QUANTITATIVE ABILITY - 79 (SOLUTION)

1. (A) C has invested his money for 8 months.

Let ₹ ' x ' be C's monthly salary.
Profit = ₹ 2,40,000
Therefore, profit to be shared $=₹(24000-8 x)$
Ratio of investments by A and $B=2: 3=4: 6$
Ratio of investments by B and $C=6: 5$
Ratio of investments by A, B and C $=4: 6: 5$
Profit will be shared in the ratio $(4 \times 12):(6 \times 12):(5 \times 8)=6: 9: 5$
Given, B's share $=90000$
ATQ,
$\frac{9}{20} \times(240000-8 x)=90000$
$240000-8 x=200000$
$8 \mathrm{x}=40000$
$\mathrm{x}=₹ 5000$
2. (C) Let the time to catch P for $\mathrm{Q}=\mathrm{t}$
$3(\mathrm{t}+1)=4 \mathrm{t}$
$t=3$ hours
Distance covered by P=3×4=12km
Distance covered by R in 2 hours $=10 \mathrm{~km}$
$2=3 t^{\prime}+5 t^{\prime}$
$\mathrm{t}^{\prime}=\frac{1}{4}$ hour $=15 \mathrm{~min}$
Time $=5: 15$ O'clock
3. (B) \mathbf{A}

Let circum radius be $=\mathrm{R}$
And in-centre radius $=r$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{AC}^{2}=24^{2}+10^{2}$
$\mathrm{AC}^{2}=676$
$\mathrm{AC}=26 \mathrm{~cm}$
Circumradius $=\frac{\text { hypotenuse }}{2}=\frac{26}{2}=13 \mathrm{~cm}$
inradius of a right angle triangle
$=\frac{\mathrm{P}+\mathrm{B}-\mathrm{H}}{2}=\frac{\mathrm{AB}+\mathrm{BC}-\mathrm{AC}}{2}$
$=\frac{(24+10-26)}{2}=4 \mathrm{~cm}$
Distance between incentre and circumcentre $=\sqrt{R^{2}-2 R r}$
$=\sqrt{13^{2}-2 \times 13 \times 4}=\sqrt{65}$
4. (D) We know that,
$\frac{(3!)^{3!}}{12}=\frac{6^{6}}{12}=0($ Remainder $)$
From third term onward every term in the series leaves remainder as 0 when divided by 12.
So, required remainder $=\frac{(1!)^{1!}+(2!)^{2!}+(3!)^{3!}+(4!)^{1!}+\ldots \ldots .+(20!)^{20!}}{12}$
$=\frac{1+4+0+0+\ldots+0}{12}=5$
5. (C) Here we have $1-2 \sin ^{2} x+a \sin x=2 a-7$
$2 \sin ^{2} x-\operatorname{asin} x+2 a-8=0$
$\sin \mathrm{x}=\frac{\mathrm{a} \pm \sqrt{\mathrm{a}^{2}-8(2 \mathrm{a}-8)}}{4}$
$\sin x=\frac{a \pm \sqrt{(a-8)^{2}}}{4}$
$\sin x=\frac{a-4}{2}$ or 2
We know that the value of $\sin \mathrm{x}$ lies $[-1,1]$.
$-1 \leq \frac{a-4}{2} \leq 1$
$-2 \leq a-4 \leq 2$
$2 \leq a \leq 6$
$a=2,3,4,5,6$
Sum of possible integral values $=20$
6. (C)

First of all whole part divides into 4 parts i.e. I, II, III and IV.
Part I:

4
Semi perimeter $(S)=\frac{2+3+4}{2}=\frac{9}{2}$
According to Heron's formula,
Area $=\sqrt{S(S-a)(S-b)(S-c)}$
$\sqrt{\frac{9}{2}\left(\frac{9}{2}-2\right)\left(\frac{9}{2}-3\right)\left(\frac{9}{2}-4\right)}$
$\sqrt{\frac{9}{2} \times \frac{5}{2} \times \frac{3}{2} \times \frac{1}{2}}=\frac{3 \sqrt{15}}{4}$ sq.meter
Part II:
 1

Area of rectangle $=2 \times 1=2$ sq. meter Part III :

Area of triangle $=\frac{1}{2} \times 2 \times 3=3$ sq. meter
Part IV:

Area $=\frac{1}{2} \times(1+3) \times 2=4$ sq. meter
Total Area $=\frac{3 \sqrt{15}}{4}+2+3+4=\frac{3 \sqrt{15}}{4}+9$ sq.meter

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
7. (C) $x=\sqrt{1+\frac{\sqrt{3}}{2}}-\sqrt{1-\frac{\sqrt{3}}{2}}$
$x^{2}=1+\frac{\sqrt{3}}{2}+1-\frac{\sqrt{3}}{2}-2 \sqrt{1-\frac{3}{4}}$
$x^{2}=2-2 \times \frac{1}{2}=1$
$\mathrm{x}= \pm 1$
$\because \sqrt{1+\frac{\sqrt{3}}{2}}>\sqrt{1-\frac{\sqrt{3}}{2}}$
$x=1$
$\frac{x+\sqrt{2}}{x-\sqrt{2}}=\frac{1+\sqrt{2}}{1-\sqrt{2}} \times \frac{(1+\sqrt{2})}{1+\sqrt{2}}$
$=\frac{(1+2+2 \sqrt{2})}{-1}=-3-2 \sqrt{2}$
8. (B) It is given that:

A car starts from point A with the speed of $70 \mathrm{~km} / \mathrm{hr}$.
So, when the car reaches to the middle point:
Distance $=150 \mathrm{~m}$
Relative speed $=(70-45)=25 \mathrm{~km} / \mathrm{hr}$.
Time $=\frac{150}{25 \times 5} \times 18 \mathrm{sec}$
So, the distance covered by car $=\frac{150}{25 \times 5} \times 18 \times 70 \times \frac{5}{18}=420 \mathrm{~m}$
When it reaches exactly half the distance ; distance left to be covered $=150 \mathrm{~m}$
Now, new Relative speed $=(65-60)=5 \mathrm{~km} / \mathrm{hr}$
Time $=\frac{150}{5 \times 5} \times 18 \mathrm{sec} .=108 \mathrm{sec}$.
Distance covered by car $=\frac{(180 \times 65 \times 5)}{18}=1950 \mathrm{~m}$
So total distance $=1950+420=2370 \mathrm{~m}=2.37 \mathrm{~km}$
9. (C)

