QUANTITATIVE ABILITY - 82 (SOLUTION)

1. (C) $\mathrm{SI}=\frac{P R T}{100}$

ATQ,
$113600=\frac{P \times 10 \times 5+P \times 8 \times 7+P \times 12 \times 3}{100}$
$113600=\frac{50 P+56 P+36 P}{100}$
$113600=\frac{142 P}{100}$
$\therefore \quad P=₹ 80,000$
2. (B) Price of plot after 3 years $=12,00,000 \times\left(1+\frac{20}{100}\right)^{3}$
$=12,00,000 \times\left(\frac{6}{5}\right)^{3}=12,00,000 \times \frac{216}{125}=₹ 20,73,600$
Price of car after 3 years $=16,00,000 \times\left(1+\frac{25}{100}\right)^{3}$
$=16,00,000 \times\left(\frac{3}{4}\right)^{3}=16,00,000 \times \frac{27}{64}=₹ 6,75,000$
\therefore Required difference $=20,73,600-6,75,000=₹ 13,98,600$
3. (B) Suppose the trains meet at a distance of $x \mathrm{kms}$ from Delhi. Let the trains from Delhi and Amritsar be A and B respectively.
ATQ,
[Time taken by A to cover $x \mathrm{~km}$] - [Time taken by B to cover $(450-x) \mathrm{km}$] $=\frac{50}{60}$

$$
\left[\because 4 \mathrm{pm}-3.10 \mathrm{pm}=50 \mathrm{~min}=\frac{50}{60} \mathrm{hrs}\right]
$$

$\frac{x}{20}-\frac{450-x}{60}=\frac{50}{60}$
$3 x-450+x=50$
$4 x=500$
$x=125 \mathrm{~km}$
Thus, the trains meet at a distance of 125 kms from Delhi.
Time taken by A to cover $125 \mathrm{~km}=\frac{125}{20}=6 \mathrm{hrs} 15 \mathrm{~min}$
So the trains meet at 9:25 pm.
4. (C) According to question,

	A		B		C
Efficiency	3	$:$	2	$:$	6
No. of days	2	$:$	3	$:$	1

Number of days taken by A = 12
Number of days taken by B $=18$ and number of days taken by $C=6$
1 day's work of $(A+B)=\frac{5}{36}$
1 day's work of $(B+C)=\frac{8}{36}$
1 day's work of $(\mathrm{C}+\mathrm{A})=\frac{9}{36}$
In 5 days total work done $=\frac{5}{36}+\frac{8}{36}+\frac{9}{36}+\frac{5}{36}+\frac{8}{36}=\frac{35}{36}$
Now, the rest of the work $\left(i e, \frac{1}{36}\right)$ is done by AC

Number of days taken by AC for the rest of the work $=\frac{36}{\frac{3}{36}}=\frac{1}{9}$

Therefore, total time taken to complete the work $=5+\frac{1}{9}=5 \frac{1}{9}$ days
5. (A) Sum lent at 6% rate of interest $=₹ x$
S.I. $=19000-16800=₹ 2200$
$\therefore \quad \frac{x \times 6 \times 2}{100}+\frac{(16800-x) \times 8 \times 2}{100}=₹ 2200$
$12 x+16800 \times 16-16 x=220000$
$4 x=268800-220000$
$4 x=48800$
$x=₹ 12,200$
6. (A) According to question,
$A+B=210$
Using, options, we find that
$\mathrm{A}=110$ and $\mathrm{B}=100$ is correct.
7. (A)

here, $h=$ height of tower AB
$\tan \theta=\frac{h}{a}$
$\tan \left(90^{\circ}-\theta\right)=\frac{h}{b}$
$\cot \theta=\frac{h}{b}$
$\tan \theta=\frac{b}{h}$
From (i) and (ii),
$\frac{h}{a}=\frac{b}{a}$
$h=\sqrt{a b}$
8. (A) Let the cost price of 1 orange $=₹ 1$
$\therefore \quad$ C.P. of 1 banana $=₹ \frac{3}{4}$ and C.P. of 1 apple $=₹ \frac{3}{2}$
New prices:
1 orange = ₹ 1.1
1 banana $\equiv \frac{3}{4} \times \frac{110}{100}=₹ 0.825$
1 apple $\equiv \frac{3}{2} \times \frac{110}{100}=₹ 1.65$
$\therefore \quad$ Original price of (4 bananas +2 apples +3 oranges $)=₹(3+3+3)=₹ 9$
New price of (4 banana +2 apples +3 oranges)
$=₹(4 \times 0.825+2 \times 1.65+3 \times 1.1)$
$=₹(3.3+3.3+3.3)=9.9$
\therefore Percentage increase $=\frac{9.9-9}{9} \times 100=10 \%$
9. (D) H.C.F. $=x$ and L.C.M. $=y$
$\mathrm{A} \times \mathrm{B}=x \times y$
So, $\mathrm{A}^{3}+\mathrm{B}^{3}=(\mathrm{A}+\mathrm{B})^{3}-3 \mathrm{AB}(\mathrm{A}+\mathrm{B})$
$=(x+y)^{3}-3 x y(x+y)$
$=x^{3}+y^{3}+3 x y(x+y)-3 x y(x+y)$
$=x^{3}+y^{3}$
10. (B)

