## QUANTITATIVE ABILITY - 83 (SOLUTION)

1. (D) Side of the square $=\sqrt{1024}=32 \mathrm{~cm}$

Length of rectangle $=2 \times 32=64 \mathrm{~cm}$
Breadth of rectangle $=32-16=16 \mathrm{~cm}$
$\therefore$ Required ratio $=64: 16=4: 1$
2. (B) Distance between 21 posts $=(21-1) \times 50=1000 \mathrm{~m}$
$\therefore$ Speed of train $=1 \mathrm{~km} / \mathrm{min}=60 \mathrm{~km} / \mathrm{h}$
3. (B) $\mathrm{SI}=\frac{15000 \times 9 \times 2}{100}=₹ 2700$
$\mathrm{CI}=12000\left[\left(1+\frac{8}{100}\right)^{2}-1\right]=12000\left[\left(\frac{27}{25}\right)^{2}-1\right]$
$=12000\left[\frac{729-625}{625}\right]=12000 \times \frac{104}{625}=₹ 1996.8$
$\therefore$ Total interest earned $=₹(2700+1996.8)=₹ 4696.8$
4. (A) According to question,

SI for 10 years $=\frac{2000 \times 5 \times 10}{100}=₹ 1000$
Now, $\mathrm{P}=₹ 3000, \mathrm{~A}=₹ 4000$
$\therefore \quad \mathrm{SI}=₹ 1000$

Now, $T=\frac{1000 \times 100}{3000 \times 5}=6 \frac{2}{3}$ years

Total time $=16 \frac{2}{3}$ years
5. (C) Candidates


C got $=42 \%$
Difference between B and C's votes $=6 \%$
$\therefore$ Total number of votes $=\frac{1200}{6} \times 100=20,000$
6. (A)

$\angle \mathrm{CZY}=\angle \mathrm{CBY}=30^{\circ}$
$\angle \mathrm{ABC}=2 \times 30=60^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{BCA}+60^{\circ}+50^{\circ}=180^{\circ}$
$\angle \mathrm{BCA}=180^{\circ}-110^{\circ}=70^{\circ}$
$\angle \mathrm{BCZ}=\frac{70}{2}=35^{\circ}$
$\angle \mathrm{BYZ}=\angle \mathrm{BCZ}$
$\therefore \quad \angle \mathrm{BYZ}=\mathrm{BCZ}=35^{\circ}$
7. (B) Let the number be 30 and 28 respectively.
then, the sum of number $=30+28=58$
Now, divide the number by 17 , then we have 7 as the remainder.
8. (C) $a^{4}+b^{4}-a^{2} b^{2}=0$

Now, $a^{6}+b^{6}=\left(a^{2}\right)^{3}+\left(b^{2}\right)^{3}$
$=\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}-a^{2} b^{2}\right)$
$=\left(a^{2}+b^{2}\right)(0)=0$
9. (A) Son Daughter

Nephew
$5 \times 5: \quad 4 \times 4$
$1 \times 2$
25 : 16
$2 \rightarrow 43$
$\downarrow \times 400$
17200
Share of each daughter $=\frac{16 \times 400}{4}=₹ 1600$
10. (A) Ist person $\rightarrow 6$ 4
$\begin{array}{r}\text { IInd person } \rightarrow 8 \\ \text { I }+ \text { II }+ \text { child } \rightarrow 3\end{array}<24-3$
Share of child $=\frac{200}{8} \times 1=₹ 25$
11. (A) $42 \mathrm{~km} / \mathrm{hr}$ $35 \mathrm{~km} / \mathrm{hr}$


Difference in time $=6-5=1$ hour $=60$ minutes
But the given difference $=15+5=20 \mathrm{~min}$
i.e $60 \rightarrow 20$
$\therefore \quad 210 \rightarrow \frac{20}{60} \times 210=70$
Hence, the required distance $=70 \mathrm{kms}$
12. (A) Let the rate of interest be $\mathrm{r} \%$ per annum.

ATQ,
$4840=\mathrm{P}\left(1+\frac{r}{100}\right)^{2}$
and $5324=\mathrm{P}\left(1+\frac{r}{100}\right)^{3}$
On dividing equation (ii) by equation (i), we have,
$1+\frac{r}{100}=\frac{5324}{4840}=1+\frac{484}{4840}$
$\frac{r}{100}=\frac{484}{4840}$
$r=10 \%$
13. (A)


Circumference of circular track $=2 \pi \mathrm{R}=2 \times \frac{22}{7} \times 63=396 \mathrm{~m}$
Speed of $B$ against $A=(30+25)=55 \mathrm{~m} / \mathrm{min}$
Speed of $C$ against $A=(30+14)=44 \mathrm{~m} / \mathrm{min}$
Time taken to meet together for the first time $=\frac{\text { Distance }}{\text { HCF(speed) }}$
396
$t_{1}=\frac{396}{\operatorname{HCF}(55,44)}=\frac{396}{11}$
$\mathrm{t}_{1}=36 \mathrm{~min}$
14. (C) Let the sum be P.

$$
\begin{aligned}
& 101.50=\mathrm{P}\left[\left(1+\frac{3}{100}\right)^{2}-1\right] \quad\left[\because \text { C.I. }=\mathrm{P}\left[\left(1+\frac{r}{100}\right)^{n}-1\right]\right] \\
& 101.50=\mathrm{P}\left[\left(\frac{103}{100}\right)^{2}-1\right]=\mathrm{P}\left(\frac{10609-10000}{10000}\right)
\end{aligned}
$$

