QUANTITATIVE ABILITY - 81 (SOLUTION)

1. (C) 2-D representation of the arrangement is following. O ' is the center of the cone.

Let x be the distance of P from center of the sphere (O).
Height of the cone $=x-3$
Base radius $=\mathrm{OT}$

From triangle OO'T,
$\mathrm{OT}=\sqrt{6^{2}-3^{2}}=\sqrt{27}$
From triangle OTP
$\mathrm{OP}^{2}=\mathrm{x}^{2}=6^{2}+\mathrm{PT}^{2}$
(i)

From triangle TO'P
$\mathrm{PT}^{2}=(\mathrm{x}-3)^{2}+27$
From equation (i) and (ii),
$(x-3)^{2}+27=x^{2}-36$
$\mathrm{x}=12$
So height of cone $=(12-3)=9$ units
Volume of cone $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi(27)(9)=81 \pi$
2. (D) We have $\sin ^{3} 10^{\circ}+\sin ^{3} 50^{\circ}-\sin ^{3} 70^{\circ}$

Using the identity,
$\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
$\sin ^{3} \theta=\frac{1}{4}(3 \sin \theta-\sin 3 \theta)$
Let us use this in the given equation:
$=\frac{1}{4}\left[\left(3 \sin 10^{\circ}-\sin 30^{\circ}\right)+\left(3 \sin 50^{\circ}-\sin 150^{\circ}\right)\right]-\left(3 \sin 70^{\circ}-\sin 210^{\circ}\right)$
$=\frac{1}{4}\left[3\left(\sin 10^{\circ}+\sin 50^{\circ}+\sin 70^{\circ}\right)-\frac{3}{2}\right]$
Now using,
$\sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
$=-\frac{1}{4}\left[3\left(\sin 10^{\circ}-2 \cos 60^{\circ} \cdot \sin 10^{\circ}\right)-\frac{3}{2}\right]=-\frac{3}{8}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
3. (D) $x^{4}-79 x^{2}+1=0$

$$
\frac{x^{4}}{x^{2}}+\frac{1}{x^{2}}=79
$$

$x^{2}+\frac{1}{x^{2}}=79$
$x+\frac{1}{x}=\sqrt{x^{2}+\frac{1}{x^{2}}+2}=\sqrt{79+2}=9$
$\mathrm{x}^{3}+\mathrm{x}^{-3}=\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}$
$=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\left(\mathrm{x}^{2}-1+\frac{1}{\mathrm{x}^{2}}\right)=9(79-1)=702$
4. (A) Amount of milk in container after taking 5 litres milk $=80-5=75$ litres

Ratio of milk and water after adding 15 litres of milk $=75: 15=5: 1$
Amount of milk in 18 litres mixture $=\frac{5}{6} \times 18=15$ litres
Amount of water in 18 litres mixture $=\frac{1}{6} \times 18=3$ litres
Remaining milk in the container $=75-15=60$ litres
Remaining water in the container $=15-3=12$ litres
Ratio of milk and water after adding 8 litres of water $=60:(12+8)$
= $60: 20=3: 1$
Amount of milk in 28 litres mixture $=\frac{3}{4} \times 28=21$ litres
Remaining milk in container $=60-21=39$ litres
5. (C) Let initially there are x inlets in the pool.

Now, according to the question x inlets fill the tank in 20 hours and ($x-12$) inlets fill the tank in 32 hours.
ATQ,
$20 \mathrm{x}=32(\mathrm{x}-12)$
$20 \mathrm{x}=32 \mathrm{x}-384$
$12 x=384$
$\mathrm{x}=32$
So, total number of inlets $=32$
Now,
Flow rate of 1 inlet pipe is 2500 cubic metre per hour, so volume of the pool = flow rate of the pipe \times number of pipes \times time taken $=2500 \times 32 \times 20=16000000$ cubic metre
6. (A) Let the length of each train be $x \mathrm{~m}$.

Relative speed $=60-45=15 \mathrm{kmph}=15 \times \frac{5}{18}=\frac{25}{6} \mathrm{~m} / \mathrm{s}$
Now, Time $=\frac{\text { Distance }}{\text { Speed }}$
$24=\frac{x+x}{\frac{25}{6}}$
$24=2 x \times \frac{6}{25}$
$x=\frac{25 \times 24}{6 \times 2}=50 \mathrm{~m}$

Short trick :

When two train of same length running opposite direction, then length of each train
$=\frac{\text { Relative speed } \times \text { time to cross each other }}{2}=\frac{15 \times \frac{5}{18} \times 24}{2}=50 \mathrm{~m}$
7. (A) Let the investment made by Sapna be ₹ x.

Then, investment made by Neha $=(81600-x)$
ATQ,
$(81600-x)\left(1+\frac{4}{100}\right)^{2}=x\left(1+\frac{4}{100}\right)^{3}$
$81600-x=1.04 x$
$x=\frac{81600}{2.04}=₹ 40,000$
8. (B) Using Alligation Method,

Rice I

5.75

Rice II

4.50

$\begin{array}{lc}5.50-4.50 & 5.75-5.50 \\ =1.00 & =0.25 \\ \text { i.e. } 4: 1 & \end{array}$
Hence, the required quantity of Rice $I=\frac{75}{1} \times 4=300 \mathrm{~kg}$
9. (B) Let the share of A be $₹ x$.

Then, the share of B is ₹ $(30600-x)$
ATQ,
$x \times\left(1+\frac{4}{100}\right)^{3}=(30600-x)\left(1+\frac{4}{100}\right)^{2}$
$x \times \frac{104}{100}=30600-x$
$\frac{204}{100} x=30600$
$x=\frac{30600 \times 100}{204}=₹ 15,000$

Campus

K D Campus Pvt. Ltd

10. (D) Let the length of each train be x metre.