So, from the above image slant height will be equal to radius and curved circumference of semi-circle to the circumference of the base of cone.
Let radius, height and slant height of the cone are r, h and 1 respectively.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$2 \pi \mathrm{r}=\pi \times(21)$
$\mathrm{r}=\frac{21}{2} \mathrm{~cm}$
We know that, in a cone
$\mathrm{l}^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$21^{2}=\left(\frac{21}{2}\right)^{2}+h^{2}$
$h=\frac{21}{2} \sqrt{3}=18.18 \approx 18 \mathrm{~cm}$
10. (A) In $\triangle A B C, C F$ is Angle bisector of $\angle A C B$.

Then,
$\frac{\mathrm{CA}}{\mathrm{CB}}=\frac{\mathrm{AF}}{\mathrm{FB}}=\frac{16}{20}$
Let $\mathrm{AF}=16 \mathrm{k}, \mathrm{FB}=20 \mathrm{k}$
Also, $\mathrm{AB}=\mathrm{AF}+\mathrm{FB}$
$16 \mathrm{k}+20 \mathrm{k}=\mathrm{AB}$
$36 \mathrm{k}=15$
$\mathrm{k}=\frac{15}{36}$
Hence,
$\mathrm{AF}=16 \mathrm{k}=16 \times\left(\frac{15}{36}\right)=\frac{20}{3} \mathrm{~cm}$
11. (C) Number of coins $=\frac{\text { Amount in rupees }}{\text { Value of coins in rupees }}$

Number of one rupee coin $=x$
Number of 50 paise coin $=\frac{3 x}{\frac{1}{2}}=6 x$
Number of 25 paise coin $=\frac{7 x}{\frac{1}{4}}=28 x$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$x+6 x+28 x=3150$
$35 x=3150$
. $x=90$
Number of one rupee coin $=90$
Number of 50 paise coin= 540
Number of 25 Paise coin $=2520$
Total value of coins $=1 \times 90+\frac{1}{2} \times 540+\frac{1}{4} \times 2520$
$=90+270+630=₹ 990$
12. (B) Let two trains meet after t hours, when the first train from town P leaves at 8 am .
$\therefore \quad$ Distance covered in t hours at $50 \mathrm{kmph}+$ Distance covered in $(t-3)$ hours at 100 kmph $=600 \mathrm{kms}$.
ATQ,
$50 t+100(t-3)=600$
$50 t+100 t-300=600$
$150 t=900$
$t=\frac{900}{150}=6$ hours
Hence, the trains will meet at 2 pm .
13. (A)

When B meets A at R, B has walked the distance PQ + QR and A the distance PR That is both of them together have walked twice the distance from P to Q , i.e. 40 km . Now, rates of A \& B are $3: 5$ and they walked 36 km .
Hence the distance PR travelled by A
$=\frac{3}{8} \times 40 \mathrm{~km}=15 \mathrm{~km}$
14. $\quad(\mathrm{C})(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=n(\mathrm{~A})+n(\mathrm{~B})+n(\mathrm{C})-n(\mathrm{~A} \cap \mathrm{~B})-n(\mathrm{~B} \cap \mathrm{C})-n(\mathrm{~A} \cap \mathrm{C})+n(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})$

Percentage of total failed candidates $=25+20+30-10-15-20+7=37 \%$
Percentage of total candidates who passed $=100-37=63 \%$
15. (A) Let the two digit number be $=10 x+y$
then, $y=x^{2}$
ATQ,
$10 y+x-(10 x+y)=108$
$9 y-9 x=108$
$y-x=12$
$x^{2}-x-12=0$
$(x-4)(x+3)=0$
$\therefore \quad x=4$ and $y=16$
Original number $=46$
$\therefore 50 \%$ of $46=23$
16. (C) Total equivalent capital of $P=5 \times 12+8 \times 12=₹ 156$

Total equivalent capital of $\mathrm{Q}=4 \times 24=₹ 96$
Total equivalent capital of $\mathrm{R}=6 \times 12+3 \times 12=₹ 108$
\therefore Required ratio $=\mathrm{P}: \mathrm{Q}: \mathrm{R}=156: 96: 108=39: 24: 27$
17. (B) Required time $=L C M$ of 20,22 and 28 seconds $=1540$ seconds $=25 \mathrm{~min} .48 \mathrm{sec}$.
18. (B) $(Q+R)$'s 1 day's work $=\frac{1}{12}$
$(P+Q)$'s 1 day's work $=\frac{1}{15}$
$(P+R)$'s 1 day's work $=\frac{1}{18}$
On adding all these three equations,
$2(P+Q+R)$'s 1 day's work
$\frac{1}{12}+\frac{1}{15}+\frac{1}{18}=\frac{15+12+10}{180}=\frac{37}{180}$
$(P+Q+R)$'s 1 day's work $=\frac{37}{360}$
$\therefore \quad \mathrm{P}, \mathrm{Q}$ and R together can complete the work in $\frac{360}{37}=9 \frac{27}{37}$ days
19. (A) Given:
$\left(\frac{x^{2}-3 x+2}{x^{3}-8}\right) \div\left(\frac{x^{2}-9}{x^{2}+7 x+12}\right) \times\left(\frac{x^{3}+2 x^{2}+4 x}{x^{2}+3 x-4}\right)$
$=\left(\frac{x^{2}-3 x+2}{x^{3}-8} \times \frac{x^{2}+7 x+12}{x^{2}-9}\right) \times \frac{x^{3}+2 x^{2}+4 x}{x^{2}+3 x-4}$
$=\frac{(x-1)(x-2)}{(x-2)\left(x^{2}+4+2 x\right)} \times \frac{(x+4)(x+3)}{(x-3)(x+3)} \times \frac{x\left(x^{2}+2 x+4\right)}{(x-1)(x+4)}=\frac{x}{x-3}$
20. (D) The distance covered by first train till 12 noon $=40 \times 2=80 \mathrm{~km}$

