SSC MOCK TEST - 287 (SOLUTION)

1. (B) As,
$167 \Rightarrow 7 \times 6+1=43$
Similarly,
$245 \Rightarrow 5 \times 4+2=\mathbf{2 2}$
2. (A) As,

Similarly,

3. (C) Candela is the unit of Luminous Intensity, while Pascal is the unit of Pressure.
4. (B) $5125 \Rightarrow 5^{3}=125$
$8564 \Rightarrow 8^{3}=512 \neq 564$
$7343 \Rightarrow 7^{3}=343$
$6216 \Rightarrow 6^{3}=216$
5. (D) Except Eagle, all are flightless birds.
6. (C) $\begin{array}{rllll}(\mathrm{A}) & \mathrm{H} & \mathrm{C} & \mathrm{B} & \mathrm{G} \\ 8 & 3 & 2 & 7\end{array}\left[\begin{array}{l}8+2=10 \\ 3+7=10\end{array}\right]$

(B) | L | P | O | K |
| :--- | :--- | :--- | :--- |
| 12 | 16 | 15 | $12+15=27$ | $\left.\begin{array}{llll}12 & 16 & 15 & 11\end{array} 16+11=27\right]$

(C) $\mathrm{F} \quad \mathrm{M} \quad \mathrm{E} \quad \mathrm{L} \quad 6+5=11$ $613512[13+12+=25]$
(D) $\begin{array}{llll}\mathrm{R} & \mathrm{J} & \mathrm{I} & \mathrm{Q} \\ 18 & 10 & 9 & 17\end{array}\left[\begin{array}{c}18+9=27 \\ 10+17=27\end{array}\right]$
7. (B) 3. Effaceable \rightarrow 5. Effacement \rightarrow 4. Effacements \rightarrow 1. Effacers \rightarrow 2. Effacing
8. (B) $\frac{5,}{\frac{30}{L}} \frac{155}{T}, \frac{780}{T}, \frac{3905}{T}$
9. (A)

10. (A)

11. (C) $9^{2}+8^{2}+9+8=162$
$11^{2}+6^{2}+11+6=174$
$8^{2}+13^{2}+8+13=\mathbf{2 5 4}$
12. (A) $13^{2}+5=174$
$17^{2}+9=298$
$20^{2}+10=410$
13. (D) TRANSITION can be formed from the word RATIONALISATION.
14. (B) PRQST and OTUWV

Similarly,
TXOQP
† \downarrow さ \downarrow
59021
15. (B) $5 \times 8-5+5 \div 1=12$

After changing the sign,
$5+8 \times 5 \div 5-1=12$
$5+8 \times 1-1=12$
$5+8-1=12$
$13-1=12$
$12=12$
16. (D)
17. (D) I N D U S
$\downarrow \downarrow \downarrow \downarrow \downarrow$
03865
And
TENNIS
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
243305
Then,
STUDENT
$\begin{array}{llllll}\downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow & 4 & \downarrow \\ 5 & & 2\end{array}$
18. (C) $\mathrm{R} \underline{\mathbf{K}} \mathrm{S} \underline{\mathbf{B}} \mathrm{P}$ M / $\underline{\mathbf{R}} \mathrm{K}$ S B $\underline{\mathbf{P}} \mathrm{M} / \mathrm{R} \mathrm{K} \underline{\mathbf{S}}$
19. (D) M N$\left.O\right|_{\text {Pecond }} ^{P} Q$
20. (B)

Required distance $=\sqrt{10^{2}+(2.5)^{2}}$
$=\sqrt{100+6.25}=\sqrt{106.25} \mathrm{Km}$
21. (D) From figure (i) and (iii),

