \%$ of $1380=463$
$1850 \times \frac{14}{100}+\frac{?}{100} \times 1380=463$
$259+13.80 \times ?=463$
$13.80 \times ?=463-259$
$\therefore \quad ?=\frac{204}{13.80}=14.78$
(41-45) :
41. (3) Required total $=450 \times \frac{2}{5}+540 \times \frac{5}{9}+140 \times \frac{2}{5}+250 \times \frac{3}{10}+850 \times \frac{8}{17}+480 \times \frac{5}{8}$
$=180+300+56+75+400+300=1311$

Kampus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (2) Required average $=\frac{500+527+564+510+605+620}{6}$
$=\frac{3326}{6}=554.33 \approx 554$
43. (5) Laptos sold by Lenovo in the year $2013=564 \times \frac{1}{2}=282$

Laptops unsold by Lenovo in the year $2011=500 \times \frac{2}{5}=200$
$\therefore \quad$ Required $\%=\left(\frac{282}{200} \times 100\right) \%=141 \%$
44. (4) Laptop unsold by Asus in the year $2015=660 \times \frac{5}{11}=300$

Laptops sold by Dell in the year $2016=819 \times \frac{5}{9}=455$
\therefore Required less $\%=\left[\frac{455-300}{455} \times 100\right] \%=34.06 \% \approx 34 \%$
45. (5) Required difference $=500 \times \frac{1}{5}+527 \times \frac{1}{17}+564 \times \frac{0}{2}+510 \times \frac{1}{3}+605 \times \frac{1}{5}+620 \times \frac{1}{5}$ $=100+31+0+170+121+124=546$
(46-50) :
46. (2) The given number series is based on the following pattern :
$1548 \div 3=516$
$516 \div 4=129$
$129 \div 3=43$
$43 \div 4=\mathbf{1 0 . 7 5}$
Hence, 10.75 will replace the question mark.
47. (4) The given number series is based on the following pattern :
$949 \times 0.2=189.8$
$189.8 \times 0.3=\mathbf{5 6 . 9 4}$
$56.94 \times 0.4=22.776$
$22.776 \times 0.5=11.388$
$11.388 \times 0.6=6.8328$
Hence, 56.94 will replace the question mark.
48. (1) The given number series is based on the following pattern :
$121+23 \times 1=144$
$144+23 \times 2=190$
$190+23 \times 3=259$
$\therefore \quad ?=259+23 \times 4=259+92=\mathbf{3 5 1}$
Hence, 351 will replace the question mark.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
49. (5) The given number series is based on the following pattern :
$14 \times 3+1.5=43.5$
$43.5 \times 6+1.5 \times 2=264$
$264 \times 12+1.5 \times 4=\mathbf{3 1 7 4}$
$3174 \times 24+1.5 \times 8=76188$
Hence, 3174 will replace the question mark.
50. (3) The given number series is based on the following pattern :
$41 \times 2^{2}=164$
$164 \times 4^{2}=2624$
$2624 \times 6^{2}=\mathbf{9 4 4 6 4}$
$94464 \times 8^{2}=6045696$
Hence 94464 will replace the question mark.
51. (3) Let $x \mathrm{~km} / \mathrm{hr}$ be the speed of the car in the return journey.

Speed of the car in onward journey $=\frac{130}{100} \times x=\frac{13 x}{10} \mathrm{~km} / \mathrm{hr}$
$=\frac{2 \times \frac{13 x}{10} \times x}{\frac{1.3 x}{10}+x}=\frac{26 x}{23} \mathrm{~km} / \mathrm{hr}$
Average speed
$500 \times \frac{23}{26 x}=17$
$x \approx 26 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Speed in the onward journey $=\frac{13 \times 26}{10}=33.8 \mathrm{~km} / \mathrm{hr}$
52. (3) Number of ways of rearranging the word ENGINEER $=\frac{8!}{3!\times 2!}=3360$

Finding the number of ways of arranging the word ENGINEER such that G and R ae always together is done by taking GR as a single alphabet and then finding the permutation.

Number of ways of arranging the word ENGINEER such that G and R are always together =
$\frac{7!}{3!\times 2!}=420$
Number of ways of arranging the word ENGINEER such that G and R never tegether = Number of ways of rearranging the word ENGINEER. Number of ways of arranging the word ENGINEER such that G and R are always together.

Number of ways of arranging the word ENGINEER such that G and R are never together
$=3360-420=2940$

$\frac{K D}{\text { Campus }}$
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
53. (5) In first 3 days, 37% of the work is completed. So in last 7 days, 63% of the work will be done by A and B only.