Now, remaining distance $(220-80)=140 \mathrm{~km}$ is covered by the train with relative speed of $(40+30)=70 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Required time both the train meet each other $=\frac{140}{70}=2$ hours after $12 \mathrm{pm}=12+2=2 \mathrm{pm}$
21. (C) Let the number of students appeared in school $\mathrm{A}=100$

Number of students qualified in school A = 60
According to question,
Number of students appeared in School B = 130
Number of students qualified in School B $=60 \times \frac{140}{100}=84$
\therefore Required percentage $=\left[\frac{84 \times 100}{130}\right] \%=64.61 \%$
22. (D) Required number of items $=\frac{(3000+1000)}{(80-30)}=\frac{4000}{50}=800$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
23. (D) Let the speed of train Y be $x \mathrm{kmph}$.

Speed of train X relative to $\mathrm{Y}=(60-x) \mathrm{kmph}$
$=\left[(60-x) \times \frac{5}{18}\right] \mathrm{m} / \sec =\left(\frac{300-5 x}{18}\right)$
Distance covered $=100+200=300 \mathrm{~m}$
$\frac{300}{\left(\frac{300-5 x}{18}\right)}=180$
$300=\frac{180(300-5 x)}{18}$
$30=300-5 x$
$5 x=270$
$x=\frac{270}{5}=54 \mathrm{~km} / \mathrm{hr}$
Hence, the speed of train Y is 54 kmph .
24. (B) (1) If one black ball in a box, then number of ways $=6$
(2) If two black balls in a box, then number of ways $=5$
(3) If three black balls in a box, then the number of ways $=4$
(4) If four black balls in a box, then number of ways $=3$
(5) If five black balls in a box, then number of ways $=2$
(6) If six black balls in a box, then number of ways $=1$
\therefore Total number of ways $=6+5+4+3+2+1=21$
25. (A) $x+y+z=0$
$x+y=-z$
$x^{2}+y^{2}+2 x y=z^{2}$
$x^{2}+y^{2}-z^{2}=-2 x y$
Similarly,
$y^{2}+z^{2}-x^{2}=-2 y z$ and $z^{2}+x^{2}-y^{2}=-2 x z$
Now, we have
$=\frac{1}{x^{2}+y^{2}-z^{2}}+\frac{1}{y^{2}+z^{2}-x^{2}}+\frac{1}{z^{2}+x^{2}-y^{2}}$
$=\frac{1}{-2 x y}+\frac{1}{-2 y z}+\frac{1}{-2 z x}=\frac{z+x+y}{-2 x y z}=0$
26. (A) Let both the trains meet after t hours

Now, Distance $=$ Speed \times Time
ATQ,
$75 \times t-60 \times t=150$
$15 t=150$
$t=15$ hours
\therefore Distance between A and B $=75 t+60 t=135 t$
$=135 \times 15=2025 \mathrm{~km}$

Short trick :

Distance between A and $B=\frac{150}{(75-60)} \times(75+60)=2025 \mathrm{~km}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
27. (D) Let their monthly income are x and y respectively.
$\therefore \quad x+y=₹ 7000$
Again, they spend 90% and 80% respectively.
So, they save 10% and 20%.
By question,
$(10 \%$ of $x):(20 \%$ of $y)=2: 3$
$10 x$
$\frac{100}{20 y}=\frac{2}{3}$
100
$\frac{10 x}{20 y}=\frac{2}{3}$
$x=\frac{4}{3} y$
Putting the value of eq. (ii) in eq. (i)
$\frac{4}{3} y+y=7000$
$\frac{7 y}{3}=7000$
$\therefore \quad y=\frac{7000 \times 3}{7}=₹ 3000$
$\therefore \quad x=\frac{4}{3} y=\frac{4}{3} \times 3000=₹ 4000$
28. (B) Total ages of 5 member family $=25 \times 5=125$ years

Total age 12 years ago $=120-5 \times 12=60$ years
\therefore Required average age $=\frac{60}{5}=12$ years
29. (B) Let the principal be P and rate of interest be $r \%$. Then, principal (when difference between
C.I. and SI is for 2 years) is given by
$\mathrm{P}=\frac{40 \times(100)^{2}}{r^{2}}$
and difference between CI and SI is for 3 years is given by
$\mathrm{P}=\frac{122 \times 10^{2}}{r^{2}(300+r)}$
From eqs. (i) and (ii),
$\frac{40 \times 10^{4}}{r^{2}}=\frac{122 \times 10^{2}}{r^{2}(300+r)}$
$\therefore \quad r=5 \%$
From Eq. (i), $\mathrm{P}=\frac{40 \times 10^{4}}{25}=₹ 8000$
30. (B) Ratio of the profit $=$ Ratio of the equivalent capitals of Mohan and Sohan
$=80000 \times 12: 100000 \times 6$
$=960000: 600000=8: 5$
$\therefore \quad$ Mohan's share in the profit $=\frac{5}{13} \times 213200=₹ 82,000$
31. (A) Ena $=3 x$ years

Akanksha's $=2 x$ years
After 8 years, $\frac{3 x+8}{2 x+8}=\frac{11}{8}$
$24 x+64=22 x+88$
$2 x=88-64=24 \Rightarrow x=12$
$\therefore \quad$ Akanksha's age $=2 x=2 \times 12=24$ years
\therefore Age of Ena's son $=\frac{1}{2} \times 24=12$ years
32. (A) Speed of bus $=\frac{480}{8}=60 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Speed of Train $=\frac{60}{3} \times 4=80 \mathrm{~km} / \mathrm{hr}$
and speed of car $=\frac{80}{16} \times 15=75 \mathrm{~km} / \mathrm{hr}$
\therefore A car covered distance in 6 hours $=75 \times 6=450 \mathrm{~km}$
33. (A) Amount remaining after