$X Z-Y Z=2$ \qquad (i)
$X Y^{2}+\mathrm{YZ}^{2}=X Z^{2}$
$(2 \sqrt{6})^{2}=X Z^{2}-Y Z^{2}$
$24=(X Z-Y Z)(X Z+Y Z)$
$X Z+Y Z=12$
Adding both the equations,
$2 \times Z=14$
$\mathrm{XZ}=7$
$\therefore \quad Y Z=7-2=5$
$\therefore \quad \sec X=\frac{7}{2 \sqrt{6}}$
$\tan X=\frac{5}{2 \sqrt{6}}$
$\sec X+\tan X=\frac{7}{2 \sqrt{6}}+\frac{5}{2 \sqrt{6}}=\frac{12}{2 \sqrt{6}}=\sqrt{6}$
11. (A) Angles of triangle are $(a-d)^{\circ}, \mathrm{a}^{\circ}$ and $(a+d)^{\circ}$ ATQ,
$a-d+a+a+d=180^{\circ}$
$3 a=180^{\circ} \Rightarrow \mathrm{a}=60^{\circ}$
$\frac{a-d}{a+d}=\frac{60}{\pi}=\frac{60}{180}=\frac{1}{3}$
$\frac{60-d}{60+d}=\frac{1}{3}$
$180-3 d=60+d$
$4 d=120^{\circ} \Rightarrow d=30^{\circ}$
$a-d=60^{\circ}-30^{\circ}=30^{\circ}$
$a=60^{\circ}$
$a+d=60^{\circ}+30^{\circ}=90^{\circ}$
So, Angles of triangle are $30^{\circ}, 60^{\circ}$ and 90°
12. (B)

DE \|BC
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
$\mathrm{AED}=\angle \mathrm{ACB}$
$\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\therefore \quad \frac{\square \mathrm{BDEC}}{\triangle \mathrm{ADE}}=\frac{1}{1}$
$\frac{\square \mathrm{BDEC}}{\Delta \mathrm{ADE}}+1=1+1$
$\frac{\triangle A B C}{\triangle A D E}=2=\frac{\mathrm{AB}^{2}}{\mathrm{AD}^{2}}$
$\frac{\mathrm{AB}}{\mathrm{AD}}=\sqrt{2}$
$\frac{\mathrm{AB}}{\mathrm{AD}}-1=\sqrt{2}-1$
$\frac{\mathrm{BD}}{\mathrm{AD}}=\sqrt{2}-1$
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{1}{\sqrt{2-1}}$
$\mathrm{AD}: \mathrm{BD}=1: \frac{1}{\sqrt{2-1}}=1: \sqrt{2}$
13. (D) Relative speed of both the trains $=90 \mathrm{~km} / \mathrm{hr}=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{sec}$

Total length of both the trains $=\mathrm{S} \times \mathrm{T}=25 \times 12=300 \mathrm{~m}$
Let the length of train in the ratio $2: 1$.
Length of faster train $=200 \mathrm{~m}$
$\therefore \quad$ Length of slower train $=100 \mathrm{~m}$
Distance in 45 seconds by faster train
$\mathrm{D}=\mathrm{S} \times \mathrm{T}=54 \times \frac{5}{18} \times 45=675 \mathrm{~m}$
$\mathrm{D}=\mathrm{L}_{\mathrm{T}}+\mathrm{L}_{\mathrm{P}}$
$L_{P}=675-200=475 \mathrm{~m}$
14. (D)

$1^{\text {st }}$ Round (3 days) work will complete $=4+3+2=9$
So, 72 unit will complete $=\frac{72}{9}=8$ days
As they are working alternately, so number of days to complete the work $=8 \times 3=24$ days

Work will be completed in $=\frac{90}{4}=22 \frac{1}{2}$ days
15. (C)

$B=\frac{24}{1}=24$ hours
Capacity of tank $=24 \times 60 \times 6=8640 l$
16. (C) Interest for $2 \mathrm{yrs}=10+10+\frac{10 \times 10}{100}=21 \%$

Interest for $3 \mathrm{yrs}=21+10+\frac{21 \times 10}{100}=33.1 \%$
Now, (33.1-21)\% of $\mathrm{P}=24200$
12. 1% of $\mathrm{P}=24200$
$\mathrm{P}=\frac{24200 \times 100}{12.1}=2$ lakh
17.
(D) $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)\left(1+\frac{1}{x+3}\right)$
$=\left(\frac{x+1}{x}\right) \times\left(\frac{x+2}{x+1}\right)\left(\frac{x+3}{x+2}\right)\left(\frac{x+4}{x+3}\right)=\frac{x+4}{x}$
18. (D) EF || DC (Given)
$\Delta E G F \sim \triangle C G D$ (by AA Similarity)
$\frac{E G}{G C}=\frac{E F}{D C}$
$\frac{5}{10}=\frac{E F}{18}$
$\mathrm{EF}=\frac{18 \times 5}{10}=9 \mathrm{~cm}$
19. (A) Let the distance PQ be A km and they meet x hrs after the first man starts