Red Yellow Green
Red Blue Violet
\therefore "Yellow" colour is opposite to "Blue".
22. (C)
23. (A)
24. (A)
25. (A)
27. (A) The first time an Indian won the award was way back in 1937. Gobind Behari Lal had won the Pulitzer Prize for journalism, along with four others, for his coverage in the field of science.
30. (B) Gamma rays and x-rays consist of high-energy waves that can travel great distances at the speed of light and generally have a great ability to penetrate other materials.
33. (B) Kerala Government Plans Judicial Probe Against Central Probe Agencies.
34. (B) Article 24 Constitution of India: Prohibition of employment of children in factories, etc. No child below the age of fourteen years shall be employed to work in any factory or mine or engaged in any other hazardous employment.
35. (D) The scientific term "viticulture" refers to the science, study and production of grapes.
36. (C) The conflict between the Sri Lankan government and the Liberation Tigers of Tamil Eelam (LTTE) has lasted nearly three decades and is one of the longest-running civil wars in Asia.
39. (D) Venus also has no moons, though reports of a moon around Venus have circulated since the 17 th century.
41. (C) Infrared radiations are also known as heat waves
45. (C) It is authorised to print currency notes from 2 rupees to 10000 rupees. ... But the circulation of currency and coins is done by RBI only.
46. (D) Products offered under Pradhan Mantri Loan Yojana are classified under 3 loan schemes named as Shishu, Kishor and Tarun.
47. (C) 12 to 16 grams of hemoglobin in every hundred ml of blood is present in a healthy individual.
49. (A) On 10 September 1642, Shah Jahan formally confirmed Dara Shikoh as his heir, granting him the title of Shahzada-e-Buland Iqbal ("Prince of High Fortune") and promoting him to command of 20,000-foot and 20,000 horse.
51. (A)

Given:
QO and RO is the bisector of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ respectively.
In $\triangle Q O R$,
$\angle \mathrm{QOR}+\angle \mathrm{OQR}+\angle \mathrm{ORQ}=180^{\circ}$
$124^{\circ}+\frac{1}{2} \angle \mathrm{PQR}+\frac{1}{2} \angle \mathrm{PRQ}=180^{\circ}$
$\frac{1}{2}(\angle \mathrm{PQR}+\angle \mathrm{PRQ})=180^{\circ}-124^{\circ}$
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}=56 \times 2$
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}=112^{\circ}$
Now, In $\triangle \mathrm{PQR}$,
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QRP}=180^{\circ}$
$112^{\circ}+\angle \mathrm{QPR}=180^{\circ}$
[From (i)]
$\angle \mathrm{QPR}=180^{\circ}-112^{\circ}=68^{\circ}$
52. (C) Work done by P, Q and R in 1 day $=3+4+5=12$

But P, Q and R take a total of 35 days.
Total work $=35 \times 12=420$
Work done by P and Q in 1 day $=3+4=7$
Time taken by P and Q to complete the half of the work $=\frac{420}{2 \times 7}=30$ days
53. (D) Marked price of an article $=₹ 660$

Selling price $=₹ 540$
Loss $=10 \%$
Cost Price of an article $=\frac{540}{90} \times 100=₹ 600$
$\therefore \quad$ Required $\%=\left(\frac{660-600}{600} \times 100\right) \%=10 \%$
54. (A) Let the speed of A is V_{1} and speed of B is V_{2}.

Let B takes thour to cover 15 km distance.
So, time taken by B to cover $15 \mathrm{~km}, \mathrm{t}=\frac{15}{\mathrm{~V}_{2}}$
Time taken by A to cover $15 \mathrm{~km}, \mathrm{t}+0.5=\frac{15}{\mathrm{~V}_{1}}$
As per the question, when $V_{1}=2 \times$ the initial speed
Then time taken by A to cover $15 \mathrm{~km}, \mathrm{t}-1=\frac{15}{2 \mathrm{~V}_{1}}$
(ii)

From equation (i) and (ii),
$\frac{t+0.5}{t-1}=\frac{\frac{15}{V_{1}}}{\frac{15}{2 V_{1}}}$
$\mathrm{t}+0.5=2 \mathrm{t}-2$
$2 \mathrm{t}-\mathrm{t}=2+0.5$ hour
$\mathrm{t}=2.5=2 \frac{1}{2}$ hour

Hence the speed of the car $B, V_{2}=\frac{15}{2.5}=6$ hours
55. (C) The number obtained is $32-\mathrm{x}, 38-\mathrm{x}, 42-\mathrm{x}$ and $52-\mathrm{x}$.