Which mean $7\left(\frac{1}{A}+\frac{1}{B}\right)=\frac{63}{100}$
$\frac{1}{A}+\frac{1}{B}=\frac{9}{100}$
It is given that $5 \mathrm{~A}=4 \mathrm{~B}$
$\frac{5}{4 B}+\frac{1}{B}=\frac{9}{100}$
$B=25$ days
A $=20$ days
$\mathrm{C}=100$ days
Time taken by fastest worker $=20$ days
Time taken by second fastest worker $=25$ days
\therefore Required $\%=\left[\frac{25-20}{25} \times 100\right] \%=20 \%$
54. (2) Interest earns from first scheme $=\frac{1500 \times 5 \times 14}{100}=₹ 1050$

Amount $=1500+1050=₹ 2550$
Interest earns after 2 years at compound interest $=₹ 1408$
$\mathrm{R}=20 \%=\frac{1}{5}$

5
$\times 5$
$25 \quad 36$

C.I $=36-25=11$
$\because 11$ unit $\rightarrow 1408$
$\therefore 25$ unit $\rightarrow \frac{1408}{11} \times 25=₹ 3200$
$\therefore \quad$ Required additional money $=3200-2550=₹ 650$
55. (3) Let speed of motorboat in still water be $x \mathrm{~km} / \mathrm{h}$ and speed of stream be $y \mathrm{~km} / \mathrm{h}$.

Now, according to the question,

$$
\begin{equation*}
\frac{25}{x-y}+\frac{39}{x+y}=8 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{35}{x-y}+\frac{52}{x+y}=11 \tag{2}
\end{equation*}
$$

By equation (1) $\times 4-(2) \times 3$,
We have $\frac{100}{x-y}-\frac{105}{x-y}=32-33$

Kampus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\frac{-5}{x-y}=1 \Rightarrow x-y=5$
From equation (1)
$\frac{25}{5}+\frac{39}{x+y}=8$
$\frac{39}{x+y}=8-5=3$
$x+y=13$ \qquad
By equation (4) - (3)
$x+y-x+y=13-5=8$
$2 y=8$
$y=\frac{8}{2}=4 \mathrm{~km} / \mathrm{h}$
(56-60) :
56. (4) The speed of Vehicle V on both the days is 43 kmph
57. (3) Speed of U on 1 st day $=52 \mathrm{kmph}$

Speed of W on 1 st day $=63 \mathrm{kmph}$
\therefore Difference $=63-52=11 \mathrm{kmph}$
58. (5) Speed of Vehicle W on 2 nd day $=45 \mathrm{kmph}=45 \times \frac{5}{18}=2.5 \times 5=12.5 \mathrm{~m} / \mathrm{s}$
59. (5) Required $\%=\left(\frac{636}{703} \times 100\right) \%=90.46 \approx 90 \%$
60. (2) Required Ratio $=\frac{\text { Speed of Vehicle X on day } 2}{\text { Speed of Vehicle Y and on day } 2}$
$=\frac{51}{39}=\frac{17}{13}=17: 13$
61. (4) We need equivalence between one day's work of man and woman.

From statement I, we can get 1 man's 1 day's work.
From statement II or III, we can get 1 woman's 1 day's work.
Hence, we can establish the relation between man's and woman's work and get the required answer.
62. (5) When a train crosses a pole, then

Speed of train $=\frac{\text { Length of train }}{\text { Time taken }}$
When a train crosses a platform, then Speed of train
$=\frac{\text { Length of platform and train }}{\text { Time }}$
Clearly, statement II and either I or III supplement the required data to determine the speed of train.

$K \searrow$ Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
63. (5) Area of the square $=(\text { side })^{2}=\frac{1}{2}(\text { diagonal })^{2}$

Again, Perimeter $=4 \times$ side
Clearly, from any one of the three statements we can determine area of the square.
64. (3) Let the number be $10 x+y$.

From statement I,
$(10 y+x)-(10 x+y)=18$
$9(y-x)=18$
$y-x=2$
From statement II,
$x+y=14$
From statement III,
$y-x=2$
Clearly, statement II and either I or III can supplement the data to know x and y and hence the number.
65. (2) From statement I,

We do not know the principal.
From statement II,
Data are incomplete,
i.e. principal is unknown.

From statement III,
We get the required data, i.e.
If principal be ₹ x.
Interest $=₹ x$
Time $=5$ years,
Rate $=\frac{\text { Interest } \times 100}{\text { Principe } \times \text { time }}$
(66-70) :
66. (5) I. $8 x^{2}+18 x+4=0$
$\Rightarrow 8 x^{2}+16 x+2 x+4=0$
$\Rightarrow 8 x(x+2)+2(x+2)=0$
$\Rightarrow(8 x+2)(x+2)=0$
$\Rightarrow(8 x+2)(x+2)=0$
$\Rightarrow x=-\frac{2}{8},-2$
or $-\frac{1}{4},-2$
II. $2 y^{2}+29 y+14=0$
$\Rightarrow 2 y^{2}+28 y+y+14=0$
$\Rightarrow 2 y(y+14)+1(y+14)=0$
$\Rightarrow(2 y+1)(y+14)=0$
$\Rightarrow y=-\frac{1}{2},-14$