Average speed of first man $=\frac{A}{4} \mathrm{~km} / \mathrm{hr}$
Average speed of second $\operatorname{man}=\frac{\mathrm{A}}{4} \mathrm{~km} / \mathrm{hr}$
Distance travelled by first man $=\frac{\mathrm{A}}{4} \times x \mathrm{~km}=\frac{\mathrm{Ax}}{4} \mathrm{~km}$
They meet x hrs after the first man starts. The second man, as he starts 1 hrs late, meets $\operatorname{after}(x-1)$ hrs from his start. Therefore distance travelled by the second man $=\frac{\mathrm{A}(x-1)}{4}$

Now, $\frac{\mathrm{A} x}{4}+\frac{\mathrm{A}(x-1)}{4}=\mathrm{A}$
$2 x-1=4$
$x=\frac{5}{2}=2 \frac{1}{2} \mathrm{hrs}$
$\therefore \quad$ Required time $=2 \frac{1}{2} \mathrm{hrs}$
$\therefore \quad$ They meet at $8 \mathrm{am}+2 \frac{1}{2} \mathrm{hrs}=$ at $10: 30 \mathrm{am}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
20. (A) $2 \mathrm{~A} \quad 30$

3B $\quad 20 \quad 60$
$6 \mathrm{C} \quad 10$
ABC discharge chemical in 1 min
$=6+3+2=11$
So, proportion of $R=\frac{6 \times 3}{11 \times 3}=\frac{6}{11}$
21. (B) Marks obtained by Joya in Science $=\frac{150 \times 56}{100}=84$

Total marks obtained by Joya in all subjects $=\frac{450 \times 54}{100}=243$
$\therefore \quad$ Marks obtained in GK $=243-73-84=86$
22. (B) Let the expenditure of mess/student $=x$
then exp. of 40 students $=40 \mathrm{x}$
exp. of 48 students $=48(x-2)=40 x+48$
$48 x-96=40 x+48$
$8 \mathrm{x}=144$
$\mathrm{x}=18$
Total expenditure $=18 \times 40=₹ 720$
23. (A) Let salary $=₹ 100$

Expenses on education $=₹ 40$
Expenses in purchasing books of ₹ 40
$=40 \times \frac{60}{100}=₹ 24$
Remaining $=40-24=₹ 16$
Expenses in purchasing stationary items
$=16 \times \frac{1}{2}=₹ 8$
ATQ,
$8 \times \frac{1}{4} \rightarrow 160$
$\therefore \quad 100 \rightarrow \frac{160}{2} \times 100=₹ 8000$
24. (C) Total manes obtained by Q in all the subjects together
$=75+90+82+54+38+60=399$
$\therefore \quad$ Required $\%=\left(\frac{399}{600} \times 100\right) \%=66.5 \%$
25. (D) Total marks obtained by P in all the subjects together
$=84+66+73+61+24+52=360$
Total marks obtained by U in all the subjects together
$=142+84+48+81+42+38=435$
$\therefore \quad$ Required ratio $=360: 435=72: 87$
26. (A) Required average $=\frac{66+90+48+75+78+84}{6}=73.5$
27. (B) Total marks obtained by all the students together in Maths
$=84+75+96+128+108+142=633$
$\therefore \quad$ Required average $=\frac{633}{6}=105.5$
28. (D) Total marks obtained by T in all the subjects together
$=108+78+78+70+39+48=421$
Total marks obtained by P in all the subjects together
$=84+66+73+61+24+52=360$
$\therefore \quad$ Required more $\%=\left(\frac{421-360}{360} \times 100\right) \%$
$=16.94 \% \approx 17 \%$
29. (B)
 $\frac{5}{3}+\frac{9}{\frac{1}{3}}$

$$
=\frac{\frac{1}{\frac{2}{3}}}{1+\frac{13}{3}}=\frac{1}{1+\frac{2}{13}}=\frac{13}{15}
$$

30. (D)

Original number $\Rightarrow 3 \times 5=15$
2 nd number $=5 \times 5=25$
31. (C)
$\begin{array}{r}\text { Ist team } \rightarrow 10 \\ \text { 2nd team } \rightarrow 20\end{array}>20$
Number of days $\rightarrow \frac{20}{3}=6 \frac{2}{3}$ days
32. (D) Cricket

Number of students $=10+7+8+4+5+6+3=43$
Number of students who do not play any game $=2$
Total students in the class $=43+2=45$
33. (D) Let the number of workers be x .

ATQ,
Total work $=x+(x-1)+(x-2)+$ \qquad $1=\frac{x(x+1)}{2}$
When there is no worker withdrawn at any stage.
Total work $=\mathrm{x} \times \mathrm{x}=\mathrm{x}^{2}$
therefore,

$$
\begin{aligned}
& \frac{x(x+1)}{2}=x^{2} \times \frac{55}{100} \\
& 10 \mathrm{x}+10=11 \mathrm{x} \\
& \mathrm{x}=10
\end{aligned}
$$

34. (C) $\{0.9-[2.3-3.2-(7.1-5.4-3.5)]\}$
$\{0.9-[2.3-3.2-(-1.8)]\}$
$\{0.9-[2.3-3.2+1.8]\}$
\{0.9-[0.9]\}
$\{0.9-0.9\}=0$
35. (A) Radius and height of cylinder are 1 cm and 16 cm .

