







**EXAMPLE 1097. GROUND FLOOR OPPOSITE MUMARMENT MADA POLICE STROM, OUTRAM LINES, GTB MAGAR, NEW DELHI - 09**  
14. (A) 
$$\frac{x-a^2}{b+c} + \frac{x-b^2}{a+c} + \frac{x-c^2}{a+b} = 4(a+b+c)$$
  
 $\frac{x-a^2}{b+c} - a + \frac{x-b^2}{a+c} - b + \frac{x-c^2}{a+b} - c = 3(a+b+c)$   
 $\frac{x-a^2-a(b+c)}{b+c} + \frac{x-b^2-(a+b+c)}{a+c} + \frac{x-c^2-a(a+b+c)}{a+b} = 3(a+b+c)$   
 $\frac{x-a^2(a+b+c)}{b+c} + \frac{x-b^2(a+b+c)}{a+c} + \frac{x-c^2(a+b+c)}{a+b} = 3(a+b+c)$   
 $\frac{x}{b+c} - \frac{(a+b+c)a}{b+c} + \frac{x}{a+c} - \frac{(a+b+c)}{a+b+c} + \frac{x}{a+c} - \frac{(a+b+c)}{a+b} = 3(a+b+c)$   
 $\frac{x}{(b+c)(a+b+c)} - \frac{a}{b+c} + \frac{x}{a+c} - \frac{(a+b+c)}{a+b+c} + \frac{x}{a+c} - \frac{(a+b+c)}{a+b+c} = 3(a+b+c)$   
 $\frac{x}{a+b+c} - \frac{(a+b+c)a}{b+c} + \frac{1}{a+b} - \frac{1}{a+b+c} + \frac{1}{a+c} - \frac{1}{a+b} - \frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} = 3$   
 $\frac{x}{(a+b+c)} \left[ \frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \right] - \frac{a}{b+c} - \frac{b}{b+c} + \frac{1}{a+b+c} + \frac{1}{a+b} - \frac{1}{a+b} - \frac{1}{a+b+c} -$ 



Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09  $\frac{AD}{CD} = 6 \times \frac{DE}{BD}$  $CD = \frac{6a \times 2\sqrt{3}a}{6 \times a} = 2\sqrt{3}a \text{ unit}$ BC = BD + DC =  $4\sqrt{3}a$  unit AB =  $\frac{BD}{\sin 30^{\circ}} = \frac{2\sqrt{3} a}{\frac{1}{2}} = 4\sqrt{3} a \text{ unit}$ AC =  $\sqrt{AD^2 + CD^2} = \sqrt{(6a)^2 + (2\sqrt{3}a)^2} = 4\sqrt{3} a$  unit AB = BC = AC =  $4\sqrt{3} a$  unit [Property of equilateral triangle] So,  $\angle ACB = 60^{\circ}$ 18. (B) Let Auto rickshaw charge for the distance covered =  $\overline{x}$  / km and fixed charge =  $\overline{x}$  y According to given condition, 10x + y = 85..... (i) ..... (ii) 15x + y = 120Solving these equations (i) and (ii), we get x = ₹7, y = ₹15Hence, fare for journey of 25 km = ₹ (25x + y)= ₹(25 × 7 + 15) = ₹ 190 (B) Let  $p(x) = ax^3 + bx^2 + x - 6$  be the given polynomial. 19. Now, (x + 2) is a factor of p(x).  $[\cdot x + 2 = 0 \Rightarrow x = -2]$ p(-2) = 0 $a(-2)^3 + b(-2)^2 + (-2) - 6 = 0$ -8a + 4b - 2 - 6 = 0-8a + 4b = 8-2a + b = 2... (i) It is given that p(x) leaves the remainder 4 when it is divisible by (x - 2).  $\therefore p(2) = 4$  $a(2)^3 + b(2)^2 + 2 - 6 = 4$ 8a + 4b - 4 = 48a + 4b = 82a + b = 2... (ii) Adding (i) and (ii), we get 2b = 4b = 2Putting b = 2 in (i), we get -2a + 2 = 2-2a = 0a = 0Hence, a = 0, b = 2