Relative speed $=46-36=10 \mathrm{~km} / \mathrm{h}=10 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=\frac{25}{9} \mathrm{~m} / \mathrm{s}$
ATQ,
$\frac{x+x}{\frac{25}{9}}=72$
$\frac{2 \mathrm{x} \times 9}{25}=72$
$\mathrm{x}=100 \mathrm{~m}$
11. (B) C.P. of land $=₹ 96000$

Loss at $\frac{2}{5}$ th land $=6 \%$
$=\frac{2}{5} \times \frac{6}{100} \times 96,000=₹ 2304$
Overall profit $=10 \%$
$=\frac{10}{100} \times 96,000=₹ 9600$

Profit of $\frac{3}{5}$ th land $=₹ 9600+₹ 2304=₹ 11904$

Profit percent $=\frac{11904}{\frac{3}{5} \times 96,000} \times 100=20 \frac{2}{3} \%$
12. (D) $\begin{array}{r}\text { Sunil } 4 \geq 12 \\ \text { Dinesh } 6 \geq 2\end{array}$

Work done by Ramesh in one day $=3 \times \frac{3}{2}=\frac{9}{2}$

Time taken by all of them together $=\frac{12}{3+2+4 \frac{1}{2}}=\frac{24}{19}=1 \frac{5}{19}$ days
13. (C) $x^{3}+y^{3}+z^{3}-3 x y z$
$=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
$=\frac{1}{2}(333+333+334)\left[(0)^{2}+(-1)^{2}+(-1)^{2}\right]=1000$

Campus

K D Campus Pvt. Ltd

14. (A) $\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{a+c}+\frac{x-c^{2}}{a+b}=4(a+b+c)$
$\frac{x-a^{2}}{b+c}-a+\frac{x-b^{2}}{a+c}-b+\frac{x-c^{2}}{a+b}-c=3(a+b+c)$
$\frac{x-a^{2}-a(b+c)}{b+c}+\frac{x-b^{2}-b(a+c)}{a+c}+\frac{x-c^{2}-c(a+c)}{a+b}=3(a+b+c)$
$\frac{x-a^{2}(a+b+c)}{b+c}+\frac{x-b^{2}(a+b+c)}{a+c}+\frac{x-c^{2}(a+b+c)}{a+b}=3(a+b+c)$
$\frac{x}{b+c}-\frac{(a+b+c) a}{b+c}+\frac{x}{a+c}-\frac{(a+b+c) b}{a+c}+\frac{x}{a+c}-\frac{(a+b+c)}{a+b}=3(a+b+c)$
$\frac{x}{(b+c)(a+b+c)}-\frac{a}{b+c}+\frac{x}{(a+b+c)(a+c)}-\frac{b}{b+c}+\frac{x}{(a+b+c)(a+c)}-\frac{c}{a+c}=3$
$\frac{x}{(a+b+c)}\left[\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right]-\frac{a}{b+c} \quad \frac{b}{a+c}-\frac{c}{a+b}=3$
$\frac{x}{a+b+c}\left[\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a-b}\right]-\frac{a}{b+c}-1-\frac{b}{a+c}-\frac{c}{a+b}-1=0$
$\frac{x}{a+b+c}\left[\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right]-\frac{(a+b+c)}{b+c}-\frac{(a+b+c)}{a+c}-\frac{a+b+c}{a+b}=0$
$\left[\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right]\left[\frac{x}{a+b+c}-(a+b+c)\right]=0$
So,
$\frac{x}{a+b+c}-(\mathrm{a}+\mathrm{b}+\mathrm{c})=0$
$x=(a+b+c)^{2}$
15. (D) $(x-a)(x-b)=1$
$(x-a)(x-a-5)=1$
$x-a-5=\frac{1}{x-a}$
$(x-a)-\frac{1}{(x-a)}=5$
Cubing both side,
$(x-a)^{3}-\frac{1}{(x-a)^{3}}-(x-a)\left(\frac{1}{x-a}\right)=125$
$\left[\left((x-a)-\frac{1}{x-a}\right)\right]=125$
$(x-a)^{3}-\frac{1}{(x-a)^{3}}=125+3(5)$
$(x-a)^{3}-\frac{1}{(x-a)^{3}}=140$
16. (B)

$\mathrm{BD}=\frac{1}{2} \mathrm{BC}=\frac{1}{2}$ a unit
$\mathrm{AD}=\sqrt{(\mathrm{AB})^{2}-(\mathrm{BD})^{2}}=\sqrt{(2 a)^{2}-\left(\frac{1}{2} a\right)^{2}}$
$=\sqrt{4 a^{2}-\frac{1}{4} a^{2}}=\frac{\sqrt{15}}{2} a$ unit
17. (C)

$\mathrm{AE}: \mathrm{ED}=5: 1$
Let $\mathrm{AE}=5 a$ unit
Then,
$\mathrm{ED}=a$ unit
$\angle \mathrm{BAD}=30^{\circ}$
$B D=A D \times \tan 30^{\circ}$
$=6 a \times \frac{1}{\sqrt{3}}=2 \sqrt{3} a$ unit
$\tan (\angle \mathrm{ACB})=6 \tan (\angle \mathrm{DBE})$
In $\triangle \mathrm{ACD}$,
$\tan (\angle \mathrm{ACB})=\frac{\mathrm{AC}}{\mathrm{CD}} \tan (\angle \mathrm{DBE})=\frac{\mathrm{DE}}{\mathrm{BD}}$
$\frac{A D}{C D}=6 \times \frac{D E}{B D}$
$\mathrm{CD}=\frac{6 a \times 2 \sqrt{3} a}{6 \times a}=2 \sqrt{3} a$ unit
$\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=4 \sqrt{3} a$ unit
$\mathrm{AB}=\frac{\mathrm{BD}}{\sin 30^{\circ}}=\frac{2 \sqrt{3} a}{\frac{1}{2}}=4 \sqrt{3} a$ unit
$\mathrm{AC}=\sqrt{\mathrm{AD}^{2}+\mathrm{CD}^{2}}=\sqrt{(6 \mathrm{a})^{2}+(2 \sqrt{3} a)^{2}}=4 \sqrt{3} a$ unit
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=4 \sqrt{3} a$ unit
[Property of equilateral triangle]
So, $\angle \mathrm{ACB}=60^{\circ}$
18. (B) Let Auto rickshaw charge for the distance covered $=₹ x / \mathrm{km}$ and fixed charge $=₹ y$

According to given condition,
$10 x+y=85$
$15 x+y=120$
Solving these equations (i) and (ii), we get
$x=₹ 7, y=₹ 15$
Hence, fare for journey of $25 \mathrm{~km}=₹(25 x+y)$
$=₹(25 \times 7+15)=₹ 190$
19. (B) Let $p(x)=a x^{3}+b x^{2}+x-6$ be the given polynomial.