Let the radius of one sphere $=r \mathrm{~cm}$.
Now,
Volume of cylinder $=12 \times$ vol. of sphere

$$
\begin{aligned}
& \pi \times 1^{2} \times 16=12 \times \frac{4}{3} \pi \times r^{3} \\
& r^{3}=1 \\
& r=1 \mathrm{~cm}
\end{aligned}
$$

\therefore Diameter of sphere $=2 \mathrm{~cm}$
36. (C) $\frac{3}{4}=0.75, \frac{5}{6}=0.833$
$\therefore \quad \frac{1}{2}=0.5, \frac{2}{3}=0.66$

$$
\frac{4}{5}=0.8, \frac{9}{10}=0.9
$$

$\therefore \quad \frac{4}{5}$ lies between $\frac{3}{4}$ and $\frac{5}{6}$
37. (C) By Alligation
$20 \%=\frac{1}{5}$
C.P
S.P

5	6
\downarrow	$\downarrow \times 1.2$
6	7.20

38. (D) S.I $=₹(15500-12500)$

$$
\text { = ₹ } 3000
$$

$\therefore \quad$ Rate $\%=\frac{100 \times 3000}{12500 \times 4}=6 \%$
39. (C) In class X, percentage of students who passed with Ist division $=\frac{24}{30} \times 100=80 \%$

In class Y, percent of students who passed with Ist division $=\frac{28}{35} \times 100=80 \%$
$\therefore \mathrm{C}$ is the right answer.
40. (C) Let the no. of students be 100
\therefore Total no. of marks $100 \times 80=8000$
marks scored by 10% students $=10 \times 95=950$
marks scored by 20% students $=20 \times 90=1800$
Average marks of remaining students $=\frac{8000-(1800+950)}{70}$
$=\frac{5250}{70}=75$
41. (A)
$A \rightarrow 60$
$B \rightarrow 40$
$\sum 120$
3
Let the time be x
ATQ,
$\frac{x}{2} \times 3+\frac{x}{2} \times 5=120$
$\frac{3 x}{2}+\frac{5 x}{2}=120$
$4 x=120$
$x=30 \mathrm{mins}$
42. (A) Circle has the largest area.
43. (C) C.P for the retailer $=24 \times 5=₹ 120$
S.P for the retailer $=25 \times 6=150$

Profit percent $=\frac{30}{120} \times 100=25 \%$
44. (C) Total distance $=60+50=110 \mathrm{kms}$

Total time $=\frac{60}{40}+\frac{50}{30}=\frac{19}{6} \mathrm{kms}$
\therefore Average speed $=\frac{110}{\frac{19}{6}}=\frac{660}{19}=37 \frac{14}{19} \mathrm{~km} /$ hours
45. (D) Let the total original weight $=100$ units
\therefore Weight of cylindrical container $=\frac{100}{6}$ units
Weight of liquid $=100-\frac{100}{6}=\frac{500}{6}$ units
Now, the total weight left after some liquid is removed $=\frac{100}{3}$ units
Weight of remaining liquid $=\frac{100}{3}-\frac{100}{6}=\frac{100}{6}$ units
Liquid removed $=\frac{500}{6}-\frac{100}{6}=\frac{400}{6}$ units
\therefore Required fraction $=\frac{\frac{400}{6}}{\frac{500}{6}}=\frac{4}{5}$
46. (C) Principal $=₹ 1800$

Rate $=10 \%$
C.I. $=₹ 378$
$\therefore \quad A=1800+378=₹ 1278$
Let time $=t$ years.
$A=P\left(1+\frac{R}{100}\right)^{t}$
$2178=1800\left(1+\frac{100}{100}\right)^{\mathrm{t}}$
$\frac{2178}{1800}=\left(\frac{11}{10}\right)^{t}$
$\frac{121}{100}=\left(\frac{11}{10}\right)^{\mathrm{t}}$
$\left(\frac{11}{10}\right)^{2}=\left(\frac{11}{10}\right)^{t}$
$t=2$ years
47. (A) Let Arun's weight be x kg .

According to Arun, $65<\mathrm{x}<72$
According to Arun's brother, $60<\mathrm{x}<70$
According to Arun's mother x < 68
The values satisfying all the above conditions are $66,67 \& 68$
$\therefore \quad$ Required average $=\left(\frac{66+67+68}{2}\right)=67 \mathrm{~kg}$
48. (A) Sum of temperatures on 1 st, 2 nd, 3 rd and 4 th days $=(58 \times 4)=232$ degrees

Sum of tempratures on 2 nd, 3 rd, 4 th and 5 th days $=(60 \times 4)=240$ degrees
Temprature on 5 th day - temprature on 1 st day $=8$ degrees
Let the temprature on 1 st and 5th days be $7 x$ and $8 x$ degrees respectively
Then, $8 x-7 x=8$
$\therefore \quad 8 \times 8-7 \times 8$
$x=8$
Temprature on 5 th day $=8 \times 8=64^{\circ}$
49. (B) Required decrease $\%=\left(\frac{70-64}{70} \times 100\right) \%=8 \frac{4}{7} \%$
50. (D) Required average $=\frac{55+48+75+50}{4}=57$
51. (C) Average production of sugar in India $=\frac{70+64+45+60+60+73}{6}=62$
$\therefore \quad$ Required ratio $=73: 62$
52. (C) Total production of sugar in India $=70+64+45+60+60+73=372$ Total production of sugar in China $=55+48+75+50+64+58=350$
\therefore Required difference $=372-350=22$
53. (B) Increase in the year $2009=\left(\frac{75-48}{48} \times 100\right) \%=56.25$
54. (D) If the required distance be $x \mathrm{~km}$, then

$$
\begin{aligned}
& \frac{x}{5}-\frac{x}{6}=\frac{30-5}{60} \\
& \frac{6 x-5 x}{30}=\frac{25}{60}=\frac{5}{12} \\
& x=\frac{30 \times 5}{12}=12.5 \mathrm{~km}
\end{aligned}
$$

55. (C) Let the present age of boy's father be x years.