ATQ,
$\frac{32-x}{38-\mathrm{x}}=\frac{42-\mathrm{x}}{52-\mathrm{x}}$
$(32-x)(52-x)=(38-x)(42-x)$
$1664-32 x-52 x+x^{2}=1596-38 x-42 x+x^{2}$
$1664-1596=-80 x+84 x$
$4 \mathrm{x}=68$
$x=\frac{68}{4}=17$
$\therefore \quad$ Mean proportion between the number $\mathrm{x}+3$ and $4 \mathrm{x}+12$
$=\sqrt{(\mathrm{x}+3)(4 \mathrm{x}+12)}=\sqrt{(17+3)(17 \times 4+12)}$
$=\sqrt{20 \times 80}=\sqrt{1600}=40$
56. (B) $\operatorname{cosec} \theta-\cot \theta=2$

We know that,
$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
$(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)=1$
$(\operatorname{cosec} \theta+\cot \theta) \times 2=1$
$\operatorname{cosec} \theta+\cot \theta=\frac{1}{2}$

Adding equation (i) and (ii), we get
$2 \operatorname{cosec} \theta=2+\frac{1}{2}$
$\operatorname{cosec} \theta=\frac{5}{4}$
$\sin \theta=\frac{1}{\operatorname{cosec} \theta}=\frac{4}{5}$
Now,
$\cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$
57. (A) $\mathrm{a}^{2}+9 \mathrm{~b}^{2}+\mathrm{c}^{2}-6 \mathrm{~b}+3=2(\mathrm{a}+\mathrm{c})$
$a^{2}+9 b^{2}+c^{2}-6 b+3=2 a+2 c$
$a^{2}+1-2 a+(3 b)^{2}+1-6 b+c^{2}+1-2 c=0$
$(a-1)^{2}+(3 b-1)^{2}+(c-1)^{2}=0$
$(a-1)^{2}=0,(3 b-1)^{2}=0$ and $(c-1)^{2}=0$
$\mathrm{a}=1, \mathrm{~b}=\frac{1}{3}$ and $\mathrm{c}=1$
$\therefore \quad \mathrm{a}^{3}+\mathrm{b}^{2}-\mathrm{c}^{4}=(1)^{3}+\left(\frac{1}{3}\right)^{2}$
$=1+\frac{1}{9}-1=\frac{1}{9}$
58. (C) LCM of $\left(2\right.$ and $\left.5 \frac{1}{2}\right)=\mathrm{LCM}$ of $\left(2\right.$ and $\left.\frac{11}{2}\right)$

Required answer $=\frac{\mathrm{LCM} \text { of } 2 \text { and } 11}{\mathrm{HCF} \text { of } 1 \text { and } 2}=\frac{22}{1}=22$ feet
59. (D) Let the number of first class tickets $=x$

Number of $2^{\text {nd }}$ class tickets $=18-x$
ATQ,
$10 x+3(18-x)=110$
$\therefore \quad x=8$
$2^{\text {nd }}$ class tickets $=10$
New cost $=10 \times 10+3 \times 8=₹ 124$
60. (D) Let $2^{32}=x$ and Let $\left(2^{32}+1\right)=(x+1)$ be divisible by a number n.

Then, $\left(2^{96}+1\right)=\left(x^{3}+1\right)=(x+1)\left(x^{2}-x+1\right)$
Which is clearly divisible by n as $(x+1)$ is divisible by n.
61. (B) By alligation:-

Amount of $18 \%=\frac{2}{3}$
Amount of $90 \%=\frac{1}{3}$
$\therefore \quad$ Number of quartz which should be replaced $=\frac{1}{3} \times 27=9$
62. (D) Value of ₹ 6440 due 8 months $=\frac{6440 \times 100}{100+18 \times \frac{8}{12}}$
$=\frac{6440 \times 100}{112}=₹ 5750$
Clearly, ₹ 10000 in cash is better offer.
63. (B)