$P=₹ \frac{101.50 \times 10000}{609}=₹ \frac{1015000}{609}$
$\therefore$ S.I. $=\frac{1015000 \times 2 \times 3}{609 \times 100}=₹ 100$
15. (C) Let the original number of students in three classes be $2 x, 3 x$ and $5 x$ respectively. As given,
$\frac{2 x+20}{3 x+20}=\frac{4}{5}$
$10 x+100=12 x+80$
$12 x-10 x=100-80$
$2 x=20$
$x=\frac{20}{2}=10$
Total number of students originally $=2 x+3 x+5 x=10 x$
$=10 \times 10=100$
16. (A)


Water filled by all the three pipes $(A+B+C)$ in 3 hours $=(6+3-5)=4$ units

## Time : Work done

3 hours
$\downarrow \times 13$
39 hours
Remaining work $=(60-52)=8$ units
Work done by A on 14th day $=6$ units
Remaining work $=(8-6)=2$ units
Required time $=\frac{2}{3}$ hours

Total required time $=39+1+\frac{2}{3}=40 \frac{2}{3}$ hours
17. (B)

$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{2}{1}$
$\mathrm{AB}=2 k, \mathrm{BC}=k$
$\mathrm{AC}=\sqrt{(2 k)^{2}+k^{2}}=\sqrt{5 k^{2}}=\sqrt{5 k}$

## Campus

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\sin A+\cot C=\frac{B C}{A C}+\frac{B C}{A B}=\frac{k}{\sqrt{5} k}+\frac{k}{2 k}$
$=\frac{1}{\sqrt{5}}+\frac{1}{2}=\frac{2+\sqrt{5}}{2 \sqrt{5}}$
18. (B) $x=11$
$x^{5}-12 x^{4}+12 x^{3}-12 x^{2}+12 x-1$
$=x^{5}-(11+1) x^{4}+(11+1) x^{3}-(11+1) x^{2}+(11+1) x-1$
$=x^{5}-11 x^{4}-x^{4}+11 x^{3}+x^{3}-11 x^{2}-x^{2}+11 x+x-1$
When $x=11$,
$=11^{5}-11^{5}-11^{4}+11^{4}+11^{3}-11^{3}-11^{2}+11^{2}+11-1=10$
19. (D) Pay/hour $\times$ Number of hours $=$ Wages

| Increase |
| :--- |
| by $40 \%$ | \(\left(\begin{array}{ll}5 \& 6 <br>

7\end{array}\right)\)| Decrease $=$ |
| :--- |
| by $16 \frac{2}{3} \%=$ | 3035

Wages increased by $=\frac{5}{30} \times 100=16 \frac{2}{3} \%$
20. (C)

Efficiency


According to the question,
5 days work of $(A+B+C)=6 \times 5=30$
Now $C$ left the work. So next 3 days $A$ andB will work
Work done by $A$ and $B=4 \times 3=12$ units
Remaining work $=(60-42)=18$ units
Required time for $A$ to complete the rest of the work $=\frac{18}{3}=6$ days
21. (D) $n+\frac{2 n}{3}+\frac{n}{2}+\frac{n}{7}=97$
$\frac{42 n+28 n+21 n+6 n}{42}=97$
$\frac{97 n}{42}=97$
$n=\frac{97 \times 42}{97}=42$
22. (D) If $x=7$
$x^{5}-8 x^{4}+8 x^{3}-9 x^{2}+7 x+5$
$x^{5}-7 x^{4}-x^{4}+7 x^{3}+x^{3}-7 x^{2}-2 x^{2}+7 x+5$
Put $x$ in the place of 7
Then, $x^{5}-x^{5}-x^{4}+x^{4}+x^{3}-x^{3}-x^{2}-x^{2}+x^{2}+5-x^{2}+5-49+5=-44$
23. (C) Let the distance of the place from the starting point be xkm

The speed of the man along the stream $=10+3=13 \mathrm{kms} / \mathrm{hr}$
Speed of man against the stream $=10-3=7 \mathrm{kms} / \mathrm{hr}$
$\frac{x}{13}+\frac{x}{7}=1$
$20 x=13 \times 7$
$x=\frac{91}{20}$
$x=4.55 \mathrm{~km}$
24. (C)
$\frac{\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~T}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~T}_{2}}{\mathrm{~W}_{2}}$
$\frac{16 \times 6 \times 25}{150 \times 20 \times 12}=\frac{12 \times 8 \times D}{800 \times 15 \times 6}$
After solving this $\mathrm{D}_{2}=50$ days
25. (A) Sum of temperatures on 1 st, 2 nd, 3 rd and 4 th days $=(58 \times 4)=232$ degrees

Sum of temperatures on 2nd, 3rd, 4th and 5th days $=(60 \times 4)=240$ degrees temperature on 5 th day - temperature on 1 st day $=8$ degrees
Let the temperature on 1 st and 5th days be $7 x$ and $8 x$ degrees respectively
Then, $8 x-7 x=8$
$x=8$
Temperature on 5 th day $=8 \times 8=64^{\circ}$
26. (A)