Now,
$(x+2)$ is a factor of $p(x)$.
$p(-2)=0$
$a(-2)^{3}+b(-2)^{2}+(-2)-6=0$
$-8 a+4 b-2-6=0$
$-8 a+4 b=8$
$-2 a+b=2$
It is given that $p(x)$ leaves the remainder 4 when it is divisible by $(x-2)$.
$\therefore \quad p(2)=4$
$a(2)^{3}+b(2)^{2}+2-6=4$
$8 a+4 b-4=4$
$8 a+4 b=8$
$2 a+b=2$
Adding (i) and (ii), we get
$2 b=4$
$b=2$
Putting $\mathrm{b}=2$ in (i), we get
$-2 a+2=2$
$-2 a=0$
$a=0$
Hence, $a=0, b=2$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
20. (C) In AP, there is a, b, c.
$\therefore b-a=c-b$
In GP, there is x, y, z.
$y^{2}=x z$
$x^{b-c} y^{c-a} z^{a-b}=x^{a-b} z^{a-b} \times y^{c-a}$
$=(x z)^{a-b} \times y^{c-a}=y^{2(a-b)} \times y^{c-a}$
$=y^{2 a-2 b+c-a}=y^{a+c-2 b}$
$=y^{2 b-2 b}=y^{0}=1$
21. (A) Let number of postcards and inland letters be x and y respectively.

ATQ,
$0.30 x+1.5 y=66$
and $x+y=60$
On solving Eqs. (i) and (ii), we get
$x=20, y=40$
\therefore Required cost price $=0.30 \times 40+1.5 \times 20$
$=12+30$ = ₹ 42
22. (B) Let length and breadth of the rectangular park be $3 x$ and $2 x$ respectively.

Then,
Distance $=$ speed \times time
ATQ,
$10 x=12 \times \frac{5}{8} \times 8 \times 60$
$x=160$
$\therefore \quad$ Area of rectangular park $=3 x \times 2 x=6 x^{2}$
$=6 \times(160)^{2}=153600$ sq. m .
23. (A) The minimum distance each person should walk so that they can cover the distance in complete steps $=$ LCM of $(80 \mathrm{~cm}, 85 \mathrm{~cm}, 90 \mathrm{~cm})$

5	$80,85,90$
2	$16,17,18$
	$8,17,9$

Hence, the required distance $=5 \times 2 \times 8 \times 17 \times 9$
$=12240 \mathrm{~cm}=122 \mathrm{~m} 40 \mathrm{~cm}$
24. (A) Required difference $=[18+(-4)+28.3+15+(-3.1)+(-18.8)] \times 100$
$=35.4 \times 100=3540$
25. (D) Required ratio $=\frac{(65+71.6) \times 100}{(42+76) \times 100}=\frac{13660}{11800}=683: 590$
26. (C) Required total average $=\left[\frac{(65+41.2+72.4+63.5+83) \times 100}{5}\right]+\left[\frac{(51+72.8+83.5+21.8+66) \times 100}{5}\right]$ $=6502+5902=12404$
27. (D) Required average $=\frac{(72.4+61+71.6+83.5+61.2+73.2) \times 100}{6}=7048.33 \approx 7048$
28. (D) Required $\%=\frac{32970}{34850} \times 100 \approx 95 \%$
29. (A) $\left(x^{2}+2 x+1\right)+y^{2}=0$
$(x+1)^{2}+y^{2}=0$
$x+1=0$
$x=-1$
$y=0 \quad$ [By equating to zero]
$x^{31}+y^{35}=(-1)^{31}+(0)^{35}$
$=-1+0=-1$
(A) Let, $\alpha=2 x, \beta=x$
$\alpha+\beta=3 x=90$
$\therefore \quad \alpha=60^{\circ}, \beta=30^{\circ}$
$\frac{\sin \alpha}{\sin \beta}=\frac{\sin 60^{\circ}}{\sin 30^{\circ}}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}: 1$
31. (C)

$\mathrm{r}_{1}=9 \mathrm{~cm}$
$\mathrm{r}_{2}=4 \mathrm{~cm}$
$\mathrm{C}_{1} \mathrm{C}_{2}=13 \mathrm{~cm}$
\therefore Length $=\sqrt{\left(C_{1} C_{2}\right)^{2}-\left(r_{1}-r_{2}\right)^{2}}$
$=\sqrt{(13)^{2}-(9-4)^{2}}=\sqrt{169-25}$
$=\sqrt{144}=12 \mathrm{~cm}$
32. (B) Let BOC be the circular entrenchment which is surrounded by a ditch all around AD width of ditch $=\mathrm{CD}=\mathrm{W}=8 \mathrm{~m}$
So, the ditch is a circular ring, with inner diameter $=d=54 \mathrm{~m}$
Thickness $=W=8 \mathrm{~m}$
Cross section CD is a trapezium in shape.
Using the formula for ring,
Volume V = Al
Where $\mathrm{A}=$ area of cross-section (CD)

K D Campus Pvt. Ltd

Since the cross-section CD is a trapezium having parallel sides
$a=8 \mathrm{~m}, b=6 \mathrm{~m}$
And perpendicular distance between the parallel sides $=h=5 \mathrm{~m}$
$A=\frac{1}{2}(a+b) h=\frac{1}{2}(8+6) \times 5=35 \mathrm{~m}^{2}$
$l=$ length $=\pi(d+w)$
$=\frac{22}{7}(54+8)=\frac{22 \times 62}{7} \mathrm{~m}$
Now, $\mathrm{V}=\mathrm{Al}=35 \times \frac{22 \times 62}{7} \mathrm{~m}^{3}=6820 \mathrm{~m}^{3}$.
Hence, the volume of the excavation in digging the ditch is $6820 \mathrm{~m}^{3}$.
33. (C) Using the formula for prism,