1 year $=5000\left(1+\frac{8}{100}\right)-1500=₹ 3900$
2 years $=3900\left(1+\frac{8}{100}\right)-1500=₹ 2712$
3 years $=2712\left(1+\frac{8}{100}\right)-1500=₹ 1428.96$
34. (B) S.I. $=\frac{25000 \times 12 \times 2}{100}=₹ 6000$
C.I. $=18000\left[\left(1+\frac{6}{100}\right)^{2}-1\right]$
$=18000\left[\left(\frac{53}{50}\right)^{2}-1\right]$
$=18000\left[\frac{2809-2500}{2500}\right]$
$=18000 \times \frac{309}{2500}$
= ₹ 2224.80
$\therefore \quad$ Total interest earned $=₹ 6000+2224.80=₹ 8224.80$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
35. (A) In first vessel:

Quantity of water $=\frac{1}{4}$ and milk $=\frac{3}{4}$
In second vessel:
Quantity of water $=\frac{2}{7}$ and $\operatorname{milk}=\frac{5}{7}$
In resultant vessel:
$\frac{1}{8}$ part of mixture of first vessel is taken and $\frac{7}{8}$ part of mixture of Second vessel is taken So, the ratio of water to milk in the new vessel.
$\left(\frac{1}{4} \times \frac{1}{8}+\frac{2}{7} \times \frac{1}{8}\right):\left(\frac{3}{4} \times \frac{7}{8}+\frac{5}{7} \times \frac{7}{8}\right)=\left(\frac{1}{32}+\frac{1}{28}\right):\left(\frac{21}{32}+\frac{5}{8}\right)$
$=\left(\frac{7+8}{224}\right):\left(\frac{21+20}{32}\right)=\frac{15}{224}: \frac{41}{32}=15: 287$
36. (C) Given expression :
$\frac{1+x}{1-x} \times \frac{1+y}{1-y} \times \frac{1+z}{1-z}$
$=\frac{1+\frac{a-b}{a+b}}{1-\frac{a-b}{a+b}} \cdot \frac{1-\frac{b-c}{b+c}}{1-\frac{b-c}{b+c}} \cdot \frac{1+\frac{c-a}{c+a}}{1-\frac{c-a}{c+a}}=\frac{a}{b} \times \frac{b}{c} \times \frac{c}{a}=1$
37. (A) Let the speed of boat in still water is $x \mathrm{~km} / \mathrm{hr}$ and speed of current is $y \mathrm{~km} / \mathrm{hr}$.

ATQ,
$\frac{10}{x+y}=\frac{3}{x-y}$
$10 x-10 y=3 x+3 y$
$7 x=13 y$
$\frac{x}{y}=\frac{13}{7}=\mathrm{k}($ let $)$
$x=13 k$ and $y=7 k$
Now,
$\frac{30}{13 k+7 k}+\frac{30}{13 k-7 k}=10$
$\frac{30}{20 k}+\frac{30}{6 k}=10$
$\frac{3}{2 k}+\frac{10}{2 k}=10$
$13=20 \mathrm{k}$
$k=\frac{13}{20}$
$\therefore \quad$ Speed of current $=y=7 k$
$=7 \times \frac{13}{20}=\frac{91}{20} \mathrm{~km} / \mathrm{hr}=4 \frac{11}{20} \mathrm{~km} / \mathrm{hr}$
38. (B) Required ratio $=200 \times \frac{120}{100}: 320=240: 320=3: 4$
39. (D) Total number of people travelled by B on Monday and Tuesday $=200+170=370$

Total number of people travelled by A on Saturday and Sunday $=350+270=620$
\therefore Required difference $=620-370=250$
40. (D) Required average $=\frac{240+210+140+230}{4}=\frac{820}{4}=210$
41. (B) Required $\%=\left(\frac{350-210}{350} \times 100\right) \%=40 \%$
42. (B) Required $\%=\left(\frac{580-280}{260} \times 100\right) \%=123.07 \% \approx 123 \%$
43. (B) Let the weight of Mr. Gupta and Mrs. Gupta be $7 x \mathrm{~kg}$ and $8 x \mathrm{~kg}$ respectively.

Then, $7 x+8 x=120$
$15 x=120$
$x=\frac{120}{15}=8 \mathrm{~kg}$
Initially weight of Mr. Gupta $=7 x=7 \times 8=56 \mathrm{~kg}$
and initially weight of Mrs. Gupta $=8 x=8 \times 8=64 \mathrm{~kg}$
After taking dieting, weight of Mr. Gupta $=56-6=50 \mathrm{~kg}$
Ratio of their weight $=\frac{50}{60}=5: 6$
So, Mrs. Gupta reduced weight $=64-60=4 \mathrm{~kg}$
44. (A)

In the above figure,
$\mathrm{AB} \rightarrow$ the tower and $\mathrm{DC}=50 \mathrm{~m}$
Let $\mathrm{CB}=x \mathrm{~m}$
Now, $\tan 30^{\circ}=\frac{A B}{(50+x)}$
$\frac{1}{\sqrt{3}}=\frac{A B}{(50+x)}$
$\sqrt{3}(\mathrm{AB})=(50+x)$
$x=\sqrt{3}(\mathrm{AB})-50$ \qquad
(i)
also, $\tan 60^{\circ}=\frac{A B}{x}$
$\sqrt{3}=\frac{A B}{x}$
$\mathrm{AB}=\sqrt{3} x$
$A B=\sqrt{3}\{\sqrt{3}(A B)-50\}$
[From (i)]
$A B=3 A B-50 \sqrt{3}$
$2 \mathrm{AB}=50 \sqrt{3}$
$\mathrm{AB}=25 \sqrt{3}$ metre

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
45. (A) Here $\angle \mathrm{CAB}=\angle \mathrm{BCD}$ (angles in alternate segments) and $\angle \mathrm{DAB}=\angle \mathrm{CDB}$ (angles in alternate segments)
$\angle \mathrm{CAD}=\angle \mathrm{CAB}+\angle \mathrm{DAB}=\angle \mathrm{BCD}+\angle \mathrm{CDB}$
$\angle \mathrm{CAD}+\angle \mathrm{CBD}=\angle \mathrm{BCD}+\angle \mathrm{CDB}+\angle \mathrm{CBD}=180^{\circ}$
46. (D) Base and height of triangle are 16 and 9 cm respectively.