In $\triangle \mathrm{OAB}$,
$O B \perp A B$
$\therefore \mathrm{OB}^{2}+\mathrm{AB}^{2}=\mathrm{OA}^{2}$
$9^{2}+A B^{2}=15^{2}$
$\mathrm{AB}^{2}=225-81$
$\mathrm{AB}=\sqrt{144}=12 \mathrm{~cm}$
The length of the chord is $2 \times 12=24 \mathrm{~cm}$
27. (B) Total age of all boys along
with the teacher $=(24+1) \times 15=375$ years
Total age of all boys excluding the teacher $=24(15-1)=336$ years
The age of the teacher $=375-336=39$ years
28. (A) Profit Ratio of A, B and C $=(5 \times 12):(7 \times 12):\left(6 \times 6+\frac{6}{2} \times 6\right)=10: 14: 9$
$\therefore \quad$ Share of C in the Profit $=\frac{9}{33} \times 33000=₹ 9000$
29. (A) Total marks obtained by all the students in Maths $=70+110+100+120+60=460$
$\therefore$ Required $\%=\left(\frac{120}{460} \times 100\right) \%=26.08 \% \approx 26 \%$
30. (D) New marks of Ena in Reasoing $=50 \times \frac{114}{100}=57$
$\therefore \quad$ Required $\%=\left(\frac{57}{140} \times 100\right) \%=40.71 \% \approx 41 \%$
31. (B) Total marks obtained by Ena in both the subjects together $=50+60=110$ It is more than the marks obtained by Bipin in Reasoning.
32. (A) Required ratio $=(130+70):(80+100)=10: 9$
33. (B) Required ratio $=(110+120):(130: 80)$
= 230: $210=23: 21$
34. (A) Let time taken $\&$ distance covered by cyclist $=T_{1}$ and $S_{1}$.

So, Time taken $\&$ distance covered by jogger $=2 \mathrm{~T}_{1}$ and $\frac{\mathrm{S}_{1}}{2}$.
Speed of Jogger : Speed of cyclist $=\frac{\mathrm{S}_{1}}{2 \times 2 \mathrm{~T}_{1}}: \frac{\mathrm{S}_{1}}{\mathrm{~T}_{1}}=1: 4$
35. (B)

$\angle \mathrm{AEG}=180^{\circ}-130^{\circ}=50^{\circ}$
$\angle \mathrm{CEG}=180^{\circ}-110^{\circ}=70^{\circ}$
$x^{\circ}=\angle \mathrm{AEG}+\angle \mathrm{CEG}=50^{\circ}+70^{\circ}=120^{\circ}$
36. (B)


In $\triangle \mathrm{ABD}$,
$\mathrm{BD}>\mathrm{AD}(\because \angle \mathrm{BAD}>\angle \mathrm{ABD})$
In $\triangle \mathrm{ADC}$,
$\mathrm{AD}>\mathrm{DC}(\because \angle \mathrm{ACD}>\angle \mathrm{CAD})$
$\therefore \mathrm{BD}>\mathrm{AD}>\mathrm{DC}$

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
37. (B)

$40 \%=160$
$100 \%=\frac{160}{40} \times 100=400$
Total number of students $=400$
38. (D) $3 . \overline{76}-1.4 \overline{567}=3+\frac{76}{99}-\left(1+\frac{4567-4}{9990}\right)$
$=2+\frac{76}{99}-\frac{4563}{9990}=2+0.31092=2.31092$
39. (C) $1 \times 5 \Rightarrow$ H.C.F. $=1$,

Number of tiles $=56$
$2 \times 28 \Rightarrow$ H.C.F. $=2$,
Number of tiles $=1 \times 14=14$
$4 \times 14 \Rightarrow$ H.C.F. $=2$,
Number of tiles $=2 \times 7=14$
$7 \times 8=56$, H.C.F. $=1$,
Number of tiles $=7 \times 8=56$
So, minimum number of tiles $=14$
40. (B) Unit digit of $3^{24}$ is 1 , unit digit of $8^{57}=8$,
unit digit of $4^{13}=4$, unit digit of $7^{68}=1$
Thus $1+8+4+1+4+8=26$
Unit place $=6$
41. (C)

42. (B)


Area $=1 \times \frac{1}{2}=\frac{1}{2}=$ rational
$d_{1}=d_{2}=\sqrt{1^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}$
$d_{1}+d_{2}=\sqrt{5}$ (irrational)
43. (D) Volume of wood $=[(80 \times 60 \times 40)-(76 \times 56 \times 36)]=38784 \mathrm{~cm}^{3}$

Weight of the box $=38784 \times \frac{10}{1000}=387.84 \mathrm{~kg}$
44. (C) In $\triangle \mathrm{ABE}$, external angle $\mathrm{E}=$ two internal angles $\gamma=\alpha+\beta+\$$
45. (A) ATQ,

Total time taken in journey $=\frac{999}{55.5}+1$ hour 20 minutes
$=18$ hours +1 hours 20 minutes $=19$ hours 20 minutes
Train reaches at B at 1:20 a.m.
46. (B) $\left\{\frac{3 \sqrt{2}}{(\sqrt{3}+\sqrt{6})}-\frac{4 \sqrt{3}}{(\sqrt{6}+\sqrt{2})}+\frac{\sqrt{6}}{(\sqrt{2}+\sqrt{3})}\right\}$
$=\left[\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{6-2}\right]$
$=(2 \sqrt{3}-\sqrt{6})-(3 \sqrt{2}-\sqrt{6})+(3 \sqrt{2}-2 \sqrt{3})=0$
47. (C)