Whole surface area $=\mathrm{S}=2 \mathrm{~A}+\mathrm{P}_{n} \times h$
Where A = area of base
$\mathrm{P}_{b}=$ perimeter of base $=21+20+13=54 \mathrm{~m}$
$h=$ height $=30 \mathrm{~m}$
$A=$ area of triangle $=\sqrt{S(S-a)(S-b)(S-c)}$

$$
(a=21, b=2, c=13, S=27)
$$

$=\sqrt{27 \times 6 \times 7 \times 14} \mathrm{~m}^{2}=126 \mathrm{~m}^{2}$
Now,
$\mathrm{S}=2 \mathrm{~A}+\mathrm{P}_{b} \mathrm{~h}$
$=2 \times 126+54 \times 30 \mathrm{~m}^{2}$
$=252+1620=1872 \mathrm{~m}^{2}$
Hence, the area of the whole surface of the given triangular prism is $1872 \mathrm{~m}^{2}$.
34. (D)

Let, $\mathrm{CL}=x$ and $\mathrm{LA}=y$
Then,
$x+y=p$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{LOC}$,
$\angle \mathrm{CAB}=\angle \mathrm{CLO}$
[Each equal to 90°]
$\angle \mathrm{C}=\angle \mathrm{C}$
$\therefore \quad \triangle \mathrm{CAB} \sim \Delta \mathrm{CLO}$
[common]
[By AA-criterion of similarity]
$\frac{C A}{C L}=\frac{A B}{L O}$

Campus

$\frac{p}{x}=\frac{a}{h}$
$x=\frac{p h}{a}$
In $\triangle \mathrm{ALO}$ and $\triangle \mathrm{ACD}$, we have
$\angle \mathrm{ALO}=\angle \mathrm{ACD}$
$\angle \mathrm{A}=\angle \mathrm{A}$
[By AA criterion of similarly]
$\therefore \quad \triangle \mathrm{ALO} \sim \triangle \mathrm{ACD}$
$\frac{A L}{A C}=\frac{O L}{D C}$
$\frac{y}{p}=\frac{h}{b}$
$y=\frac{p h}{b}$
From (i) and (ii), we have
$x+y=\frac{p h}{a}+\frac{p h}{b}$
$p=p h\left(\frac{1}{a}+\frac{1}{b}\right)$
$1=h\left(\frac{a+b}{a b}\right)$
$h=\frac{a b}{a+b}$ metres
Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{a b}{a+b}$ metres.
35. (D) The given equation is:

$$
\begin{aligned}
& \frac{x+a}{x-a}-\frac{x-b}{x-b}=\frac{2(a+b)}{x} \\
& \frac{x+a}{x-a}-1-\frac{x-b}{x+b}+1=\frac{2(a+b)}{x} \\
& \left(\frac{x+a}{x-a}-1\right)-\left(\frac{x-b}{x+b}-1\right)=\frac{2(a+b)}{x} \\
& \frac{a}{x-a}+\frac{b}{x+b}=\frac{a+b}{x} \\
& \frac{a}{x-a}+\frac{b}{x+b}=\frac{a}{x}+\frac{b}{x} \\
& \frac{a}{x-a}-\frac{a}{x}=\frac{b}{x}-\frac{b}{x+b}
\end{aligned}
$$

[After transposing]
$\frac{a x-a x+a^{2}}{x(x-a)}=\frac{b x+b^{2}-b x}{x(x+b)}$
$\frac{a^{2}}{x-a}=\frac{b^{2}}{x+b}$
$a^{2} x+a^{2} b=b^{2} x-a b^{2} \quad$ [After cross-multiplication]
$x\left(b^{2}-a^{2}\right)=a b(a+b)$
$x=\frac{a b}{b-a}$
36. (C) $\sin \left(60^{\circ}-\theta\right)=\cos \left(\psi-30^{\circ}\right)$
$\sin \left(60^{\circ}-\theta\right)=\sin \left[90^{\circ}-\left(\psi-30^{\circ}\right)\right]$
$\sin \left(60^{\circ}-\theta\right)=\sin \left[90^{\circ}-\psi+30^{\circ}\right]$
$60^{\circ}-\theta=120^{\circ}-\psi$
$\psi-\theta=60^{\circ}$
$\tan (\psi-\theta)=\tan 60^{\circ}=\sqrt{3}$
37. (C)

Since, $\angle B=90^{\circ}$,
In $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
But it is known that
$\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}$
$\angle \mathrm{ACD}=90^{\circ}$
In $\triangle \mathrm{ACD}$,
Hence, $\angle \mathrm{ACD}=90^{\circ}$.
38. (A) Marks obtained by Sushant $=1080$

Marks obtained by Mohit $=1.2 \times 1080=1296$
Marks obtained by Rajesh $=\frac{1296}{0.9}=1440$
So, percentage of marks obtained by Rajesh $=\frac{1440}{2000} \times 100=72 \%$
39. (C) 27 cogs turns 80 times in $\frac{3}{4} \times 60 \mathrm{~min}=45 \mathrm{~s}$

27 cogs $-45 s=80$ times
16 cogs $-8 s=\frac{27 \times 80 \times 8}{16 \times 45}=24$ times
40. (C) Number of students who play at least one game $=100 \%-52 \%=48 \%$

Let $x \%$ be the number of students who plays both the game.
ATQ,
$40 \%+34 \%-x \%=48 \%$
$x \%=26 \%$
ATQ,
$26 \%=234$
So, total number of students $=100 \%=900$
41. (B) Let the original cost price be ₹ 100 .

Then,
Profit = ₹ 320 and $\mathrm{SP}=₹ 420$
New CP = ₹ 125
New profit = ₹ 295
Required percentage $=\frac{295}{420} \times 100=70 \%$
42. (A) Required difference $=8.6 \times \frac{22}{100}-5.4 \times \frac{15}{100}=1.892-0.81$
$=1.082$ lakh $=108200$
43. (D) Vacancies in state R in the year $2016=5.4 \times \frac{10}{100}=0.54$ lakh

Vacancies in state R in the year $2017=8.6 \times \frac{8}{100}=0.688$
Required average $=\frac{0.54+0.688}{2}=\frac{1.228}{2}$ lakh $=61400$
44. (C) Required sum $=5.4 \times \frac{8}{100}+8.6 \times \frac{18}{100}=0.432+1.548=1.98$ lakh
45. (D) Total number of vacancies in $2017=\frac{48000 \times 100}{6}=800000$