09555108888, 09555208888







Campus **K D Campus Pvt. Ltd** 1997, ground floor opposite mukherjee nagar police station, outram lines, gtb nagar, new delhi – 09  $\frac{p}{x} = \frac{a}{h}$  $x = \frac{ph}{a}$ In  $\triangle$  ALO and  $\triangle$  ACD, we have [Each equal to 90°]  $\angle ALO = \angle ACD$ [common]  $\angle A = \angle A$ [By AA criterion of similarly]  $\therefore \Delta ALO \sim \Delta ACD$  $\frac{AL}{AC} = \frac{OL}{DC}$  $\frac{y}{p} = \frac{h}{b}$  $y = \frac{ph}{h}$ From (i) and (ii), we have  $x + y = \frac{ph}{a} + \frac{ph}{b}$  $p = ph\left(\frac{1}{a} + \frac{1}{b}\right)$  $1 = h\left(\frac{a+b}{ab}\right)$  $h = \frac{ab}{a+b}$  metres Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is  $\frac{ab}{a+b}$  metres. 35. (D) The given equation is:  $\frac{x+a}{x-a} - \frac{x-b}{x-b} = \frac{2(a+b)}{x}$  $\frac{x+a}{x-a} - 1 - \frac{x-b}{x+b} + 1 = \frac{2(a+b)}{x}$  $\left(\frac{x+a}{x-a}-1\right) - \left(\frac{x-b}{x+b}-1\right) = \frac{2(a+b)}{x}$  $\frac{a}{x-a} + \frac{b}{x+b} = \frac{a+b}{x}$  $\frac{a}{x-a} + \frac{b}{x+b} = \frac{a}{x} + \frac{b}{x}$  $\frac{a}{x-a} - \frac{a}{x} = \frac{b}{x} - \frac{b}{x+b}$ [After transposing]

















## Ph: 09555108888, 09555208888





Ph: 09555108888, 09555208888









## Ph: 09555108888, 09555208888

 KD
 Campus

 KD Campus Pvt. Ltd
 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

## **QUANTITATIVE ABILITY - 81 (ANSWER KEY)**

| 1.           | (C) | 26. (C) | 51. (C) | 76. (B)  |
|--------------|-----|---------|---------|----------|
| 2.           | (D) | 27. (D) | 52. (A) | 77. (A)  |
| 3.           | (D) | 28. (D) | 53. (D) | 78. (A)  |
| 4.           | (A) | 29. (A) | 54. (C) | 79. (A)  |
| 5.           | (C) | 30. (A) | 55. (A) | 80. (A)  |
| 6.           | (A) | 31. (C) | 56. (A) | 81. (B)  |
| 7.           | (A) | 32. (B) | 57. (C) | 82. (B)  |
| 8.           | (B) | 33. (C) | 58. (D) | 83. (A)  |
| 9.           | (B) | 34. (D) | 59. (D) | 84. (B)  |
| 10.          | (D) | 35. (D) | 60. (C) | 85. (A)  |
| 11.          | (B) | 36. (C) | 61. (C) | 86. (B)  |
| 12.          | (D) | 37. (C) | 62. (C) | 87. (A)  |
| 13.          | (C) | 38. (A) | 63. (D) | 88. (A)  |
| 14.          | (A) | 39. (C) | 64. (C) | 89. (C)  |
| 15.          | (D) | 40. (C) | 65. (D) | 90. (C)  |
| 1 <b>6</b> . | (B) | 41. (B) | 66. (A) | 91. (B)  |
| 17.          | (C) | 42. (A) | 67. (C) | 92. (D)  |
| 18.          | (B) | 43. (D) | 68. (A) | 93. (A)  |
| 1 <b>9</b> . | (B) | 44. (C) | 69. (D) | 94. (A)  |
| 20.          | (C) | 45. (D) | 70. (A) | 95. (C)  |
| 21.          | (A) | 46. (C) | 71. (B) | 96. (D)  |
| 22.          | (B) | 47. (B) | 72. (C) | 97. (C)  |
| 23.          | (A) | 48. (C) | 73. (D) | 98. (A)  |
| 24.          | (A) | 49. (D) | 74. (A) | 99. (B)  |
| 25.          | (D) | 50. (C) | 75. (A) | 100. (D) |
|              |     |         |         |          |