Area of triangle $=\frac{1}{2} \times 16 \times 9=72 \mathrm{~cm}$
$\therefore \quad$ Area of equilateral triangle $=\frac{\sqrt{3}}{2} \times 72=36 \sqrt{3} \mathrm{~cm}^{2}$
$\frac{\sqrt{3}}{4} a^{2}=36 \sqrt{3}$
$\mathrm{a}=12 \mathrm{~cm}$
47. (C)

$A Q \| C B$, and $A C \| Q B$
$A Q B C$, is a parallelogram
$B C=A Q$
Again, $A R \| B C$ and $A B \| R C$
$A R C B$, is a parallelogram.
$B C=A R \Rightarrow A Q=A R$
$\mathrm{AQ}=\mathrm{AR}=\frac{1}{2} \mathrm{QR}$
$\mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Similarly, $\mathrm{AB}=\frac{1}{2} \mathrm{PR}$ and $\mathrm{AC}=\frac{1}{2} \mathrm{PQ}$
$\therefore \quad$ Required ratio $=(P Q+Q R+R P):(A B+B C+C A)=2: 1$
48. (A) Total age of the 4 members of the family, 10 years ago $=24 \times 4=96$ years

Present age of 4 members $=96+40=136$ years
Total age of the 7 members presently $=22 \times 7=154$ years
Age of [twins + youngest - child] $=154-136=18$ years
Let the age of the one of the twins $=x$ years
Age of the youngest $=(x-3)$ years
Then,
$2 x+(x-3)=18$
$3 x=21$
$x=7$
\therefore Age of children's $=7,7,4$ years

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (B) Average of 10 numbers $=40.2$

Sum of 10 numbers $=40.2 \times 10=402$
As per Question,
Actual Average $=\frac{402-18+(31-13)}{10}=\frac{402-18+18}{10}=40.2$
50. (A) Let the bank makes a transaction of $₹ x$ crores.

According to question,
$(20-16.5) \%$ of $x=10.5$ crore
$\frac{3.5}{100} \times x=10.5$
$\therefore \quad x=\frac{10.5 \times 100}{3.5}=300$ crore
51. (D) Let speed of row is ' x '.

Speed of covered is ' y '
Downstream time taken $=\frac{12}{x+y}$

Upstream time taken $=\frac{12}{x-y}$
$\frac{12}{x-y}-\frac{12}{x+y}=6 \Rightarrow x^{2}-y^{2}=4 y$
(i)

Now, If speed of row double $\Rightarrow{ }^{\prime} 2 x^{\prime}$
Time is 1 hour less as compared to upstream
$\frac{12}{2 x-y}-\frac{12}{2 x+y}=1$
$4 x^{2}-y^{2}=24 y$
From (i) \& (ii) we get,
$y=\frac{8}{3} \mathrm{mph} .=2 \frac{2}{3} \mathrm{mph}$
52. (A) Let the 4 numbers are A, B, C and D.

According to question,
$(A+3)=(B-3)=(C \times 3)=(D \div 3)$
Let $(A+3)=(B-2)=(C \times 3)=(D \div 3)=k$ (say)
then, $\mathrm{A}=(k-3), \mathrm{B}=(k+3) ; \mathrm{C}=\left(\frac{k}{3}\right), \mathrm{D}=3 k$
Also,
$A+B+C+D=64$
$(k-3)+(k+3)+\left(\frac{k}{3}\right)+(3 k)=64$
$5 K+\frac{K}{3}=64$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$16 k=64 \times 3$
$k=12$
$1^{\text {st }}$ number $=(k-3)=9=\mathrm{A}$
$2^{\text {nd }}$ number $=(k+3)=15=B$
$3^{\text {rd }}$ number $=\left(\frac{k}{3}\right)=4=\mathrm{C}$
$4^{\text {th }}$ number $=3 k=36=\mathrm{D}$
$\therefore \quad$ Required difference $=36-4=32$
53. (A) Let amount invested in scheme $\mathrm{A}=₹ x$
then in $\mathrm{B}=₹(27000-x)$
For scheme A, CI = 16 .
54. (B) For $1^{\text {st }}$ year
[5000 $+50 \%$ of 5000$]=₹ 5250$
Tax $=20 \%$ of interest $=\frac{20}{100} \times 250=₹ 50$
At the end of $1^{\text {st }}$ year $=₹[5250-50]=₹ 5200$ invested
Similarly,
For $2^{\text {nd }}$ year
$\left[5200+\frac{5}{100} \times 5200-52\right]=₹ 5408$
For $3^{\text {rd }}$ year
$\left[5408 \times \frac{105}{100}\right]=₹ 5678.40$
At the end of $3^{\text {rd }}$ year $=₹[5678.40-$ tax]
= ₹ $[5678.40-54.08]=$ ₹ 5624.32
55. (D)

$\mathrm{A} \bullet \longrightarrow$
B
Given that,
Speed of A $=60 \mathrm{~km} / \mathrm{hr}$
Distance travelled in $3 \mathrm{hr}=60 \times 3=180 \mathrm{~km}$
At 2 : 00 pm
Speed of B $=72 \mathrm{~km} / \mathrm{hr}$
Time difference $=3 \mathrm{hrs}$
Relative velocity $=[72-60]=12 \mathrm{~km} / \mathrm{hr}$
Now, Time - gap (meeting) $=\frac{180}{12}=15 \mathrm{hr}$ after they meet
They will meet at $2 \mathrm{pm}+15$ hour $=5 \mathrm{am}$
56. (A)

Let the speed of $\mathrm{A}=u \mathrm{~km} / \mathrm{hr}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Speed of B $=v \mathrm{~km} / \mathrm{hr}$
As per question,
$\frac{100}{(u+v)}=1 \mathrm{hr}$
$(v+u)=100$
Again from question
$\frac{100}{(u-v)}=5$,
$5 v-5 u=100$
From equation (i) and (ii)
$10 v=600$
$v=60 \mathrm{~m} / \mathrm{hr}$
57. (A) Ratio of $\mathrm{CP}=$