Vacancies in city $B=20 \%$ of $800000=160000=1.60$ lakh
46. (C) Vacancies in state R in the year $2016=5.4 \times \frac{10}{100}=0.54$ lakh

Vacancies in state R in the year $2017=8.6 \times \frac{8}{100}=0.688$ lakh
Percentage rise $=\left(\frac{0.688-0.54}{0.54}\right) \times 100=27.407 \% \approx 27 \%$
47. (B)

$l=\sqrt{36^{2}+15^{2}}=39 \mathrm{~cm}$
If $r=$ radius of one generated cone, then by property of similar triangles.
$\frac{r}{15}=\frac{36}{39}$
$r=13.85 \mathrm{~cm}$
$l_{1}=36 \mathrm{~cm}$ and $l_{2}=15 \mathrm{~cm}$
Volume of double $=$ cone $($ above $\mathrm{OB}+$ below OB$)=\frac{1}{3} \mathrm{~A}\left(h_{1}+h_{2}\right)$
$=\frac{1}{3} \times \pi \times(13.85)^{2} \times 39=7837 \mathrm{~cm}^{3}$
48. (C) Total investment by $\mathrm{A}=16000 \times 3+11000 \times 9=$ ₹ 147000

Total investment By B $=12000 \times 3+17000 \times 9=₹ 189000$
Total investment by $C=21000 \times 6=₹ 126000$
Ratio of investments $=147000: 189000: 126000=7: 9: 6$
Profit of B exceeds that of C by $\frac{9-6}{7+9+6} \times 26400$
$=\frac{3}{22} \times 26400=₹ 3600$
49. (D)

$X Y=15 \mathrm{~cm}$
$\mathrm{TX}=9 \mathrm{~cm}$
$X Y=X Z$
[\because Tangents from external point are equal]
$X Z=15 \mathrm{~cm}$
Now, $Z T=X Z-T X=15-9=6 \mathrm{~cm}$
$\mathrm{RT}=\mathrm{ZT}=6 \mathrm{~cm}$
50. (C)

In $\triangle \mathrm{DBE}$,
$\mathrm{BE}=\frac{26}{3}-6=\frac{8}{3}$
$\tan \theta=\frac{\mathrm{BE}}{\mathrm{DE}}=\frac{\frac{8}{3}}{\frac{8}{\sqrt{3}}}=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
51. (C) Let the speed of boat in still water is $x \mathrm{kmph}$ and speed of stream is $y \mathrm{kmph}$.
$x+y=14$
and $x-y=16$
From (i) and (ii), we get
$x=10 \mathrm{kmph}$ and $y=4 \mathrm{kmph}$
Required time $=\frac{40}{10}=4$ hours

Short trick :

Required time $=\frac{\text { Distance }}{\text { speed in still water }}=\frac{40}{\frac{\text { speed (down)+speed (up) }}{2}}$
$=\frac{40}{\frac{14+6}{2}}=\frac{40}{10}=4 \mathrm{hrs}$.
52. (A) Let their initial investments be ₹ x, ₹ $3 x$ and ₹ $5 x$ respectively.

Then, A : B : C $=(x \times 4+2 x \times 8):\left(3 x \times 4+\frac{3 x}{2} \times 8\right):\left(5 x \times 4+\frac{5 x}{2} \times 8\right)$
$=(4 x+16 x):(12 x+12 x):(20 x+20 x)$
$=20 x: 24 x: 40 x=5: 6: 10$
53. (D) Type A Type B

Ratio of $\mathrm{A}: \mathrm{B}=5: 4$
So, type B sugar will be $(7 \times 4)=28 \mathrm{~kg}$
54. (C) Let speed of motorboat in still water be $x \mathrm{~km} / \mathrm{h}$ and speed of stream be $y \mathrm{~km} / \mathrm{h}$.

Now, according to the question,
$\frac{25}{x-y}+\frac{39}{x+y}=8$
$\frac{35}{x-y}+\frac{52}{x+y}=11$
By equation (i) $\times 4-$ (ii) $\times 3$,
We have,
$\frac{100}{x-y}-\frac{105}{x-y}=32-33$
$\frac{-5}{x-y}=1$
$x-y=5$

From equation (i),
$\frac{25}{5}+\frac{39}{x+y}=8$
$\frac{39}{x+y}=8-5=3$
$x+y=13$
By equation (iv) - (iii),
$x+y-x+y=13-5=8$
$2 y=8$
$y=\frac{8}{2}=4 \mathrm{~km} / \mathrm{h}$
55. (A) The quadratic equation is $x^{2}-($ sum of roots $) x+$ products of roots $=0$

$$
\begin{aligned}
& x^{2}-(2+\sqrt{5}+2-\sqrt{5}) x+(2+\sqrt{5})(2-\sqrt{5})=0 \\
& x^{2}-4 x-1=0
\end{aligned}
$$

56. (A) $\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{10}{3}$
$\frac{(x+1)^{2}+(x-1)^{2}}{x^{2}-1}=\frac{10}{3}$
$\frac{2 x^{2}+2}{x^{2}-1}=\frac{10}{3}$
$\left(x^{2}+1\right) 3=5\left(x^{2}-1\right)$
$3 x^{2}+3=5 x^{2}-5$
$8=2 x^{2}$
$x^{2}=4$
$x= \pm 2$
57. (C)

Other factor $=5-2 x$
58. (D) Let PQ be the tree.