Then, boy's age $=\frac{2 x}{7}$ years
boy's brother's age $=\frac{2 x}{7}+3=\frac{2 x+21}{7}$

Now ratio between the present age of boy's father and the of boy's brother
$=\frac{x}{2 x+21}=\frac{14}{5}$
$\frac{x}{2 x+21}=\frac{2}{5}$
$x=42$ years
\therefore boy's present age $=42 \times \frac{2}{7}=12$ years
56. (B) According to question,
$(2 \mathrm{M}+7 \mathrm{C})$'s 1 day work $=\frac{1}{4}$
It means that 1 work will be finished by $(8 \mathrm{M}+28 \mathrm{C})$
Again, $(4 \mathrm{M}+4 \mathrm{C})$'s 1 day's work $=\frac{1}{3}$
1 work will be completed by $12 \mathrm{M}+12 \mathrm{C}$
$8 \mathrm{M}+28 \mathrm{C}=12 \mathrm{M}+12 \mathrm{C}$
$M=4 C$
$\therefore \quad 4 \mathrm{M}+4 \mathrm{C}=5 \mathrm{M}$
Since, 5 M complete a work in 3 days. Then, 1 M will complete it in 15 days.
57. (C) Let the cost price of Sunil be x. Then the cost price of Anil will be $1.2 x$ and the cost price of Ramesh will be $1.2 x \times 1.10=1.32 x$
Then the cost price of Suresh $=x \times 1.2 \times 1.10+116=₹ 132 x+116$
Now, $1.32 x+116-x=500$
$0.32 x=500-116=384$
$\therefore \quad x=\frac{384}{32} \times 100=₹ 1200$
Anil's cost price $=1200 \times 1.2=₹ 1440$
Hence Anil paid to Sunil ₹ 1440
58. (A) $\frac{\mathrm{P}\left(1+\frac{r}{100}\right)^{2}}{\mathrm{P}\left(1+\frac{r}{100}\right)^{3}}=\frac{2420}{2662}=\frac{10}{11}$
$1+\frac{r}{100}=\frac{11}{10}$
$\frac{r}{100}=\frac{11}{10}-1=\frac{1}{10}$
$r=10 \%$
59. (B)
$\frac{2 x-3 y+1}{2}=\frac{x+4 y+8}{3}$
$6 x-9 y+3=2 x+8 y+16$
$4 x-17 y=13$
Also, $\frac{2 x-3 y+1}{2}=\frac{4 x-7 y+2}{5}$ \qquad (i)
$10 x-15 y+5=8 x-14 y+y$
$2 x-y=-1$
$4 x-2 y=-2$ \qquad (ii)

Campus

On Solving equation (i) and (ii) we get
$15 y=-15 \Rightarrow y=-1$
Puting value of y in equation (ii) we have,
$x=-1$
$x+y=(-1)(+)(-1)=-2$
60. (C) $x^{2}+\frac{1}{x^{2}}=\mathrm{P} \Rightarrow\left(x+\frac{1}{x}\right)^{2}-2=\mathrm{P}$
$x+\frac{1}{x}=\sqrt{P+2}$ and
$x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)$
$=\sqrt{P+2}(\mathrm{P}-1)=(\mathrm{P}-1) \sqrt{(P+2)}$
61. (C) Suppose the train meet at distance of $x \mathrm{~km}$ from A. Then,
[Time taken by second train to cover $(450-x) \mathrm{km}$] - [Time taken by first train to cover $x \mathrm{~km}$]
$=\frac{20}{60}$
$\frac{450-x}{20}-\frac{x}{15}=\frac{1}{3}$
$6750-35 x=100$
$x=\frac{6650}{35}=190 \mathrm{~km}$
62. (B)

$\because \quad \mathrm{OX}<\mathrm{AX}$ also $\mathrm{OY}<\mathrm{CY}$
and $\mathrm{OZ}<\mathrm{BZ}$
$\therefore \quad 30 X<3 A X$
OX $\angle A X$
63. (B)

$\frac{\text { Area of } \triangle \mathrm{ABD}}{\text { Area of } \triangle \mathrm{ADC}}=\frac{\frac{1}{2} \times \mathrm{BD} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{DC} \times \mathrm{AM}}$
$\frac{60}{\operatorname{area}(\triangle \mathrm{ADC})}=\times \frac{4 x}{5 x}$
area $(\Delta \mathrm{ADC})=75 \mathrm{~cm}$ sq.
64. (D) Total amount spent $=\left(\frac{591}{3}+\frac{45}{60} \times 780\right)$ paise
$=197+585=782$ paise $=₹ 7.82$
65. (A) Let the amount invested by A and B is $3 x$ and $5 x$ respectively and after 6 month C joined amount equal to B.
Then, Ratio of A, B and C in profit $=3 x \times 12: 5 x \times 12: 5 x \times 6=6: 10: 5$
66. (C) Let the work is completed in x days.

