IBPS CLERK SPECIAL - I MOCK TEST - 296 (SOLUTION)

(1-5) :

1. (3)
2. (2)
3. (1)
4. (1)
5. (4)
$(6-10):$

Facing \uparrow North

6. (2)
10. (1)
(11-16):

Person	Day	School
Raju	Tuesday	C
Jyoti	Wednesday	D
Mohan	Thursday	A
Roshan	Saturday	F
Kiran	Sunday	G
Kamal	Monday	B
Tony	Friday	E

11. (3)
12. (4)
(17-19):

Car 1	Car 2
$\mathrm{C}, \mathrm{A}, \mathrm{F}, \mathrm{G}$	$\mathrm{E}, \mathrm{B}, \mathrm{D}$

17. (1)
18. (4)
19. (2)
20. 3
21. (1)
22. (3)

Car 1	Car 2
$\mathrm{C}, \mathrm{A}, \mathrm{E}, \mathrm{G}$	$\mathrm{B}, \mathrm{D}, \mathrm{F}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
20. (1) The letters move four places backward and each number is increased by 4 from its preceding number

21. (2) Given statements:
$\mathrm{Z}>\mathrm{P} \geq \mathrm{T}=\mathrm{N}$
$\mathrm{R}=\mathrm{T}<\mathrm{Q} \leq \mathrm{S}$
Combining both state-ments, we get
$\mathrm{Z}>\mathrm{P} \geq \mathrm{T}=\mathrm{N}=\mathrm{R}=\mathrm{T}<\mathrm{Q} \leq \mathrm{S}$
Thus, $Z<Q$ is not true.
Again, $\mathrm{S}>\mathrm{N}$ is true.
And, $P \geq S$ is not true.
Hence, only II is true.
22. (3) Given statements:
$\mathrm{S}<\mathrm{U}=\mathrm{R} \leq \mathrm{N}$
$B>X \geq W$
$\mathrm{S}>\mathrm{J}=\mathrm{W}$
Combining all the statements, we get
$\mathrm{N} \geq \mathrm{R}=\mathrm{U}>\mathrm{S}>\mathrm{J}=\mathrm{W} \leq \mathrm{X}<\mathrm{B}$
Thus, $\mathrm{N}>\mathrm{J}$ is true.
Again, $\mathrm{B}<\mathrm{S}$ is not true. And, $\mathrm{U}>\mathrm{J}$ is true.
Hence, only I and III are true.
23. (5) Given statements:
$\mathrm{X}=\mathrm{Q} \geq \mathrm{R}$
$\mathrm{M}=\mathrm{N}>\mathrm{P}$
$\mathrm{P}>\mathrm{V}=\mathrm{Z}<\mathrm{R}$

Combining all the statements, we get
$\mathrm{M}=\mathrm{N}>\mathrm{P}>\mathrm{V}=\mathrm{Z}<\mathrm{R} \leq \mathrm{Q}=\mathrm{X}$
Thus, $\mathrm{M} \geq \mathrm{R}$ is not true.
Again, $\mathrm{V}>\mathrm{Q}$ is not true.
And, $\mathrm{N} \leq \mathrm{R}$ is not true.
Hence none is true.
24. (4) Given statements:
$\mathrm{U} \geq \mathrm{V} \geq \mathrm{W}=\mathrm{X}$
$\mathrm{B}>\mathrm{C}=\mathrm{D} \geq \mathrm{U}$
Combining All the statements, we get
B $>\mathrm{C}=\mathrm{D}>\mathrm{U} \geq \mathrm{V} \geq \mathrm{W}=\mathrm{X}$
Thus, $\mathrm{D} \geq \mathrm{V}$ is true.
Again, $\mathrm{C} \geq \mathrm{X}$ is true.
Also, $\mathrm{B}>\mathrm{U}$ is true.
Hence, all I, II and III are true.
25.(4) Given statements:
A > B = M
$\mathrm{M} \geq \mathrm{L}$
L $>\mathrm{S}$
$\mathrm{S}<\mathrm{V}$

$$
\begin{equation*}
\ldots \text {. iv) } \tag{ii}
\end{equation*}
$$

Combining all the statements, we get
A $>\mathrm{B}=\mathrm{M} \geq \mathrm{L}>\mathrm{S}<\mathrm{V}$
Thus, $\mathrm{M}>\mathrm{S}$ is true.
$\mathrm{L} \leq \mathrm{A}$ is not true.
$\mathrm{V}>\mathrm{A}$ is not true.
Hence, only conclusion I is true.
(26-28) :

26. (3)
27. (3)
28. (3)
29. (2)
(30-32) :

30. (2) The shortest person is D.
\therefore D's height $=147-15=132 \mathrm{~cm}$
31. (1)
32. (4) 155 lies between 160 and 147. Thus, the possible height of G or J will be 155 cm .
(33-34) :

33. (5) I. True II. True Hence, both Conclusion I and II follow.
34. (1)
I. True
II. False

Hence, only conclusion I follows.
35. (1)