Let $\mathrm{AM} \perp \mathrm{BC}$

$$
\tan \angle \mathrm{ABC}=3.6 \text { (given) }
$$

$$
\tan \angle \mathrm{DCE}=\frac{\mathrm{DE}}{\mathrm{EC}}=\frac{18}{5}=3.6
$$

$$
\tan (\angle \mathrm{ABC})=\tan (\angle \mathrm{ACB})
$$

So $A B=A C$ and so $M$ is mid point of $B C$.
$\triangle \mathrm{BCE} \sim \triangle \mathrm{ACM}$
so, $\frac{D C}{A C}=\frac{C E}{C M}=\frac{D E}{A M}$
$\frac{D C}{A C}=\frac{C E}{2 \times B C}$
$\mathrm{AC}: C D=2 \times \mathrm{BC}: \mathrm{CE}$
48. (A) $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}=\frac{\sin A[1-\cos A+1+\cos A]}{1-\cos ^{2} A}$
$=\frac{2 \sin A}{\sin ^{2} A}=2 \operatorname{cosec} A$

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (D) $r \sin \theta=1$
$r \cos \theta=\sqrt{3}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{1}{r}}{\frac{\sqrt{3}}{r}}=\frac{1}{\sqrt{3}}$
$\sqrt{3} \tan \theta+1=\sqrt{3} \times \frac{1}{\sqrt{3}}+1=2$
50. (B) Total distance to be covered $=46 \mathrm{~km}$

Total time to be taken $=1 \mathrm{hr}$
Time taken to cover $25 \mathrm{~km}=\frac{25}{40} \mathrm{~h}=\frac{5}{8} \mathrm{~h}$
Thus, remaining distance 21 km is to be covered in remaining time $\frac{3}{8} \mathrm{~h}$.
Hence, speed $=\frac{21}{\frac{3}{8}} \mathrm{~km} / \mathrm{h}=56 \mathrm{~km} / \mathrm{h}$
51. (B) For first year,
$P=₹ 6000$
SI $=\frac{6000 \times 10 \times 1}{100}=₹ 600$
At the end of first year,
For second year,
$P=₹(6600-2000)=₹ 4600$
$\mathrm{SI}=₹ \frac{4600 \times 10 \times 1}{100}=₹ 460$
At the end of second year,
Amount $=₹(4600+460)=₹ 5060$
Return back = ₹ 2000
For third year,
$P=₹(5060-2000)=₹ 3060$
SI =₹ $\frac{3060 \times 10 \times 1}{100}=₹ 306$
$\therefore$ Amount returned in third year $=₹(3060+306)=₹ 3366$
52. (D) Let speed of the current be $x \mathrm{~m} / \mathrm{min}$.

Then,
$\frac{200}{48-x}-\frac{200}{48+x}=10$
$20(48+x-48+x)=(48+x)(48-x)$
$20 \times 2 x=2304-x^{2}$
$x^{2}+40 x-2304=0$
$x=32 \mathrm{~m} / \mathrm{min}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
53. (D) Work done by A in $1 \mathrm{~h}=$ Work done by $\mathrm{A}, \mathrm{B}$ and C in 1 hr

Work done by B and C in $1 \mathrm{~h}=\frac{3}{8}-\frac{1}{4}=\frac{1}{8}$
$\therefore \quad$ Work done by A and B in $1 \mathrm{~h}=\frac{1}{8}+\frac{1}{6}=\frac{7}{24}$

Hence, A and B complete the piece of work in $\frac{24}{7}$, i.e., in $3 \frac{3}{7}$ day
54. (B) Let Brij joined after $x$ months.

Then,
$550 \times 12: 330 \times(12-x)=10: 3$
$\frac{5 \times 12}{3 \times(12-x)}=\frac{10}{3}$
$\frac{6}{12-x}=1$
$6=12-x$
$x=12-6=6$
Hence, Brij joined after 6 months.
55. (B) Let number of fridges produced in first year be 'a' and production increase by 'd' every year. Clearly, production every year will make an AP.

Then,
Production in the third year,
$a+2 d=600$
and production in the seventh year,
$a+6 d=700$
On solving both equation, we get
$a=550, d=25$
Now, total production in 7 years $=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{7}{2}[2 \times 550+6 \times 25]$
$=\frac{7}{2} \times 1250=4375$
56. (B) According to the first condition,

$2 x-40=y$
$2 x-y=40$
According to the second condition,
$40+x+y+60=100 \times 3$
$x+y=200$

## Campus

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Adding both the Eqs. (i) and (ii), we get
$3 x=240$
$x=80$
$\therefore \quad y=200-80=120$
Hence, required ratio $=x: y=80: 120=2: 3$
57. (B) Total score of 8 subjects $=87 \times 8=696$

Total score of 6 subjects $=85 \times 6=510$
Score of remaining two subjects $=696-510=186$
Now,
Let the highest and the next score are $x$ and $x-2$.
Then,
$(x)+(x-2)=186$
$2 x=188$
$x=94$
Which is the highest score.
58. (A) In triangles $A B C$ and $A D E$, we have
$\angle \mathrm{ACB}=\angle \mathrm{AED}=90^{\circ}$ and $\angle \mathrm{BAC}=\angle \mathrm{DAE}$
So, by AA similarity criterion, we have
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
$\frac{A B}{A D}=\frac{B C}{D E}=\frac{A C}{A E}$
$\frac{13}{3}=\frac{12}{D E}=\frac{5}{A E}$

$$
\left[\because \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}=5^{2}+12^{2}\right]
$$

$\mathrm{AE}=\frac{15}{13}$
59. (B) Since the ratio of the corresponding sides of similar triangles is same as the ratio of their perimeters.
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{36}{24}$
$\frac{A B}{P Q}=\frac{36}{24}$
$\frac{A B}{10}=\frac{36}{24}$
$\mathrm{AB}=\frac{36 \times 10}{24} \mathrm{~cm}=15 \mathrm{~cm}$
60. (D)