Work done by $(\mathrm{P}+\mathrm{Q})$ in 1 day $=\frac{1}{10}$ work
Work done by $(Q+R)$ in 1 day $=\frac{1}{18}$ work
P's 5 day's work + Q's 10 day's work + R's 15 day's work $=1$
$(P+Q)$'s 5 day's work $+(Q+R)$'s 5 day's work + R's 10 day's work $=1$
$\frac{5}{10}+\frac{5}{18}-\frac{10}{x}=1$
$x=45$ days
67. (A) Let the amount given at 4% per annum be ₹ x.
\therefore Amount given at 5% per annum $=₹(1200-x)$
$\therefore \frac{x \times 4 \times 2}{100}+\frac{(1200-x) \times 5 \times 2}{100}=110$
$\frac{-2 x+12000}{100}=110$
$x=₹ 500$
Aslo, $(1200-x)=1200-500=₹ 700$
68. (C) Given: $x(x+y+z)=9, y(x+y+z)=16$ and $z(x+y+z)=144$

Now Let us add all three equations, then we have
$(x+y+z)(x+y+z)=9+16+144$
$x+y+z=\sqrt{169}=13$
$\because \quad x(x+y+z)=9 \Rightarrow x \times 13=9$
$x=\frac{9}{13}$
69. (B)

$\mathrm{QSR}+\angle \mathrm{SRT}=180^{\circ} \quad[\because \mathrm{SQ}| | \mathrm{RT}]$
$35^{\circ}+60^{\circ}+x^{\circ}=180^{\circ}$
$x=85^{\circ}$
70. (D) Let the radius of solid spheres be r_{1} and r_{2} respectively.
A.T.Q

Surface area of B $=400 \%$ of surface area of $A=4 \times$ surface area of A
$4 \pi r_{2}^{2}=16 \pi r_{1}^{2}$
$\frac{r_{1}}{r_{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$ or $1: 2$

Now, Volume of B $\times \frac{(100-k)}{100}=$ Volume of A
$\frac{4}{3} \pi r_{2}^{3}\left(\frac{100-k}{100}\right)=\frac{4}{3} \pi r_{1}^{3}$
$\left(\frac{r_{1}}{r_{2}}\right)^{3}=\frac{100-k}{100}$
$\frac{1}{8}=\frac{100-k}{100}$
$k=\frac{700}{8}=87.5$
71. (D) Side of an equilateral triangle $=\frac{2}{\sqrt{3}}(l+m+n)$
$=\frac{2}{\sqrt{3}}(6+9+12)=18 \sqrt{3}$
$\therefore \quad$ Perimeter of a triangle $=3 \times$ side
$=3 \times 18 \sqrt{3}=54 \sqrt{3} \mathrm{~cm}$
72. (B) Let the height of circular cylinder $=H$
\because Total volume of the solid $=3 \times$ volume of the cone

Total volume of the solid
Volume of circular cone $=3$
$\frac{\pi r^{2} H+\frac{1}{3} \pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=3$
$\pi r^{2} H+\frac{1}{3} \pi r^{2} h=\pi r^{2} h \Rightarrow \pi r^{2} H=\frac{2}{3} \pi r^{2} h$
$H=\frac{2}{3} h$
73. (A) Let the sides of the base are $5 x \mathrm{~cm}, 12 x \mathrm{~cm}$ and $13 x \mathrm{~cm}$ respectively.

Given, perimeter of base $=60 \mathrm{~cm}$
$5 x+12 x+13 x=60$
$x=\frac{60}{30}=2$
The sides of base are $10 \mathrm{~cm}, 24 \mathrm{~cm}$ and 26 cm .
$\therefore \quad$ Volume of prism $=\frac{1}{2} \times 10 \times 24 \times 50=6000 \mathrm{~cm}^{2}$
74. (D) Let the amount be ₹ x and the rate of interest $=r \%$ p.a.
A.T.Q,

Amount after Ist year = ₹ 1200
$x\left(1+\frac{r}{100}\right)=1200$ \qquad (i)
also, Amount after IIIrd year $=1587$
$x\left(1+\frac{r}{100}\right)^{3}=1587$
On dividing Eq. (ii) by Eq. (i), we get
$\left(1+\frac{r}{100}\right)^{2}=\frac{1587}{1200}$
$1+\frac{r}{100}=\frac{23}{20}$
$\frac{r}{100}=\frac{3}{20}$
$r=15 \%$
75. (C)
C) Formula $=\frac{\text { Days }}{\frac{\text { And }}{\text { Or }}}$
$=\frac{938}{\frac{7}{2}+\frac{5}{5}+\frac{2}{7}}=\frac{938}{\frac{245+70+20}{70}}$
$=\frac{938 \times 70}{335}=196$ days

K D Campus Pvt. Ltd

76. (B) At the time of marriage $=$ Mother + Father + Son $=42 \times 3=126$ years