I. True
II. Can't say

Hence, only conclusion I follows.
36. (1) $\times \frac{1}{2}+\frac{1}{2}, \times 1+1, \times 1 \frac{1}{2}+1 \frac{1}{2}, \ldots$.
37. (2) $\times 1 \frac{1}{2}, \times 2, \times 2 \frac{1}{2}, \ldots$
38. (4) $+1^{2},+3^{2},+5^{2}, \ldots$
39. (3) $\times 1+1, \times 2-1, \times 3+1, \times 4-1, \ldots$
40. (5) $\times 2+2, \times 2+4, \times 2+4, \times 2+6, \ldots$
41. (2) Direct Formula:

$$
\begin{aligned}
& \text { Speed of boat }=\frac{1}{2}\left[\frac{16}{2}+\frac{16}{4}\right]=6 \mathrm{~km} / \mathrm{hr} \\
& \text { Speed of stream }=\frac{1}{2}\left[\frac{16}{2}-\frac{16}{4}\right]=2 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (3) $=9900 \div 25+215-310=$?
$\therefore ?=(400-4)+215-310=396+215-310 \approx 300$
43. (5) Ratio of profit $=50 \times 3: 80 \times 2.5=150: 200=3: 4$
\therefore Sunetra's share $=\frac{24500}{7} \times 3=₹ 10500$
44. (2) 2 girls +4 boys can sit in a row in $6!=720$ ways without any condition. Now, if girls sit always together, they can sit in $5!\times 2$ ways, i.e. 240 ways. \therefore Required ways in which girls do not sit together $=720-240=480$
45. (4) Since T is a common in both groups, we can't separate the weight of one T from $P+2 T+$ $\mathrm{R}+\mathrm{F}+\mathrm{G}$.
46. (5) $2 x+3 y+z=55 \ldots$ (1)
$x+z-y=4 \ldots$ (2)
$y-x+z=12$
(2) $+(3) \Rightarrow 2 z=16 \therefore z=8$

Now, (2) $\Rightarrow x-y=-4 \ldots$ (4)
and (1) $\Rightarrow 2 x+3 y=47 \ldots$ (5)
(5) $-2 \times(4) \Rightarrow 5 y=55$
$\therefore y=11$
47. (3) Suppose there are x children. Then each children gets $\frac{x}{5}$ sweets. Therefore $x\left(\frac{x}{5}\right)=405$ $\therefore x=\sqrt{2025}=45$ $\therefore \frac{x}{5}=9$
48. (1) The required amount $=15000\left(1+\frac{5}{100}\right)^{2}=15000\left(\frac{21}{20}\right)^{2}$
$=\frac{15000 \times 21 \times 21}{20 \times 20}=₹ 16537.5$
49. (4) Only ratio and percentage are given. So we cannot find any absolute value.
50. (4) Let $E=$ the event of getting the sum 7 .
and,
$\mathrm{F}=$ the event of getting at least one 2.
Then,
$\mathrm{E}=\{(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)\}$
and,
$F=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)$,
$(2,1),(2,3),(2,4),(2,5),(2,6)\}$
Then, $\mathrm{E} \cap \mathrm{F}=\{(2,5),(5,2)\}$
Now, we have to find $\mathrm{P}(\mathrm{F} / \mathrm{E})$
$\mathrm{P}(\mathrm{F} / \mathrm{E})=\frac{P(E \cap F)}{P(S)}=\frac{2}{6}=\frac{1}{3}$
51. (1) Marks of S in Chemistry $=120$

Total marks obtained by all the five students together $=90+110+100+120+60=480$
\therefore Required $\%=\frac{120}{480} \times 100=25 \%$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
52. (5) Marks obtained by T in Physics $=50$

New marks to T in Physics $=50+\frac{50 \times 14}{100}$
\therefore Required $\%=\frac{57}{140} \times 100=40.71 \approx 41 \%$
53. (2) Total marks of T in both the subjects $=50+60=110$

Marks obtained by R in Physics $=80$, which is less than the marks obtained by T in both the subjects together.
54. (4) Ratio $=\frac{\text { Total marks obtained by P in both subjects }}{\text { Total marks obtained by T in both subjects }}=\frac{130+90}{50+60}=\frac{220}{110}=2: 1$
55. (2) Ratio $=\frac{\text { Marks obtained by Qand Sin Chemistry }}{\text { Marks obtained by P and R in physics }}=\frac{110+120}{130+80}=\frac{230}{210}=23: 21$
56. (2) $(n \times 47)+38=n \times 49$
or, $38=2 n$
$n=19$
57. (3) \therefore Required profit $\%=\frac{8}{25} \times 100=32 \%$
58. (3) Worth of hotel after 3 years $=1200000 \times(1.25)^{3}=2343750$