Ratio of No. of articles sold $=$

1	$:$	2	$:$	4
$\underline{2}$	$:$	$\underline{5}$	$:$	$\underline{2}$
2	$:$	10	$:$	8
10%	$:$	20%	25%	
1×1.1	5×1.2	4×1.25		
1.1		6	$5=12.1$	

Total $\mathrm{SP}=$
1.1

6
$5=12.1$
So, Net \% profit $=\frac{12.1-10}{10} \times 10=21 \%$
58. (C) Given that,

Invested ratio of $\mathrm{A}: \mathrm{B}: \mathrm{C}=5: 7: 6$
After 6-months,
Invested ratio of $\mathrm{A}: \mathrm{B}: \mathrm{C}=60: 84: 54$
Now,
Share of profit of $C=\frac{9}{33} \times 33000=₹ 9000$
59. (C) According to question,

Sohan $=25000 \times(36$ months $)=₹ 900000$
Aditya $=[15000 \times 30+15000 \times 24]=₹ 810000$
$\therefore \quad$ Profit share of Aditya $=\frac{\text { Sohan }}{\text { Sohan }+ \text { Mohan }} \times 247000$
$=\frac{9}{19} \times 247000=1,17,000$
60. (A) 25 men and 15 women complete a piece of work in 12 days.

Work of 8 days $=\frac{1}{12} \times 8=\frac{2}{3}$
Remaining work $=1-\frac{2}{3}=\frac{1}{3}$
Now, $\frac{1}{3}$ piece of work completed by 25 men in 6 days.
1 work can be completed by 25 men in 18 days.
Now
Total work done by women $=\frac{1}{12}-\frac{1}{18}=\frac{3-12}{36}$
$=\frac{1}{36}$ work and done by in 36 days

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
61. (B) 12 men takes 18 days to complete 1 work.

12 men will take 1 day to complete $\frac{1}{18}$ work
1 man will take 1 day to complete $\frac{1}{18 \times 12}$ work
10 men will complete the job in $=\frac{10}{18 \times 12}+\frac{9}{12 \times 24}$
$=\frac{5}{108}+\frac{4}{144}$
$=\frac{20+12}{432}=\frac{32}{432}$
10 men will take $\frac{432}{32}=\frac{27}{2}=13 \frac{1}{2}$ days to complete a job.
62. (B) Let the Family have both, car and phone $=x \%$

ATQ,
$20+15+x=35 \quad$ [given]
$\therefore \quad x=5 \%$
Now,
5% comprises 2000 family.
$100 \%=2000 \times 20=40000$
63. (C) Let number of students of type $A=100$

ATQ,
$\frac{80}{100}$ of $\frac{40}{100}$ of $100=32$
Percentage of remaining number of boys $=(100-32) \%=68 \%$
64. (B) Given that,
$\tan \mathrm{A}-\tan \mathrm{B}=x$, and
$\cot \mathrm{A}-\cot \mathrm{B}=y$, then $\cot (\mathrm{A}-\mathrm{B})=?$
$\cot (\mathrm{A}-\mathrm{B})=\frac{1}{\tan (\mathrm{~A}-\mathrm{B})}=\frac{1+\tan \mathrm{A} \tan \mathrm{B}}{\tan \mathrm{A}-\tan \mathrm{B}}$
$\cot (\mathrm{A}-\mathrm{B})=\frac{1+\tan A \tan B}{x}$
Now, $\frac{1}{\tan A}+\frac{1}{\tan B}=y$
$\frac{\tan A-\tan B}{\tan A \cdot \tan B}=y$
$\frac{-x}{\tan A \cdot \tan B}=\frac{y}{1}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\tan \mathrm{A} \cdot \tan \mathrm{B}=\frac{-x}{y}$
From (i) and (ii),
$\cot (\mathrm{A}-\mathrm{B})=\frac{1-\frac{x}{y}}{x}$
$\cot (A-B)=\frac{1}{x}-\frac{1}{y}$
65. (A) $\sin \alpha+\sin \beta=a$
$\cos \alpha+\cos \beta=b$
Squaring and adding them,
$a^{2}+b^{2}=\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \cdot \sin \beta+\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta$
$a^{2}+b^{2}=2+2[\sin \alpha \sin \beta+\cos \alpha \cos \beta]$
$a^{2}+b^{2}=2+2 \cos (\alpha+\beta)$
$\therefore \quad \cos (\alpha+\beta)=\frac{a^{2}+b^{2}-2}{2}$
Again, squaring and subtracting them [equation (i) and (ii)],
$b^{2}-a^{2}=\cos ^{2} \alpha-\sin ^{2} \alpha+\cos ^{2} \beta-\sin ^{2} \beta+2[\cos \alpha \cos \beta-\sin \alpha \sin \beta]$
$=\cos 2 \alpha+\cos 2 \beta+2 \cos (\alpha+\beta)$
$=2 \cos (\alpha+\beta) \cos (\alpha-\beta)+2 \cos (\alpha+\beta)$
$=2 \cos (\alpha+\beta)[\cos (\alpha-\beta)+1]$
$=2 \cos (\alpha+\beta)\left[\frac{a^{2}+b^{2}-2}{2}+1\right]$
$=2 \cos (\alpha+\beta)\left[\frac{a^{2}+b^{2}}{2}\right]$
$\therefore \quad \cos (\alpha+\beta)=\frac{b^{2}-a^{2}}{a^{2}+b^{2}}$
66. (C)

Area of region gazed $=\frac{\angle A+\angle B+\angle C}{360^{\circ}}\left(\pi R^{2}\right)$
$=\frac{180^{\circ}}{360^{\circ}}\left[\frac{22}{7} \times 7 \times 7\right]=77$ sq. units

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
67. (C) Side of the cube $=\sqrt[3]{343}=7 \mathrm{~cm}$