After 6 years $=126+6+6+6=144$ years
Current: $\mathrm{M}+\mathrm{F}+$ Son + Daughter in law + child $=36 \times 5=180$ years
$144+$ Daughter in law $+4=180$ [as child was born after 2 years of marriage so he is of 4 years now]
Daughter-in-law $=180-148=32$ years
At the time of marriage $=32-6=26$ years
77. (B)
$\begin{array}{ll} & \text { A : B } \\ \text { Original - } & 4: 5\end{array}$
After reduction - 3:4
Reduction - $1: 1$
1 unit $=30$
$\mathrm{A}=4 \times 30=120$
78. (B)

$V=8, S=6, E=12$
$\therefore \mathrm{V}+\mathrm{S}-\mathrm{E}=2$
79. (C) $\frac{\sqrt{\mathrm{x}+2}+\sqrt{\mathrm{x}-2}}{\sqrt{\mathrm{x}+2}-\sqrt{\mathrm{x}-2}}=\frac{3}{2}$
$2 \sqrt{x+2}+2 \sqrt{x-2}=3 \sqrt{x+2}-3 \sqrt{x-2}$
$5 \sqrt{x-2}=\sqrt{x+2}$
$\frac{\sqrt{\mathrm{x}+2}}{\sqrt{\mathrm{x}-2}}=\frac{5}{1}$
Squaring both the sides
$\frac{x+2}{x-2}=\frac{25}{1}$
$x+2=25 x-50$
$\therefore \quad 24 \mathrm{x}=52$
$x=\frac{52}{24}=\frac{13}{6}$
$6 x=13$
80. (D) $\frac{\sin \mathrm{A}-\sin \mathrm{C}}{\cos \mathrm{C}-\cos \mathrm{A}}=\frac{2 \cos \left(\frac{\mathrm{~A}+\mathrm{C}}{2}\right) \sin \left(\frac{\mathrm{A}}{2}\right)}{2 \sin \left(\frac{\mathrm{~A}+\mathrm{C}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{C}}{2}\right)}$
$=\cot \left(\frac{\mathrm{A}+\mathrm{C}}{2}\right)=\cot \left(\frac{\pi}{2}-\frac{\mathrm{B}}{2}\right)[\because \mathrm{A}+\mathrm{B}+\mathrm{C}=\pi]$
$=\tan \left(\frac{B}{2}\right)$
81. (A) Let C.P of article $=$ Rs. 100

Marked Price $=x$
Single equivalent discount $=\left(20+\frac{25}{4}-\frac{20 \times 25}{400}\right) \%=25 \%$
$\therefore \quad \mathrm{x} \times \frac{75}{100}=120$
$x=\frac{120 \times 100}{75}=160$
$160-100=60 \%$
82. (C)

Ratio = 16:84=4:21
83. (B) Given expression, $10 x+y=7(x+y)$
$3 x-6 y=0$
$x=2 y$
Now, When each digit is increased by 3 ,
Then, $10(x+3)+(y+3)=6(x+3+y+3)+6$
$4 x-5 y=9$
$8 y-5 y=9$
Form eq. (i)
$y=3 \& x=6$
The given number is 63 .
84. (C) $\because \frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2}+b^{2}+c^{2}-a b-b c-c a}=a+b+c$

So, $\frac{(1.5)^{3}+(4.7)^{3}+(3.8)^{3}-3 \times 1.5 \times 4.7 \times 3.8}{(1.5)^{2}+(4.7)^{2}+(3.8)^{2}-1.5 \times 4.7-4.7 \times 38-3.8 \times 1.5}$
$=1.5+4.7+3.8=10$
85. (B) Sum of temperature of first 3 days $=22^{\circ} \mathrm{C} \times 3=66^{\circ} \mathrm{C}$

Sum of temperature of last 3 days $=24{ }^{\circ} \mathrm{C} \times 3=72^{\circ} \mathrm{C}$
Sum of temperature of whole week $=23.5^{\circ} \mathrm{C} \times 7=164.5^{\circ} \mathrm{C}$
The temperature of the last day $=(164.5-66-72)^{\circ} \mathrm{C}=26.5^{\circ} \mathrm{C}$
86. (B) In such type of question,
$\mathrm{CP}=\frac{\text { Total cost }(100+\text { percent profit })}{(100-\text { percent loss })+(100+\text { percent profit })}=\frac{720 \times 119}{85+119}$
$=\frac{720 \times 119}{204}=₹ 420$
87. (B)

Height of the upper part of the cone $=\frac{1}{2} \times 24=12 \mathrm{~m}$
$\mathrm{OA}=12 \mathrm{~cm}$
$\because \quad \triangle \mathrm{AOB} \sim \Delta \mathrm{OMN}$
$\frac{\mathrm{OA}}{\mathrm{OM}}=\frac{\mathrm{AB}}{\mathrm{MN}}$
$\frac{12}{24}=\frac{A B}{7}$
$\therefore \quad \mathrm{AB}=\frac{7}{2} \mathrm{~cm}$
Volume of the upper part $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 12=154 \mathrm{~cm}^{2}$
88. (C)

Distance of point A from base of pillar $=100 \mathrm{~m}$
ATQ,
$\frac{B C}{A B}=\tan 45^{\circ}$
$B C=100 \times 1=100$
Length of incomplete pillar $=100 \mathrm{~m}$

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{AB}}=\tan 60^{\circ} \\
& \mathrm{BD}=100 \times \sqrt{3}=100 \sqrt{3}
\end{aligned}
$$