Worth of car after 3 years $=1800000\left(1-\frac{30}{100}\right)^{3}=1800000\left(\frac{7}{10}\right)^{3}=617400$
Reqd. difference $=2343750-617400=₹ 1726350$
59. (1) $\mathrm{A}+\mathrm{B}=75$
$B+C=60$
Now, adding (1) and (2)
$(\mathrm{A}+2 \mathrm{~B}+\mathrm{C})-(\mathrm{A}+\mathrm{B}+\mathrm{C})=\mathrm{B}$
or, $75+60-100=B$
$B=35 \% \quad A=40 \%$
Hence, A is the most efficient.
60. (4) Suppose he walks for x hours.
then $6 x+30(12-x)=20 \times 12$
or, $6 x+360-30 x=240$
or, $360-240=24 x$
$x=\frac{120}{24}=5$ hours
(61-65) :
61. (2) Total number of Engi-neering Colleges in the year $2009=225+150+100+50=525$

Total number of Engin-eering Colleges in the year $2012=425+325+250+175=1175$
Increase $=1175-525=650$
Percentage increase $=\left(\frac{650}{525} \times 100\right) \%=123.8 \%$
62. (3) Total number of (IITs + NITs + Government Eng-ineering Colleges) in the year $2009=50+$ $100+150=300$
Number of IITs in the year $2012=175$
\therefore Reqd ratio $=300: 175=12: 7$
63. (3) Total number of colleges in the year $2009=525$

Total number of colleges in the year $2010=250+200+150+75=675$
\therefore Percentage increase $=\left(\frac{150}{525} \times 100\right) \%=28.57 \%$
Total number of colleges in the year $2011=275+250+175+175=825$

$K D$
 Campus
 KD Campus

\therefore Percentage increase $=\left(\frac{825-675}{650} \times 100\right) \%=23.07 \%$
Total number of colleges in the year $2012=1175$
\therefore Percentage increase $=\left(\frac{1175-825}{825} \times 100\right) \%=42.42 \%$
Hence, required year is 2011.
64. (1) Total number of students studying in (IITs + NITs + Government Engine-ering Colleges) in the year $2012=200000$
$\left(\frac{10}{100}+\frac{15}{100}+\frac{30}{100}\right)=55 \times 2000=110000$
Average of the number of students studying in (IITs + NITs + Government Engineering
Colleges) $=\frac{110000}{3}=36666.7$
Students studying in Private Engineering colleges in the year $2012=200000 \times \frac{45}{100}$
$=90000$
\therefore Required $\%=\left(\frac{90000-36666.7}{90000} \times 100\right) \%=59.25 \%$
65. (3) Number of IITs and NITs in the year 2011=125+175=300

Number of IITs and NITs in the year $2012=175+250=425$
\therefore Percentage increase $=\left(\frac{425-300}{300} \times 100\right) \%$
Required\% = 41.66\%
66. (4) $?=\frac{6561 \times 100}{1018 \times 215 \times 3}=81$
67. (5) $7365+29.16+\sqrt{?}=7437.16$
$\sqrt{?}=7437.13-7394.16$
$\sqrt{?}=43 \quad ?=1849$
68. (3) $98 \div 14 \times 49-294=(?)^{2}$
$\frac{98}{14} \times 49-294=343-294$
$=49=(-7)^{2}=-7$
69. (1) $(2 \times 3)^{3} \div(4 \times 9)^{2} \times(27 \times 8) 2=6$?
$\frac{6 \times 6 \times 6}{36 \times 36} \times 27 \times 8 \times 27 \times 8=6^{5}$
70. (2) $454.58-376.89+121.45-95.42=$?
$=576.03-472.31=103.72$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS CLERK SPECIAL - I MOCK TEST - 296 (ANSWER KEY)

1. (3)
2. (2)
3. (1)
4. (1)
5. (4)
6. (2)
7. (3)
8. (4)
9. (1)
10. (1)
11. (3)
12. (4)
13. (2)
14. (3)
15. (4)
16. (1)
17. (1)
18. (4)
19. (3)
20. (1)
21. (2)
22. (3)
23. (5)
24. (4)
25. (4)
26. (3)
27. (3)
28. (3)
29. (2)
30. (2)
31. (1)
32. (4)
33. (5)
34. (1)
35. (1)
36. (1)
37. (2)
38. (4)
39. (3)
40. (5)
41. (2)
42. (3)
43. (5)
44. (2)
45. (4)
46. (5)
47. (3)
48. (1)
49. (4)
50. (4)
51. (1)
52. (5)
53. (2)
54. (4)
55. (2)
56. (2)
57. (3)
58. (3)
59. (1)
60. (4)
61. (2)
62. (3)
63. (3)
64. (1)
65. (3)
66. (4)
67. (5)
68. (3)
69. (1)
70. (2)
71. (3)
72. (4)
73. (1)
74. (3)
75. (4)
76. (2)
77. (1)
78. (4)
79. (5)
80. (2)
81. (1)
82. (5)
83. (3)
84. (5)
85. (2)
86. (3)
87. (5)
88. (1)
89. (4)
90. (1)
91. (1)
92. (1)
93. (4)
94. (2)
95. (4)
96. (3)
97. (1)
98. (2)
99. (4)
100.(5)