In $\triangle \mathrm{DFG}$ and $\triangle \mathrm{DAB}$, we have
$\angle 1=\angle 2$
$[\because \mathrm{AB}||\mathrm{DC}|| \mathrm{EF} \therefore \angle 1$ and $\angle 2$ are corresponding angles]
$\angle \mathrm{FDG}=\angle \mathrm{ADB}$ [common]

So, by AA-criterion similarity, we have
$\frac{D F}{D A}=\frac{F G}{A B}$
In trapezium $A B C D$, we have
EF||AB || DC
$\therefore \quad \frac{A F}{D F}=\frac{B E}{E C}$
$\frac{A F}{D F}=\frac{3}{4}$

$$
\left[\because \frac{B E}{E C}=\frac{3}{4}(\text { Given })\right]
$$

$\frac{A F}{D F}+1=\frac{3}{4}+1 \quad$ [Adding 1 on both sides]
$\frac{A F+D F}{D F}=\frac{7}{4}$
$\frac{A D}{D F}=\frac{7}{4}$
$\frac{D F}{A D}=\frac{4}{7}$
From (i) and (ii), we get
$\frac{F G}{A B}=\frac{4}{7}$
$\mathrm{FG}=\frac{4}{7} \mathrm{AB}$
In $\triangle B E G$ and $\triangle B C D$, we have
$\angle \mathrm{BEG}=\angle \mathrm{BCD}$
[Corresponding angles]
$\angle \mathrm{B}=\angle \mathrm{B}$
[By AA-criterion of similarity]
$\frac{B E}{B C}=\frac{E G}{C D}$

## K D Campus Pvt. Ltd

$\frac{3}{7}=\frac{E G}{C D}$
$\left[\because \frac{B E}{E C}=\frac{3}{4} \Rightarrow \frac{E C}{B E}=\frac{4}{3} \Rightarrow \frac{E C}{B E}+\frac{4}{3}+1 \Rightarrow \frac{B E}{E C}=\frac{7}{3}\right]$
$\mathrm{EG}=\frac{3}{7} \mathrm{CD}$
$E G=\frac{6}{7} A B$
Adding (iii) and (iv), we get
$\mathrm{FG}+\mathrm{EG}=\frac{4}{7} \quad \mathrm{AB}+\frac{6}{7} \mathrm{AB}$
$E F=\frac{10}{7} A B$
$7 \mathrm{EF}=10 \mathrm{AB} \Rightarrow \frac{A B}{F E}=\frac{7}{10}$
61. (C) $x=\frac{4 a b}{a+b}$
$\frac{x}{2 a}=\frac{2 b}{a+b}$
On applying Componendo and Dividendo,
$\frac{x+2 a}{x-2 a}=\frac{a+3 b}{b-a}$
Again,
$\frac{x}{2 b}=\frac{2 a}{a+b}$
$\frac{x+2 b}{x-2 b}=\frac{3 a+b}{a-b}$
Now,

$$
\begin{aligned}
& \frac{x+2 a}{x-2 a}+\frac{x+2 b}{x-2 b}=-\frac{a+3 b}{a-b}+\frac{3 a+b}{a-b} \\
& =\frac{2 a+2 b}{a-b}=2
\end{aligned}
$$

62. (D) The given equation is $\frac{1}{p+q+x}-\frac{1}{x}=\frac{1}{p}+\frac{1}{q}$

$$
\begin{aligned}
& \frac{-(p+q)}{x(p+q+x)}=\frac{p+q}{p q} \\
& x(p+q+x)=-p q \\
& x^{2}+x(p+q)+p q=0 \\
& (x+p)(x+q)=0 \\
& x=-p,-q
\end{aligned}
$$

## Campus

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
63. (C) Distance travelled by train in $4 \mathrm{~h}=45 \times 4=180 \mathrm{~km}$

Number of telegraph poles $=\frac{180 \times 1000}{50}=3600$
64. (B) Required ratio $=\frac{\frac{10}{100} \times 400+\frac{10}{100} \times 250}{\frac{8}{100} \times 500+\frac{10}{10} \times 360}=65: 75$
65. (A) Required average $=\frac{\frac{8}{100} \times 500+\frac{6}{100} \times 400+\frac{10}{100} \times 360+\frac{12}{100} \times 250}{4}$
$=\frac{130}{4}=\frac{65}{2}=32 \frac{1}{2}$
66. (C) Students participating in dance from Class VII $=\frac{60}{100} \times 400=240$

Students participating in dance from Class IX $=\frac{12}{100} \times 250=30$
Required percentage $=\left(\frac{10}{30} \times 100\right) \%=\frac{100}{3} \%=33 \frac{1}{3} \%$
67. (D) Students who don't participate in dance and play from class VI $=500-(15 \%+8 \%)$ of 500
$=500-\frac{23}{100} \times 500=500-115=385$
Students who do not participate in dance and play in class IX $=250-(10 \%+12 \%) \times 250$
$=250-55=195$
Required sum $=195+385=580$
68. (A) Students who participate only in dance from class VI $=\frac{15}{100} \times 500-\frac{20}{100} \times \frac{15}{100} \times 500$
$=75-\frac{1}{5} \times 75=60$
Students who participate only in dance from class VI $=\frac{8}{100} \times 500-15=40-15=25$
Required ratio $=60: 25=12: 5$
69. (A) Let the present age of Mr. Suman $=10 x+y$ years