Height of the cone $=7 \mathrm{~cm}$
radius $=\frac{7}{2} \mathrm{~cm}$
Volume of the cone $=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7$
$=\frac{539}{6}=89.8 \overline{3} \mathrm{~cm}=90 \mathrm{~cm}^{2}$ (approx.)
68. (A) Required average $=\frac{3297+2523+2860+2660+2770+2665+2899}{7}$
$=\frac{19674}{7}=\$ 2810.57$ million $\approx \$ 2811$ million
69. (B) Required average value $=\frac{3034+3210+3106+3200+2984}{5}$
$=\frac{15534}{5}=\$ 3106.8$ million
70. (D) Required $\%=\frac{(2860-2523)}{2523} \times 100 \%=13.35 \%$
71. (B) Required change in trade gap $=\frac{(2770-2665)}{2770} \times 100 \%=3.79 \%$ decrease
72. (A) Required difference $=(3464+3034+3210)-(3106+3200+2984)=418$
73. (B) Let the total number of workers $=x$

According to question,
20% of 75% of $x+80 \%$ of 25% of $x=126$
$\frac{20 \times 75 \times x}{100 \times 100}+\frac{80 \times 25 \times x}{10 \times 100}=126$
$\therefore \quad x=\frac{126 \times 100 \times 100}{(1500+2000)}=360$
74. (D) Let single ticket $=₹ x$

Return ticket $=₹ \frac{5 x}{4}$
ATQ,
105% of $\frac{5 x}{4}=84$
$x=\frac{84 \times 4 \times 100}{5 \times 105}=₹ 64$
75. (C) Volume $=$ Area of trapezium \times height

Area of Trapezium $=\frac{1}{2} \times($ sum of parallel sides $) \times$ height
$=\frac{1}{2} \times 22 \times 8=88 \mathrm{~cm}^{2}$
Volume $=$ Area of base \times Height
Height $=\frac{1056}{88}=12 \mathrm{~cm}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
76. (C)

Area $=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$
$=\frac{1}{2} \times \frac{c}{b} \times \frac{c}{a}=\frac{c^{2}}{2 a b}$ sq. units
77. (D) $3 y-x=6$
$\frac{5 y+3 x=38}{9 y+5 y=18+38}$
$14 y=56$
$y=4$
$x=6, y=4$
Required co-ordinate $=(6,4)$
78. (B) $\frac{(7+\sqrt{5})^{2}-(7-\sqrt{5})^{2}}{49-5}$
$=\frac{49+5+14 \sqrt{5}-49-5+14 \sqrt{5}}{44}$
$=\frac{7}{11} \sqrt{5}=a+\frac{7}{11} \sqrt{5} b$
$\therefore \quad a=0 \quad b=1$
79. (A) Area $=\frac{1}{2} \times$ sum of $\|$ sides \times height
$35=\frac{1}{2} \times 14 \times h$
Height $=5 \mathrm{~cm}$
In $\triangle \mathrm{DFC}$,
$\mathrm{DC}^{2}=\mathrm{DF}^{2}+\mathrm{FC}^{2}$
$\mathrm{DC}^{2}=5^{2}+2^{2}$
$\mathrm{DC}^{2}=29$
$\therefore \mathrm{DC}=\sqrt{29} \mathrm{~cm}$
80. (B) We know that, $\mathrm{AM} \geq \mathrm{GM}$
$\sqrt{a}+\frac{1}{\sqrt{a}} \geq 2$
Here, $\sqrt{x^{2}-x+1}+\frac{1}{\sqrt{x^{2}-x+1}} \geq 2$
$2-x^{2} \geq 2$
$x^{2} \leq 0$
$\therefore \quad x=0$
Hence, the given equation has only one solution.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
81. (D) Given $x+\frac{a}{x}=1$
$x^{2}+\mathrm{a}=x$
$x^{2}-x=-a$

Now, $\frac{x^{2}+x+a}{x^{3}-x^{2}}=\frac{x+1+\frac{a}{x}}{x^{2}-x}=\frac{-2}{a}$
82. (B) Let total number of men $=x$
and total number of women $=y$
$\therefore \quad$ Number of married men $=\frac{45 x}{100}$
and number of married women $=\frac{25 y}{100}$
ATQ,
$\frac{45 x}{100}=\frac{25 y}{100} \Rightarrow y=\frac{9 x}{5}$
(i)
also,
Total number of married adults $=\frac{45 x}{100}+\frac{25 y}{100}$
$=\frac{9 x}{20}+\frac{9 x}{20}=\frac{9 x}{10}$
[from eq. \qquad (i)]
and total population in city $=x+y$
$=x+\frac{9 x}{5}=\frac{14 x}{5}$
[from eq. \qquad (ii)]
$\therefore \quad$ Required percentage $=\frac{\frac{9 x}{100}}{\frac{14 x}{5}} \times 100=32.14 \%$
83. (A) Let the total number of candidates $=x$

Number of candidates who answered all the 5 questions $=\frac{5 x}{100}$
also, Number of candidates who answered not a single question $=\frac{5 x}{100}$
Remaining students $=x-\left(\frac{5 x}{100}+\frac{5 x}{100}\right)=\frac{9 x}{10}$
Number of candidates who answered only one question $=\frac{9 x}{10} \times \frac{25}{100}=\frac{9 x}{40}$
Number of candidates who answered four questions $=\frac{9 x}{10} \times \frac{20}{100}=\frac{9 x}{50}$
Given, number of candidates who answered either two questions or three questions $=396$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
ATQ,
$x-\left(\frac{5 x}{100}+\frac{5 x}{100}+\frac{9 x}{40}+\frac{9 x}{50}\right)=396$
$x-\left(\frac{10+10+45+36}{200}\right) x=396$
$x\left(\frac{200-101}{200}\right)=396$
$x=\frac{396 \times 200}{99}=800$
84. (D) Required area of the 4 walls where wall paper is to be used = Area of four walls - Area of both windows $=2 h(1+b)-\left(\frac{3}{2} \times 1+2 \times \frac{3}{2}\right)$
$=2 \times 3(8+6)-\left(\frac{3}{2}+3\right)=6 \times 14-\frac{9}{2}$
$=84-\frac{9}{2}=\frac{159}{2} \mathrm{~m}^{2}$
Area of 1 piece of wall paper $=0.5 \times 1=0.50 \mathrm{~m}^{2}$
Cost of wall paper $=₹ \frac{159}{\frac{2}{0.50}} \times \frac{25}{100}=\frac{159}{\frac{2}{\frac{1}{2}}} \times \frac{1}{4}$
$=₹ \frac{159}{4}=₹ 39.75=₹ 39$ (Approx)
85. (C) Let the original student be n