$\frac{Q C}{A C}=\cos 30^{\circ}$
$\frac{10}{\mathrm{AC}}=\frac{\sqrt{3}}{2}$
$\mathrm{AC}=\frac{20}{\sqrt{3}} \mathrm{~m}$
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\tan 30^{\circ}$
$\frac{\mathrm{AQ}}{10}=\frac{1}{\sqrt{3}}$
$A Q=\frac{10}{\sqrt{3}} m$
Height of the tree $=\frac{20}{\sqrt{3}}+\frac{10}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}$
59. (D)

In \triangle PMA
$\tan 45^{\circ}=\frac{\mathrm{PM}}{\mathrm{AM}}$
$1=\frac{\mathrm{PM}}{\mathrm{AM}}$
$\mathrm{PM}=\mathrm{xm}$
In $\triangle \mathrm{PMB}$
$\tan 45^{\circ}=\frac{\mathrm{PM}}{\mathrm{MB}}$
$1=\frac{x}{1000-x}$
$x=1000-x$
$x=500 \mathrm{~m}$
Width of the river $=P M=x m=500 \mathrm{~m}=\frac{1}{2} \mathrm{~km}$
60. (C)

$A R=\frac{10}{3}-2=\frac{4}{3} m$
In $\triangle \mathrm{AQR}$
$\frac{\mathrm{AR}}{\mathrm{RQ}}=\frac{\frac{4}{3}}{\frac{4}{\sqrt{3}}}=\frac{1}{\sqrt{3}}=\tan \theta$
$\theta=30^{\circ}$
61. (C)

$\triangle A B C$ is isosceles where
$A B=A C=a$ and $B C=b$
Draw AM \perp BC
$\mathrm{BM}=\mathrm{MC}=\frac{1}{2} \mathrm{BC}$
$A M=\sqrt{A B^{2}-B M^{2}}=\sqrt{a^{2}-\left(\frac{b}{2}\right)^{2}}$
Area of D ABC $=\frac{1}{2} \times b \times \sqrt{\mathrm{a}^{2}-\frac{\mathrm{b}^{2}}{4}}=\frac{\mathrm{b}}{2} \times \frac{\sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}{2}$
$=\frac{\mathrm{b}}{4} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$ sq.unit
62. (C) If the C.P. of wrist watch be ₹ x, then C.P. of wall clock $=₹(390-x)$

ATQ,
$\frac{x \times 10}{100}+\frac{(390-x) \times 15}{100}=51.50$
$10 x+5850-15 x=5150$
$5 x=5850-5150=700$
$x=\frac{700}{5}=₹ 140$
C.P. of wall clock $=390-140=₹ 250$
\therefore Required difference $=250-140=₹ 110$
63. (D) Let the C.P $=x$

So, S.P. in 1 st case $=1.05 x$
Now, C.P. in 2nd case $=0.95 x$
And S.P. in 2nd case $=1.05 x-2$
Now, A.T.Q. $0.95 x \times 1.1=1.05 x-2$
$1.045 x=1.05 x-2$
$1.05 x-1.045 x=2$
$0.005 x=2$
$x=\frac{2}{0.005}=₹ 400$
64. (C) Discount on $₹ 36000=\frac{3600 \times 7}{100}=₹ 2520$

Discount on first $₹ 20,000=\frac{20000 \times 8}{100}=₹ 1600$
Discount on next ₹ $10,000=\frac{10,000 \times 5}{100}=₹ 500$
Discount on remaining ₹ $6,000=2520-(1600+500)=₹ 420$
$\therefore \quad$ Required percent $=\frac{420 \times 100}{6000}=7 \%$
65. (D) In the race between Sonu and Monu.

Distance travelled by Sonu and Monu in same time $=600 \mathrm{mtr}$. and $(600-60) \mathrm{mtr}$ $=600 \mathrm{mtr}$. and 540 mtr .
In the same time,
Ratio of distance travelled by Sonu \& Monu = 10:9
Similarly, In the same time,
Ratio of distance travelled by Monu \& Bablu = 500: $(500-25)$
$=500: 475=20: 19$
So, In the same time,
Ratio of distance travelled by Sonu, Monu \& Bablu = $10 \times 20: 9 \times 20: 9 \times 19$
= 200: 180: 171
When Sonu travels 200 m, Bablu will travel 171 m
So, When Sonu travels 400 m, Bablu will travel 342 m
In 400 m race between Sonu \& Bablu
Required Number of metres by which Sonu will win the race $=400 \mathrm{~m}-342 \mathrm{~m}=58 \mathrm{~m}$

K D Campus Pvt. Ltd

66. (A) Let $x \mathrm{mtr}=$ length of the faster train

So, 36 seconds $=\frac{x+10}{(40-20) \mathrm{kmph}}$
$x=36$ second $\times 20 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}=200 \mathrm{mtr}$.
67. (C) Increase in water level $=\frac{\text { Volume of sphere }}{\text { Area of base of cylinder }}$
$=\frac{4}{\frac{3}{\pi r^{2}}} \pi r^{2}=\frac{4}{3} r=\frac{4}{3} \times 3.5=\frac{14}{3} \mathrm{~cm}$.
$\therefore \quad$ Required water level $=7-\frac{14}{3}=\frac{7}{3} \mathrm{~cm}$
68. (A) Curved surface of cylinder $=2 \pi \mathrm{rh}$

Radius $=\frac{1}{3} \mathrm{r}$, height $=6 \mathrm{~h}$
Curved surface $=2 \pi \times \frac{1}{3} r \times 6 h=(2 \pi r h) \times 2$
$\therefore \quad$ Increase will be twice.
69. (D) Let his deposit = ₹ 100

Interest for first 2 years $=₹ 6$
Interest for first 3 years $=₹ 24$
Interest for the last year $=₹ 10$
Total interest $=₹ 40$
When interest is ₹ 40 , deposited amount is $₹ 100$.
When interest is $₹ 1520$, deposited amount $=\frac{100}{40} \times 1520=₹ 3800$
Trick:
Principal $=\frac{\text { Interest } \times 100}{t_{1} r_{1}+t_{1} r_{2}+t_{3} r_{3}+\ldots}=\frac{1520 \times 100}{2 \times 3+3 \times 8+1 \times 10}$
$=\frac{1520 \times 100}{40}=₹ 3800$
70. (A) $\tan (x+y) \cdot \tan (x-y)=1$
$\tan (x+y)=\cot (x-y)$
$\tan (x+y)=\tan \left[90^{\circ}-(x-y)\right]$
$x+y=90^{\circ}-x+y$
$2 x=90^{\circ}$
$x=45^{\circ}$
$\frac{2 x}{3}=\frac{90}{3}=30^{\circ}$
$\therefore \quad \tan \left(\frac{2 x}{3}\right)=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
71. (B) The edge of the given cube $=8 \mathrm{~m}$

Since the plane bisects the conterminous edges.
So, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=4 \mathrm{~m}$