Age of his wife $=10 y+x$ years
ATQ,
$\frac{1}{11}(10 x+y+10 y+x)=(10 x+y)-(10 y+x)$
$\frac{1}{11}(11 x+11 y)=9 x-9 y$
$x+y=9 x-9 y$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$-8 x=-10 y$
$\frac{x}{y}=\frac{10}{8}=\frac{5}{4}$
$\therefore \quad x: y=5: 4$
70. (A) Let Ram and Shyam weights are $=4 x$ and $5 x$ respectively

Now,
Their previous weight (sum)
$\frac{82.8}{115} \times 100=72 \mathrm{~kg}$
According to question,
$5 x+4 x=72$
$\therefore \quad x=8$
Ram's weight $=8 \times 4=32 \mathrm{~kg}$
Shyam's weight $=5 \times 4=40 \mathrm{~kg}$
Their increased weight $=82.8-72=10.8 \mathrm{~kg}$
Ram's weight $=32 \times 10 \%=3.2 \mathrm{~kg}$
Shyam's increased weight $=[10.8-3.2]=7.6 \mathrm{~kg}$
$\therefore \quad \%$ increase $=\frac{7.6}{40} \times 100=19 \%$
71. (D) Let all (175) children were to get $x$ sweets.

ATQ,
$140(x+4)=175 x$
$560=175 x-140 x$
$x=\frac{560}{35}=17$
$\therefore \quad$ Sweets to be distributed $=16 \times 175=2800$
72. (D) Total CP of [ $25 \mathrm{~kg}+35 \mathrm{~kg}]$ rice $=₹(25 \times 16.50+35 \times 24.50)$
$=₹(412.50+857.50)=₹ 1270$
SP at the rate of $25 \%$ profit $=₹[1270 \times 1.25]=₹ 1587.5$
$\therefore \quad$ Required rate $=\frac{1587.5}{60}=₹ 26.45$ per kg
73. (A)

|  | Wine | $:$ | Water | $=$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Initially by | 3 | $:$ | 1 | $=$ | 4 |

$\frac{1}{3}$ process $\quad\left(-\frac{3}{3}\right): \quad\left(-\frac{1}{3}+\frac{4}{3}\right) \quad \frac{4}{3}$

Final ratio $\left(3-\frac{3}{3}\right):\left(1-\frac{1}{3}+\frac{4}{3}\right)=1: 1$

## Campus

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
74. (C)


12 m

Area of the two apertures of 2 m diameter $=2 \times \frac{22}{7} \times(1)^{2}=\frac{44}{7}$ sq. m.
Area of an aperture of diameter $1 \mathrm{~m}=\frac{22}{7} \times \frac{1}{2} \times \frac{1}{2}=\frac{11}{14} \mathrm{~m}^{2}$
Area of the remaining portion of the plate $=6 \times 12-\left(\frac{44}{7}+\frac{11}{14}\right)$ sq. m.
$=72-\left(\frac{88+11}{14}\right)$ sq. m. $=\frac{1008-99}{14}=\frac{909}{14}$
$=64.928$ sq.m. $=65$ sq. m .
75. (D) Length of rectangle $=l$ unit

Breadth of rectangle $\quad=b$ unit
Area $=l \times b$ unit
Now,
$\mathrm{A}=15 b$
$l-b=10$
$l=(10+b)$
ATQ,
$\mathrm{A}=l \times b=(10+b) \times b=15 \mathrm{~b}$
[from (1)]
$\therefore \quad b=5$
76. (D) Volume of the wood = outer volume - inner volume
$=21.75 \times 60.75 \times 30.75-21 \times 60 \times 30$
$=40630.3594-37800=2830.3594 \mathrm{~cm}^{3}$
Weight of the wood $=2830.3594 \times 0.9=2547.32 \mathrm{gm}$
77. (C) Given that,
$\mathrm{SQL}=50^{\circ}$ and $\angle \mathrm{OQL}=90^{\circ}$
$\therefore \quad \angle \mathrm{OQS}=180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ}$
Similarly,

$$
\angle \mathrm{ORS}=30^{\circ}
$$

$\therefore \quad \angle \mathrm{QSR}=30^{\circ}+40^{\circ}=70^{\circ}$
78. (B) Let the CP of product $=₹ x$
$\therefore \quad \mathrm{SP}=\frac{80}{100} x[$ after discounted 20\%]
Again discount of $6.25 \%$, then new selling price
$\mathrm{SP}=\frac{83.75}{100} \times \frac{80}{100} \times x$

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$x-\frac{83.75}{100} \times \frac{80}{100} \times x=37.5$
$(x-0.75 x)=37.5$
$\therefore \quad x=\frac{37.5}{0.25}=₹ 150$
79. (B) Let the total no. of candidates $=100$

Total marks of 40 candidates $=40 \times 74$
And total marks of 60 candidates $=60 \times 77$
Hence, required average marks $=\frac{40 \times 74+60 \times 77}{100}$
$=\frac{2960+4620}{100}=\frac{7580}{100}=75.80$
80. (B) $x \times\left(\frac{\sqrt{3}}{2}\right)^{2} \times \frac{\sqrt{3}}{2}=\frac{1^{2} \times 2}{\frac{2}{\sqrt{3}}}$
$=x \times \frac{3}{4} \times \frac{\sqrt{3}}{2}=\frac{2}{\frac{2}{\sqrt{3}}}$
$x=\frac{\sqrt{3} \times 8 \times 2}{3 \sqrt{3} \times 2}=\frac{8}{3}=2 \frac{2}{3}$
81. (A)