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
67. (4) I. $x^{2}-144=0$
$\Rightarrow x^{2}=144 \quad \Rightarrow x= \pm 12$
II. $y=\sqrt{144}$
$\Rightarrow y=12$
\therefore clearly, $x \leq y$
68. (3) I. $17 x^{2}+48 x=9$
$\Rightarrow 17 x^{2}+48 x-9=0$
$\Rightarrow 17 x+51 x-3 x-9=0$
$\Rightarrow 17 x(x+3)-3(x+3)=0$
$\Rightarrow(17 x-3)(x+3)=0$
$\Rightarrow x=\frac{3}{17},-3$
II. $13 y^{2}=35 y-18$
$\Rightarrow 13 y^{2}-35 y+18=0$
$\Rightarrow 13 y^{2}-26 y-9 y+18=0$
$\Rightarrow 13 y(y-2)-9(y-2)=0$
$\Rightarrow(13 y-9)(y-2)=0$
$\Rightarrow y=\frac{9}{13}, 2$
\therefore clearly, $x<y$
69. (5) I. $2 x^{2}-8 x-64=0$
$\Rightarrow 2 x^{2}-16 x+8 x-64=0$
$\Rightarrow 2 x(x-8)+8(x-8)=0$
$\Rightarrow(2 x+8)(x-8)=0$
$\Rightarrow x=-\frac{8}{2}, 8$ or $-4,8$
II. $2 y^{2}-13 y-34=0$
$\Rightarrow 2 y^{2}+4 y-17 y-34=0$
$\Rightarrow 2 y(y+2)-17(y+2)=0$
$\Rightarrow(2 y-17)(y+2)=0$
$\Rightarrow y=\frac{17}{2},-2$
70. (3) I. $x^{2}+40 x+399=0$
$\Rightarrow x^{2}+21 x+19 x+399=0$
$\Rightarrow 2 x(x+21)+19(x+21)=0$
$\Rightarrow(x+19)(x+21)=0$
$\Rightarrow x=-19,-21$
II. $y^{2}-2 y-195=0$
$\Rightarrow y^{2}-15 y+13 y-195=0$
$\Rightarrow y(y-15)+13(y-15)=0$
$\Rightarrow(y+13)(y-15)=0$
$\Rightarrow y=-13,15$
\therefore Clearly, $\mathrm{x}<\mathrm{y}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009	
ENGLISH LANGUAGE	
81. (2) Remove 'for' in sentence.	
82. (3) 'The' replace with 'about the'.	
83. (3) 'Interested me in' repalce with "Interested me with'.	
84. (5) No error.	
85. (4) 'Water' replace with 'in water'.	
86. (5) No error.	
87. (2) 'ever-grow' wrong phrase correct is 'ever-growing'.	
88. (4) 'Probable' (adjective) replace with 'probably'(adverb).	
89. (4) 'Above' replace with 'over'.	
Words	Meaning in English
Concomitant	happening at the same time as somthing else
Assiduous	working very har and taking great care
Omniscient	knowing every thing
Ulterior	that some-body keeps hidden and does not admit
Altruistic	A person who cares about the needs and happine people more than your own
Deported	to force somebody to leave a country
Augmented	to increase the amount value, size of something
Spurious	false/although seeming to be genuine
Inadvertently	by accident
Resplendent	Brightly coloured in an impressive way
Galvanise	To encourage
Cater to	To meet the need
Churn out	To produce in large number
Conducive	Helpful
Allure	Athraction
Civil amenities	public facility
Mitigate	To lessen
Outstrip	To surpass
Pre-requisite	Pre-condition

IBPS PO SPECIAL PHASE - I - 309 (ANSWER KEY)

1. (4)
2. (5)
3. (5)
4. (2)
5. (4)
6. (1)
7. (3)
8. (1)
9. (4)
10. (3)
11. (4)
12. (4)
13. (4)
14. (1)
15. (1)
16. (1)
17. (3)
18. (4)
19. (1)
20. (3)
21. (4)
22. (1)
23. (2)
24. (3)
25. (3)
26. (4)
27. (3)
28. (3)
29. (1)
30. (3)
31. (1)
32. (5)
33. (5)
34. (5)
35. (5)
36. (1)
37. (4)
38. (2)
39. (3)
40. (3)
41. (3)
42. (2)
43. (5)
44. (4)
45. (5)
46. (2)
47. (4)
48. (1)
49. (5)
50. (3)
51. (3)
52. (3)
53. (5)
54. (2)
55. (3)
56. (4)
57. (3)
58. (5)
59. (5)
60. (2)
61. (4)
62. (5)
63. (5)
64. (3)
65. (2)
66. (5)
67. (4)
68. (3)
69. (5)
70. (3)
71. (5)
72. (4)
73. (3)
74. (4)
75. (1)
76. (5)
77. (2)
78. (2)
79. (2)
80. (5)
81. (2)
82. (3)
83. (3)
84. (5)
85. (4)
86. (5)
87. (2)
88. (4)
89. (4)
90. (5)
91. (3)
92. (1)
93. (2)
94. (5)
95. (5)
96. (5)
97. (5)
98. (4)
99. (4)
100. (4)