The pyramid cut by the above plane has been shown in the second figure.
The three sides of the pyramid are right angled isosceles triangle because
$\angle \mathrm{BOA}=\angle \mathrm{BOC}=\angle \mathrm{AOC}=90^{\circ}$
Taking one of the above triangles as base of the pyramid whose equal sides measure 4 m , the height $=h=\mathrm{OB}=4 \mathrm{~m}$
Using the formula,
Where,
$A=$ area of $\triangle A O C=\frac{1}{2} \times 4 \times 4$
$h=\mathrm{OB}=4 \mathrm{~m}$
$\mathrm{V}=\frac{1}{3} \times \frac{1}{2} \times 4^{2} \times 4 \mathrm{~m}^{3}=10.67 \mathrm{~m}^{3}$
Hence, the volume of the cut pyramid is $10.67 \mathrm{~m}^{3}$.
72. (C) $x^{2}-3 x+2=(x-2)(x-1)$ are factors of $f(x)=0$.
$f(2)=0$
$2^{5}-5 \times 2^{4}+\mathrm{A} \times 2^{3}+\mathrm{B} \times 2^{2}+4 \times 2-40=0$
$8 \mathrm{~A}+4 \mathrm{~B}=80$
$2 \mathrm{~A}+\mathrm{B}=20$
Again, $f(1)=0$
On further solving, we get
$A+B=40$
From (i) and (ii),
$A=-20, B=60$
73. (D)
) $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=1$
$\frac{a}{1-a}+1+\frac{b}{1-b}+1+\frac{c}{1-c}+1=1+3$
$\frac{a+1-a}{1-a}+\frac{b+1-b}{1-b}+\frac{c+1-c}{1-c}=4$
$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=4$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
74. (A) Part of the tank filled in $2 \min =\left(\frac{2}{3}+\frac{2}{6}-\frac{2}{4}\right)=\frac{1}{2}$
P and Q can fill $\frac{1}{2}$ part of tank in $=\frac{1}{2} \times\left(\frac{3 \times 6}{3+6}\right)=1 \mathrm{~min}$
So, tank will be full in 3 min
75. (A) Given,
$\mathrm{HCF}=4, \mathrm{LCM}=27720$
$n=5$
According to the formula,
Required product $=(\mathrm{HCF})^{n-1} \times \mathrm{LCM}=(4)^{5-1} \times 27720$
$=(4)^{4} \times 27720$
$=256 \times 27720=7096320$
76. (B) $\sqrt[3]{3^{x}}=5^{1 / 4}$
$3^{x / 3}=5^{1 / 4}$
and $\sqrt[4]{5^{y}}=\sqrt{3}$
$5^{y / 4}=3^{1 / 2}$
$5=3^{\frac{1}{2} \times \frac{4}{y}}$
Putting the value of 5 from equation (ii) in equation (i), we have
$3^{x / 3}=\left(3^{\frac{1}{2} \times \frac{4}{y}}\right)^{1 / 4}$
$\frac{x}{3}=\frac{1}{2} \times \frac{4}{y} \times \frac{1}{4}$
$2 x y=3$
77. (A) Here,
$\mathrm{P}=20, \mathrm{Q}=15 \mathrm{~km}, \mathrm{R}=10 \mathrm{~km}$
$x=5 \mathrm{~km} / \mathrm{hr}, y=3 \mathrm{~km} / \mathrm{h}, z=2 \mathrm{~km} / \mathrm{h}$
Required average speed $=\frac{P+Q+R}{\frac{P}{x}+\frac{Q}{y}+\frac{R}{z}}=\frac{20+15+10}{\frac{20}{5}+\frac{15}{3}+\frac{10}{3}}$
$=\frac{45}{4+5+5}=\frac{45}{14}=3 \frac{3}{14} \mathrm{~km} / \mathrm{h}$
78. (A) Let the quantity of milk replaced be x.

ATQ,
$\frac{40}{100}(1-x)+\frac{19}{100} \times x=\frac{26}{100} \times 1$
$40-40 x+19 x=26$
$21 x=14$
$x=\frac{2}{3}$
79. (A) Rate \times consumption $=$ Expenditure
$10 / \mathrm{kg} \times 10 \mathrm{~kg}=100$
32% increment 10% increment
$13.20 \mathrm{~kg} \times x=110$
$x=\frac{110}{13.2}=\frac{100}{12}=8 \frac{1}{3} \mathrm{~kg}$
80. (A) C. P. $=₹ 100$, M.P. $=₹ 120$
$D=\frac{15}{100} \times 120=18$
S.P. = ₹ 102
$\mathrm{P} \%=\frac{\mathrm{P}}{\mathrm{C} . \mathrm{P} .} \times 100=\frac{2}{100} \times 100=2 \%$
81. (B) $\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~W}_{2}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~W}_{1}$
$M_{2}=\frac{M_{1} D_{1} W_{2}}{D_{2} W_{1}}=\frac{45 \times 200 \times 7.5}{150 \times 4.5}=100$
Extra men $=100-45=55$ men
82. (B) $\frac{1}{x+1}+\frac{2}{y+2}+\frac{1009}{z+1009}=1$
$\frac{1}{x+1}-1+\frac{2}{y+2}-1+\frac{1009}{z+1009}-1=1$
$-\frac{x}{1+x}-\frac{y}{y+2}-\frac{z}{z+1009}=-2$
$\frac{x}{1+x}+\frac{y}{y+2}+\frac{z}{z+1009}=2$
83. (A)

Efficiency $=4+2+1=7$ units $/$ day
Required time $=\frac{24}{7}=3 \frac{3}{7}$ days
84. (B)

On 14% profit $=\frac{1}{10} \times 50=5 \mathrm{~kg}$
On 6% loss $=\frac{9}{10} \times 50=45 \mathrm{~kg}$
85. (A) Required time $=\frac{8 \times 16}{16-8}=16$ hours
86. (B) $\cos (\alpha+\beta)=0=\cos 90^{\circ}$
$\alpha+\beta=90^{\circ}$
$\alpha=90^{\circ}-\beta$
Now, $\alpha-\beta=90^{\circ}-2 \beta$
$\sin (\alpha-\beta)=\sin \left(90^{\circ}-2 \beta\right)=\cos 2 \beta$
87. (A) $\mathrm{P}=₹ 16000$
$r=5 \%$ per annum i.e. $\frac{5}{2} \%$ (half yearly),
$\mathrm{T}=1 \frac{1}{2}$ years $=3$ half years
Amount $=16000 \times\left(1+\frac{5}{2 \times 100}\right)^{3}$
$=16000 \times\left(\frac{41}{40}\right)^{3}=16000 \times \frac{68921}{64000}=₹ 17230 \frac{1}{4}$
88. (A) For no solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{1}{3}=\frac{2}{k} \neq \frac{5}{-15}$
$k=6$
89. (C)