$\therefore \quad$ Required time $=\frac{14}{7-6}=14$ hours
82. (B) The numbers of points term scored $=8 \times 84-92+85=672-92+85=665$
83. (B) Area of the square $=22 \times 22=484$ sq. cm

Circumference of circle $=484 \mathrm{~cm}$
$\pi \times$ Dimater $=484$
$\frac{22}{7} \times$ Dimater $=484$
Dimater $=\frac{484}{22} \times 7=154 \mathrm{~cm}$
Lenght of rectangle $=2 \times 154 \mathrm{~cm}=308 \mathrm{~cm}$
2 (lenght + breadht $)=$ Perimeter of rectangle
$2(308+x)=668$
[Breadht $=x($ let $)]$
$308+x=\frac{668}{2}=334$
$x=334-308=26 \mathrm{~cm}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
84. (C) Area of four walls $=2(l+b) h=2(5+4) 4=72 \mathrm{~m}$

Length of the paper $=\frac{50}{100}=\frac{1}{2} \mathrm{~m}$
then, $72=l \times \frac{1}{2}$
So, length of the paper $=144 \mathrm{~m}$
85. (C) Let when p takes 5 rounds, Q takes 4 rounds

Distance covered by p in 5 round $=5 \times 800=4000 \mathrm{~m}=4 \mathrm{k}$
Distance covered by Q in 4 round $=3200 \mathrm{~m}=3.2 \mathrm{~km}$
Difference $=800 \mathrm{~m}$
After every 4 km distance covered by p, he overtake Q 1 time
After every 10 km distance covered by p , he overtake $\mathrm{Q} \frac{10}{4}=2.5$ times $=2$ times Number of times one overtakes other can not be considered in decimals.
86. (B)


Here,
$l=25 \mathrm{~m}, b=15 \mathrm{~m}, x=2 \mathrm{~m}$
Then,
Area under the grass = Area of rectangle - Area of passage
$=l \times b-x(l+b-x)$
$=25 \times 12-2(25+15-2)$
$=375-76=299$ sq. m .
87. (A) Let ABCDEF be a regular hexagon.

$\mathrm{AB}=a=$ each side
$P$ be the middle point of $A B$.
Now, $\mathrm{PB}=\frac{a}{2}$ and $\left\lfloor\mathrm{OBP}=60^{\circ}\right.$
Since, $\mathrm{OP} \perp \mathrm{AB}, \triangle \mathrm{BOP}=30^{\circ}$
So , in the right triangle POB ,
$\mathrm{OB}=a$ (because OAB is an equilateral triangle, as ABCDEF is a regular hexagon)

## K D Campus Pvt. Ltd

$\mathrm{PB}=\frac{a}{2}$
$\mathrm{OP}=\sqrt{a^{2}-\frac{a^{2}}{4}} \sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{a \sqrt{3}}{2}$.
Therefore, each side of inner hexagon.
$\mathrm{OP}=\frac{a \sqrt{3}}{2}=\mathrm{PQ}$
Area of inner hexagon $=6 \times \frac{\sqrt{3}}{4} \times(\mathrm{QP})^{2}=[6 \times$ area of each equilateral triangle $]$
Similarly, Area of outer hexagon $=6 \times \frac{\sqrt{3}}{4} \times(\mathrm{AB})^{2}$
$\frac{\text { Area of outer hexagon }}{\text { Area of inner hexagon }}=\frac{6 \times \frac{\sqrt{3}}{4} \times(A B)^{2}}{6 \times \frac{\sqrt{3}}{4} \times(Q P)^{2}}=\frac{a^{2}}{\left(\frac{\sqrt{3}}{2} a\right)}=\frac{4}{3}$
Hence, the required ratio is $4: 3$.
88. (B) Let $O A B C D$ be the right pyramid whose base is a rectangle $A B C D$.

$\mathrm{AB}=\mathrm{DC}=24 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{AD}=18 \mathrm{~cm}$
and each slant edge $=\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=17 \mathrm{~cm}$
OX is the perpendicular dropped on the base of the right pyramid, then
$\angle O X B=90^{\circ}$ and $X$ is the mid-point of base
i.e., $X B=X D=\frac{1}{2} B D$
$\mathrm{OX}=$ height $=h=\sqrt{O B^{2}-X B^{2}}=\sqrt{17^{2}-\left(\frac{B D}{2}\right)^{2}}$
$\left[\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=24^{2}+18^{2}=900\right]$
$=\sqrt{17^{2}-\frac{900}{4}}=\sqrt{17^{2}-15^{2}}=8 \mathrm{~m}$
Volume $(\mathrm{V})=\frac{1}{3} \mathrm{~A} h=\frac{1}{3} \times 24 \times 18 \times 8=1152 \mathrm{~m}^{3}$
89. (A)

$\angle \mathrm{DGH}=\angle \mathrm{A}+\angle \mathrm{C}$ (exterior angle property)
$\angle \mathrm{DHG}=\angle \mathrm{E}+\angle \mathrm{B}$ (exterior angle property)
In $\triangle \mathrm{DGH}$,
$\angle \mathrm{D}+\angle \mathrm{DGH}+\angle \mathrm{DHG}=180^{\circ}$
$\angle \mathrm{D}+\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{D}+\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{B}+\angle \mathrm{C}=2$ right angle
90. (B) Unit digit of $327^{123}=3$