After 20 days for n students food last for 10 days more.
\therefore for $(\mathrm{n}+500)$ students food last for 5 days
ATQ,
$10 n=5(n+500)$
$10 n-5 n=2500$
$\mathrm{n}=500$
86. (B) ₹ $x \rightarrow$ fixed expense (say) $\& ₹ y \rightarrow$ Expense per student (say)
$x+200 y=1300$ \qquad (i)
$x+250 y=1600$
$50 y=300$

$$
y=6
$$

Put the value of $y=6$ in equation (i),
$x+200 y=1300$
$x+200 \times 6=1300$
$x=100$
Expense for 300 students $=x+300 \times 6$
$100+1800=₹ 1900$

K D Campus Pvt. Ltd

87. (A) Part of the tank filled $=\frac{1}{5}$
capacity of $=x l$ (Say)
quantity of water in the tank $=\frac{1}{5} x l$
ATQ,
$\frac{1}{5} x-8=\frac{1}{6} x$
$\frac{1}{5} x-\frac{1}{6} x=8$
$\frac{6 x-5 x}{30}=8$
$x=240$ litres
88. (C) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
(on rationalising the denominator)

$$
=\frac{(\sqrt{3}+\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=\frac{3+2+2 \sqrt{3} \times \sqrt{2}}{3-2}=5+2 \sqrt{6}
$$

$=a+b \sqrt{6}$
on comparing $\mathrm{a}+\mathrm{b} \sqrt{6}$ with $5+2 \sqrt{6}$,
We get,
$\mathrm{a}=5$ and $\mathrm{b}=2$
89. (C)

$\tan B=\frac{3}{4}$
$\frac{5}{12}=\frac{P Q}{A Q}$
$\frac{5}{12}=\frac{\mathrm{PQ}}{240+\mathrm{BQ}}$
$\frac{3}{4}=\frac{P Q}{B Q}$
(ii)

Divide (i) by (ii),
$\frac{\frac{12}{5}}{\frac{3}{4}}=\frac{\frac{\mathrm{PQ}}{240+\mathrm{BQ}}}{\frac{\mathrm{PQ}}{\mathrm{BQ}}}$
$\frac{5}{12} \times \frac{4}{3}=\frac{B Q}{240+B Q}$
$\frac{5}{9}=\frac{\mathrm{BQ}}{240+\mathrm{BQ}}$
$9 B Q-5 B Q=240 \times 5$
$B Q=\frac{240 \times 5}{4}=300$
$\frac{P Q}{B Q}=\frac{3}{4}$
$\mathrm{PQ}=\frac{3}{4} \times 300=225 \mathrm{~m}$
90. (D) $2 \mathrm{Q}+\mathrm{P}+\mathrm{R}=59$
...... (i)
$Q+R+3 P=68$
(ii)
$P+3 Q+3 R=108$
(iii)

From Eqs. (ii) and (iii),
$3 Q+3 R+9 P=204$
$P+3 Q+3 R=108$
$8 \mathrm{P}=96$
$\therefore \quad P=12$ years
91. (A) Let any proper fraction be $\frac{1}{2}$

New fraction $=\frac{1+2}{2+2}=\frac{3}{4}$
Now, $\frac{3}{4}>\frac{1}{2}$.
92. (C) $x^{2}-3 x+2=(x-1)(x-2)$

Hence $(x-1)$ and $(x-2)$ are both factors of the polynomial.
By factor theorem,
$f(1)=0$
$1-5+\mathrm{A}-\mathrm{B}+4-40=0$
$A-B=40$
and also,
$f(2)=0$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$2^{5}-5 \cdot 2^{4}+\mathrm{A} \cdot 2^{3}-\mathrm{B} \cdot 2^{2}+4(2)-40=0$
$2 \mathrm{~A}-\mathrm{B}=20$
Solving (i) and (iii), we get,
$\mathrm{A}=-20$
$B=-60$
93. (A)

$a+b=48-20=28$
$a^{2}+b^{2}=20^{2}=400$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(28)^{2}=400+2 a b$
$2 a b=384$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a-b)^{2}=400-384=16$
$(a-b)=4$
$a=16 \mathrm{~cm}, b=12 \mathrm{~cm}$
94. (C) $10=\frac{85 \times \mathrm{R} \times 3}{100}$

Interest $=102 \times \frac{200}{51} \times \frac{5}{100}=₹ 20$
Amount $=₹ 102+₹ 20=₹ 122$
95. (B) $r^{75}>r^{90}$ is possible only when $0<r<1$
96. (B) $\frac{\mathrm{K}}{6} \neq \frac{1}{2} ; \mathrm{K} \neq 3$
97. (A) Required ratio $=3: 2$
98. (B) Average Demand of all companies $=\frac{3000+600+2500+1200+3300}{5}=2120$

Average production of all companies $=\frac{1500+1800+1000+2700+2200}{5}=1840$
$\therefore \quad$ Required difference $=2120-1840=280$
99. (C) Production of company $D=2700$

Production of company A $=1500$
$\therefore \quad$ Required answer $=\frac{2700}{1500}=1.80$ times
100. (A) Required $\%=\frac{600}{2500} \times 100=24 \%$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 79 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (A) } & \text { 26. } & \text { (A) } & \text { 51. } & \text { (D) } & \text { 76. } \\ \text { 2. } & \text { (C) } & \text { (C) } \\ \text { 3. } & \text { (B) } & \text { 27. } & \text { (D) } & \text { 52. } & \text { (A) } & \text { 77. }\end{array}$ (D) $)$