Let the radius of circle be r .
In $\triangle \mathrm{AOB}$,
$\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}-2 \times \mathrm{OA} \times \mathrm{OB} \times \cos \angle \mathrm{AOB}$ (cosine rule)
$A B^{2}=r^{2}+r^{2}-2 \times r \times r \times \cos 60^{\circ}$
$\mathrm{AB}^{2}=2 \mathrm{r}^{2}-2 \mathrm{r}^{2} \times \frac{1}{2}$
$\left(\because \cos 60^{\circ}=\frac{1}{2}\right)$
$\mathrm{x}^{2}=\mathrm{r}^{2}$
$x=r$
In $\triangle C O D$,
$\mathrm{CD}^{2}=\mathrm{OC}^{2}+\mathrm{OD}^{2}-2 \times \mathrm{OC} \times \mathrm{OD} \times \cos \angle \mathrm{COD}$
$\mathrm{CD}^{2}=\mathrm{r}^{2}+\mathrm{r}^{2}-2 \times \mathrm{r} \times \mathrm{r} \times \cos 90^{\circ}$
$\mathrm{CD}^{2}=2 \mathrm{r}^{2}$
$\left(\because \cos 90^{\circ}=0\right)$
$\mathrm{y}=\sqrt{2} \mathrm{r}$
$y=\sqrt{2} x$
$(\because r=x)$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
64. (C) Since $\frac{2}{5}$ th of the work is completed in the 25 days, remaining $\frac{3}{5}$ th of the work is to be completed in 25 days.

Let x men work in for 25 days to complete $\frac{3}{5}$ th of the work.
$\frac{M_{1} D_{1} H_{1}}{W_{1}}=\frac{M_{2} D_{2} H_{2}}{W_{2}}$
$\frac{25 \times 105 \times 8 \times 5}{2}=\frac{x \times 25 \times 9 \times 5}{3}$
$\frac{105 \times 8}{2 \times 3}=140$
$\therefore \quad$ Additional men employed $=140-105=35$
65. (B) ATQ,
$\frac{L+4}{B+4}=\frac{4}{3}$
$3 \mathrm{~L}+12=4 \mathrm{~B}+16$
$3 L-4 B=4$
and $\frac{L-4}{B-4}=\frac{2}{1}$
$L-4=2 B-8$
$L-2 B=-4$
Solving Equation (i) and (ii), we get
$\mathrm{L}=12 \mathrm{~m}$ and $\mathrm{B}=8 \mathrm{~m}$
66. (D) Diameter of iron sphere $=7 \mathrm{~cm}$

Radius of iron sphere $=\frac{7}{2} \mathrm{~cm}$

Volume of iron sphere $=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \times\left(\frac{7}{2}\right)^{3} \mathrm{~cm}^{3}$
Radius of conical vessel $=7 \mathrm{~cm}$
Volume of conical vessel $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi \times(7)^{2} \times \mathrm{h}$
ATQ,
$\frac{1}{3} \pi(7)^{2} \times \mathrm{h}=2 \times \frac{4}{3} \pi \times \frac{7 \times 7 \times 7}{2 \times 2 \times 2}$
$h=\frac{(7)^{3}}{(7)^{2}}$
$\therefore \quad \mathrm{h}=7 \mathrm{~cm}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
67. (C) Whole surface area of prism $=S=2 A+P_{b} \times h$
(i)

Lateral surface area $=$ Area of ends
$2 \mathrm{~A}=\mathrm{P}_{\mathrm{b}} h$
$49 \sqrt{3}=4 \mathrm{~A}$
$49 \sqrt{3}=4 \times \frac{\sqrt{3}}{4} a^{2}$
[since base is equilateral triangle of side a]
$\therefore \quad a=7 \mathrm{~m}$
$\mathrm{P}_{b}=3 a=21 \mathrm{~m}$
Now,
$2 \mathrm{~A}=\mathrm{P}_{b} h$
$2 \times \frac{\sqrt{3}}{4} \times 7^{2}=3 \times 7 \times h$
$h=2.02 \mathrm{~m}$
68. (B) Diameter of pipe $=14 \mathrm{~cm}$

Radius of pipe $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
Volume of cylindrical pipe $=\pi r^{2} h$
Volume of water pumped out in 2 hours $=\frac{22}{7} \times 7 \times 7 \times 15 \times 2 \times 3600=16632000 \mathrm{~cm}^{3}$ $1000 \mathrm{~cm}^{3}=1$ litre
$16632000=\frac{1}{1000} \times 16632000=16632$ litres
69. (A) We know that y co-ordinate of any point on x-axis is zero.
$\therefore \quad y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$0=\frac{m_{1}(2)+m_{2}(-3)}{m_{1}+m_{2}}$
$2 m_{1}-3 m_{2}=0$
$\frac{m_{1}}{m_{2}}=\frac{3}{2}=3: 2$
70. (B) Let the plane covers $x \mathrm{~km}$ with $440 \mathrm{~km} / \mathrm{h}$ and $(x-770) \mathrm{km}$ at a speed of $660 \mathrm{~km} / \mathrm{h}$.