Unit digit of $413^{96}=1$
Unit digit of $118^{119}=2$
Unit digit of $226^{67}=6$
Sum of unit digits = 12
$\downarrow$
Unit digit
91. (C) Middle digit of the number $N=6$

Sum of 1 st and the last digit $=3+3=6$
92. (C) $x=\frac{\sqrt{5}-1}{\sqrt{5}+1}$ and $x y=1$

$$
\begin{aligned}
& y=\frac{1}{x}=\frac{\frac{1}{\sqrt{5}-1}}{\sqrt{5}+1}=\frac{\sqrt{5}+1}{\sqrt{5}+1} \\
\therefore \quad & x^{2}+y^{2}-3 x y=x^{2}+y^{2}-2 x y-x y \\
& =(x-y)^{2}-x y=\left[\frac{\sqrt{5}-1}{\sqrt{5}+1}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\right]^{2}-1 \\
& =\left[\frac{(\sqrt{5}-1)^{2}-(\sqrt{5}+1)^{2}}{(\sqrt{5}+1)(\sqrt{5}-1)}\right]^{2}-1=\left[\frac{(5+1-2 \sqrt{5})-(\sqrt{5}+1+2 \sqrt{5})}{(\sqrt{5})^{2}-(1)^{2}}\right]^{2} \\
& =\left[\frac{-4 \sqrt{5}}{5-1}\right]^{2}-1=\frac{(-4 \sqrt{5})^{2}}{(4)^{2}}-1 \\
& =\frac{16 \times 5}{16}-1=5-1=4
\end{aligned}
$$

93. (D) $x^{2}-4 x+3=x^{2}-3 x-x+3$
$=x(x-3)-1(x-3)$
$=(x-3)(x-1)$

## K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Again,
$x^{2}-5 x+6=x^{2}-3 x-2 x+6$
$=x(x-3)-2(x-3)$
$=(x-3)(x-2)$
So, L.C.M. of $x^{2}-4 x+3$ and $x^{2}-5 x+6=(x-1)(x-2)(x-3)$
94. (B) $\cos 43^{\circ}=\frac{x}{\sqrt{x^{2}+y^{2}}}$
$\cos \left(90^{\circ}-47^{\circ}\right)=\frac{x}{\sqrt{x^{2}+y^{2}}}$
$\sin 47^{\circ}=\frac{x}{\sqrt{x^{2}+y^{2}}}$
$\cos 47^{\circ}=\sqrt{1-\sin ^{2} 47^{\circ}}=\sqrt{1-\left(\frac{x}{\sqrt{x^{2}-y^{2}}}\right)^{2}}=\sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}$
$=\sqrt{\frac{x^{2}+y^{2}-x^{2}}{x^{2}+y^{2}}}=\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}$
$=\frac{y}{\sqrt{x^{2}+y^{2}}}$
$\cos 47^{\circ}=\frac{y}{\sqrt{x^{2}+y^{2}}}$

So, $\tan 47^{\circ}=\frac{\sin 47^{\circ}}{\operatorname{cosn} 47^{\circ}}=\frac{\frac{x}{\sqrt{x^{2}+y^{2}}}}{\frac{y}{\sqrt{x^{2}+y^{2}}}}$
$=\frac{x}{\sqrt{x^{2}+y^{2}}} \times \frac{\sqrt{x^{2}+y^{2}}}{y}=\frac{x}{y}$
95. (C) $\cos ^{2} \theta-\sin ^{2} \theta=\frac{1}{3}$ (given)
$\cos ^{4} \theta-\sin ^{4} \theta+1=\left[\left(\cos ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)^{2}\right]+1$
$=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+1 \quad\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=1 \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+1 \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$=\frac{1}{3}+1=\frac{4}{3}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
96. (A) Total number of A type of employees in $1998=48640 \times \frac{22}{100}=10700.80$

Let X \% of $42980=10700.80$
$42,980 \times \frac{X}{100}=10700.80$
X $=25 \%$ (Approx)
$\mathrm{C}+\mathrm{D}=10+15=25 \%$
So, C and D will be answer
97. (B) Change in $\mathrm{C}=42980 \times \frac{10}{100} \sim 48640 \times \frac{11}{100}$
$=4298 \sim 5350.40=\sim 1052.4$
Change in B $=42980 \times \frac{6}{100} \sim 48640 \times \frac{10}{100}$
$=2578.8 \sim 4864=\sim 2285$
Change in A $=42980 \times \frac{20}{100} \sim 48640 \times \frac{22}{100}$
$=8596 \sim 10700.80=\sim 2104.8$
Change in D $=42980 \times \frac{15}{100} \sim 48640 \times \frac{11}{100}$
$=6447 \sim 5350.40=\sim 1096.6$
So, Maximum change in B type of employees.
98. (C) In above solution we found that change in type B employee $=2285$
99. (B) Approximate percentage $=\frac{5000}{48640} \times 100=10 \%$
100. (B) Type A employee in $1998=48640 \times \frac{22}{100}=10700.80$

Type A employee in $1997=42980 \times \frac{20}{100}=8596$

Required $\%=\frac{10700.80}{8596} \times 100=124.48 \%$ or $125 \%$

## Campus

K D Campus Pvt. Ltd

## QUANTITATIVE ABILITY - 83 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (D) } & 26 . & \text { (A) } & \text { 51. } & \text { (B) } & \text { 76. } \\ \text { 2. } & \text { (B) } & \text { (D) } \\ \text { 3. } & \text { (B) } & 27 . & \text { (B) } & \text { 52. } & \text { (D) } & \text { 77. }\end{array}$ (C) $)$