$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{x}{\frac{x}{\sqrt{3}}}=\sqrt{3}=\tan 60^{\circ}$
$\theta=60^{\circ}$
90. (C) $x=\sqrt{7 \sqrt{7 \sqrt{7} \ldots \ldots \ldots}}$

$$
\begin{aligned}
& x=\sqrt{7 x} \\
& x^{2}=7 x \\
& x(x-7)=0 \\
& x=7
\end{aligned}
$$

$$
\begin{aligned}
& 7=\left((7)^{3}\right)^{y-1} \\
& 7^{3 y-3} \\
& 3 y-3=1 \\
& y=\frac{4}{3}
\end{aligned}
$$

91.

(B) $a=\frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}+\frac{1}{3-\sqrt{8}} \times \frac{3+\sqrt{8}}{3+\sqrt{8}}+\frac{1}{4-\sqrt{15}} \times \frac{4+\sqrt{15}}{4+\sqrt{15}}$
$=\frac{2+\sqrt{3}}{4-3}+\frac{3+\sqrt{8}}{9-8}+\frac{4+\sqrt{15}}{16-15}$
$=2+\sqrt{3}+3+\sqrt{8}+4+\sqrt{15}$
$=9+\sqrt{3}+\sqrt{8}+\sqrt{15}$
$=9+1.732+2.828+3.87=17.43<18$
92. (D) Power of x must be a positive integer.
93. (A)

$\mathrm{AB}=\mathrm{BC}=x$ units
$\mathrm{AC}=\sqrt{\mathrm{BC}^{2}+\mathrm{AB}^{2}}=\sqrt{x^{2}+x^{2}}$
Now, Perimeter $=2 p$
$2 x+\sqrt{2} x=2 p$
$x=(2-\sqrt{2}) p$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} x^{2}=\frac{1}{2}(2-\sqrt{2})^{2} p^{2}$
$=(3-2 \sqrt{2}) p^{2}$ sq. units
94. (A)

In $\triangle \mathrm{ABC}, \angle \mathrm{B}$ is acute angle
$\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} \times \mathrm{AE}$
In $\triangle \mathrm{ABD} \angle \mathrm{A}$ is acute angle
$\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} . \mathrm{AF}$
Then,
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{AD}^{2}+2 \mathrm{AB}(\mathrm{AB}-\mathrm{BE}-\mathrm{AF})$
$=\mathrm{BC}^{2}+\mathrm{AD}^{2}+2 \mathrm{AB} \cdot \mathrm{EF}$
$=\mathrm{BC}^{2}+\mathrm{AD}^{2}+2 \mathrm{AB} . \mathrm{CD}$
95. (C)

$\mathrm{AD}=9 \mathrm{~cm}$
$\mathrm{GD}=\frac{1}{3} \times 9=3 \mathrm{~cm}$
$\mathrm{BE}=6 \mathrm{~cm} \mathrm{P} \mathrm{BG}=\frac{2}{3} \times 6=4 \mathrm{~cm}$
$\mathrm{BD}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~cm}$
96. (D) Total employees in marketing $=3600 \times \frac{18}{100}$

Number of Male $=\frac{7}{12} \times 36 \times 18=378$
97. (C) Total number of employees working in HR department $=3600 \times \frac{14}{100}$

Total number of women employees working in HR department $=\frac{3}{4} \times 36 \times 14$
Required ratio $=27 \times 14: 36 \times 14=3: 4$
98. (A) Total male employees in production department $=\frac{11}{12} \times 3600 \times \frac{28}{100}=924$

Total male employees in Accounts department $=\frac{2}{9} \times 3600 \times \frac{17}{100}=136$
Total male employees in production and account department $=924+136=1060$
99. (B) The number of women working in the IT and HR departments $=\frac{4}{9} \times 3600 \times \frac{23}{100}+378=746$

Required percentage $=\frac{746}{3600} \times 100=20.72 \%$
100. (D) The number of women employees working in the marketing and accounts department
$=\frac{5}{12} \times 3600 \times \frac{18}{100}+\frac{7}{9} \times 3600 \times \frac{17}{100}$
$15 \times 18+28 \times 17=746$
The number of male employees working in the marketing and accounts departments
$=3600 \times \frac{35}{100}-746=1260-746=514$
Required percentage $=\frac{746}{514} \times 100=145.13 \%$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 81 (ANSWER KEY)

1. (C)
2. (C)
3. (D)
4. (D)
5. (A)
6. (C)
7. (A)
8. (A)
9. (B)
10. (B)
11. (D)
12. (B)
13. (D)
14. (C)
15. (A)
16. (D)
17. (B)
18. (C)
19. (B)
20. (B)
21. (C)
22. (A)
23. (B)
24. (A)
25. (A)
26. (D)
27. (D)
28. (D)
29. (A)
30. (A)
31. (C)
32. (B)
33. (C)
34. (D)
35. (D)
36. (C)
37. (C)
38. (A)
39. (C)
40. (C)
41. (B)
42. (A)
43. (D)
44. (C)
45. (D)
46. (C)
47. (B)
48. (C)
49. (D)
50. (C)
51. (C)
52. (A)
53. (D)
54. (C)
55. (A)
56. (A)
57. (C)
58. (D)
59. (D)
60. (C)
61. (C)
62. (C)
63. (D)
64. (C)
65. (D)
66. (A)
67. (C)
68. (A)
69. (D)
70. (A)
71. (B)
72. (C)
73. (D)
74. (A)
75. (A)
76. (B)
77. (A)
78. (A)
79. (A)
80. (A)
81. (B)
82. (B)
83. (A)
84. (B)
85. (A)
86. (B)
87. (A)
88. (A)
89. (C)
90. (C)
91. (B)
92. (D)
93. (A)
94. (A)
95. (C)
96. (D)
97. (C)
98. (A)
99. (B)
100. (D)