Hence, it covers a total distance of
$(2 x-770) \mathrm{km}$ at a speed of $500 \mathrm{~km} / \mathrm{h}$.

Average speed $=\frac{\text { Total distance }}{\text { Total time }}$
$500=\frac{2 x-770}{\frac{4}{440}+\frac{x-770}{660}}$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\frac{2 x-770}{500}=\frac{x}{440}+\frac{x-770}{660}$
$x=1760$
\therefore Total distance covered $=2 x-770$
$=2 \times 1760-770=2750 \mathrm{~km}$
71. (D) Let the distance between A and B be $x \mathrm{~km}$.

Given,
Speed of boat in still water $=9 \mathrm{~km} / \mathrm{h}$ and speed of current $=3 \mathrm{~km} / \mathrm{h}$
Upward speed $=(9-3)=6 \mathrm{~km} / \mathrm{h}$ and
Downward speed $=(9+3)=12 \mathrm{~km} / \mathrm{h}$
ATQ,
$\frac{x}{6}+\frac{x}{12}=3$
$\frac{2 x+x}{12}=3$
$3 x=36$
$x=12 \mathrm{~km}$
72. (C) Annual average of the total production $=\frac{74+71+75+90+80+86}{6}=79.33 \approx 80$

Clearly, this is the production of all types of cars in 2003
73. (D) From the table the production of car S has been continuously increasing during the period 1999 to 2004.
74. (C) In 2003,
$P+Q=21+12=33$
$R+S=13+20=33$
75. (D) Total number of all types of cars in the year $2003=80$
25% of $80=25 \times \frac{80}{100}=20$
Clearly, it is of S type.

MEANINGS IN ALPHABETICAL ORDER

SSC MOCK TEST - 287 (ANSWER KEY)

1.	(B)
2.	(A)
3.	(C)
4.	(B)
5.	(D)
6.	(C)
7.	(B)
8.	(B)
9.	(A)
10.	(A)
11.	(C)
12.	(A)
13.	(D)
14.	(B)
15.	(B)
16.	(D)
17.	(D)
18.	(C)
19.	(D)
20.	(B)
21.	(D)
22.	(C)
23.	(A)
24.	(A)
25.	(A)

26. (A)
27. (A)
28. (A)
29. (C)
30. (B)
31. (B)
32. (C)
33. (B)
34. (B)
35. (D)
36. (C)
37. (C)
38. (C)
39. (D)
40. (A)
41. (C)
42. (B)
43. (A)
44. (C)
45. (C)
46. (D)
47. (C)
48. (D)
49. (A)
50. (C)
51. (A)
52. (C)
53. (D)
54. (A)
55. (C)
56. (B)
57. (A)
58. (C)
59. (D)
60. (D)
61. (B)
62. (D)
63. (B)
64. (C)
65. (B)
66. (D)
67. (C)
68. (B)
69. (A)
70. (B)
71. (D)
72. (C)
73. (D)
74. (C)
75. (D)
76. (A)
77. (D)
78. (D)
79. (B)
80. (C)
81. (B)
82. (D)
83. (B)
84. (A)
85. (A)
86. (B)
87. (A)
88. (C)
89. (B)
90. (B)
91. (C)
92. (B)
93. (C)
94. (B)
95. (C)
96. (C)
97. (C)
98. (B)
99. (D)
100. (D)
101. (A) Replace 'based' by 'having'.
102. (D) No error
103. (B) 'Either ... or', 'neither nor:'both and', 'not only but also' should be followed by the same part of speech.
104. (A) We normally use 'ago' with the past simple, don't use it with the present perfect.
105. (B) The correct spelling of 'Desclaimer' is 'Disclaimer'.
106. (C) The correct spelling of 'Monumant' is 'Monument'.