Length of the complete pillar is to be increased by $=(100 \sqrt{3}-100)=100(\sqrt{3}-1) \mathrm{m}$
89. (C) $\tan \mathrm{A}=1$
$\cos \mathrm{A}=\operatorname{Sin} \mathrm{A}=\frac{1}{\sqrt{2}}$
$\tan B=\sqrt{3}$
$\cos \mathrm{B}=\frac{1}{2}, \sin \mathrm{~B}=\frac{\sqrt{3}}{2}$
$\cos (A+B)=\cos A \cos B-\sin A \operatorname{Sin} B$
$=\frac{1}{\sqrt{2}} \times \frac{1}{2}-\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1-\sqrt{3}}{2 \sqrt{2}}=\frac{1-\sqrt{3}}{2 \sqrt{2}}$
90. (B) Let the distance of the office from the house of the man be $x \mathrm{~m}$.

Speed $=4 \mathrm{~km} / \mathrm{h}=4 \times \frac{5}{18}=\frac{10}{9} \mathrm{~m} / \mathrm{s}$
$=4 \times \frac{1000}{60} \mathrm{~m} / \mathrm{min}=\frac{200}{9} \mathrm{~m} / \mathrm{min}$
Time taken $=\frac{3 \mathrm{x}}{200} \min$
New speed $=\frac{5 \times 1000}{60}=\frac{250}{3} \mathrm{~m} / \mathrm{min}$
Time taken $=3 x / 250 \mathrm{~min}$
ATQ,
$\frac{3 x}{200}-5=\frac{3 x}{250}+4$
$\frac{3 x}{1000}=9$
$x=3000 \mathrm{~m}=3 \mathrm{~km}$
91. (B) $4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}+\sin ^{2} 30^{\circ}$
$4(1)^{2}-(2)^{2}+(1 / 2)^{2}$
$4-4+\frac{1}{4}=\frac{1}{4}$
92. (B) $3 \tan ^{2} 30^{\circ}-\frac{4}{3} \sin ^{2} 60^{\circ}-\frac{1}{2} \operatorname{cosec}^{2} 45^{\circ}+\frac{4}{3} \sin ^{2} 90^{\circ}$

$$
\begin{aligned}
& 3\left(\frac{1}{\sqrt{3}}\right)^{2}-\frac{4}{3}\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{1}{3}(\sqrt{2})^{2}+\frac{4}{3}(1)^{2} \\
& 3 \times \frac{1}{3}-\frac{4}{3} \times \frac{3}{4}-\frac{1}{2} \times 2+\frac{4}{3} \\
& 1-1-1+\frac{4}{3}=\frac{1}{3}
\end{aligned}
$$

93. (B) The diagonal of a square $=\sqrt{2} \times$ side
$12 \sqrt{2}=\sqrt{2} \times S$
$\mathrm{S}=12 \mathrm{~cm}$
Perimeter of the square $=4 \times \mathrm{s}=4 \times 12=48 \mathrm{~cm}$
Perimeter of the equilateral $\Delta=48 \mathrm{~cm}$

Its side $=\frac{48}{3}=16 \mathrm{~cm}$

Its area $=\frac{\sqrt{3}}{4} \times 16 \times 16=64 \sqrt{3} \mathrm{~cm}^{2}$
94. (A)

If angles are complimentary then height of tower $(\mathrm{AB})=\sqrt{\mathrm{PB} \times \mathrm{QB}}=\sqrt{a b} \mathrm{~m}$
95. (B)

$\mathrm{AB}=60 \mathrm{~m}$ (Light house)
Boat is at point C and $\angle \mathrm{CAE}=\angle \mathrm{ACB}=15^{\circ}$

$$
\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \cdot \tan 30^{\circ}}
$$

$$
=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}
$$

$\therefore \tan 15^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$

$$
x=\frac{60(\sqrt{3}+1)}{\sqrt{3}-1}
$$

$\therefore \quad$ Required distance $=\frac{60(\sqrt{3}+1)}{\sqrt{3}-1} \mathrm{~m}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
96. (B) Simple interest for 1 year at the rate of $=6 \%$ per annum is $=6$
C. I for 1 year when it is compounded half yearly $=6+6+\frac{6 \times 6}{100}=12.36$

Difference between C. I. \& S. I $=12.36-6=6.36$

Sum which was lended $=\frac{127.20}{6.36} \times 100=2000$
97. (A) No. of men selecting Product $\mathrm{C}=\frac{56340 \times 45}{100}=25353$

No. of men selecting Product $\mathrm{F}=\frac{35580 \times 15}{100}=5337$
$\therefore \quad$ Required percent $=\frac{5337}{25353} \times 100=21.05 \%$
98. (D) Total no. of people selecting all products $=284894$

Number of women selecting product $\mathrm{E}=\frac{48300 \times 44}{100}=21252$
\therefore Required percentage $=\frac{21252}{284894} \times 100=7.5 \%$ (Approx)
99. (D) Total no. of children selecting Product $A=\frac{45525 \times 36}{100}=16389$
100. (A) Avg. no. of women selecting all products together

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 82 (ANSWER KEY)

| 1. | (C) | 26. | (A) | 51. | (C) | 76. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | (B)

