QUANTITATIVE ABILITY - 78 (SOLUTION)

1. (B) $\left(\mathrm{m}^{2}+\mathrm{n}^{2}+16^{2}\right) \mathrm{k}=1$ and $16 \times 29 \mathrm{k}=1$
$m^{2}+n^{2}+16^{2}=16 \times 29$
$m^{2}+n^{2}=16(29-16)=16 \times 13=208$
Now the last digits of m, n cannot be $(0,8),(1,7),(2,6),(3,5)$.
Therefore it can only be $(4,4)$ or $(9,9)$.
On checking, we find $\mathrm{m}^{2}+\mathrm{n}^{2}=12^{2}+8^{2}$
Therefore, they can together do the work in
$\frac{1}{(m+n+16) k}=\frac{16.29}{(12+8+16)}=\frac{16.29}{36}$
$=\frac{4.29}{9}=4(3+0.22)=12.88 \cong 13$ days
2. (B) Total population of town $=15 \times \frac{\text { Number of males }}{\text { Number of females }}=\frac{7}{8}$

Number of males and females $=7 x$ and $8 x$
Number of male children $=25 \%$ of $7 x$
ATQ,
$\frac{25}{100} \times 7 x=1.75 x$

Number of female children $=20 \%$ of $8 x=\frac{20}{100} \times 8 x=1.6 x$
Number of adult females $=8 x-1.6 x=6.4 x$
$6.4 x=235200$
$x=\frac{235200}{6.4}=36750$
Total population of town $=15 \times 36750=551250$
3. (A) Let Initial investments $=3 x, 5 x$ and $7 x$

After one year
$(3 x-45600): 5 x:(7 x+337600)=24: 59: 167$
$\frac{3 x-45600}{5 x}=\frac{24}{59}$
$x=47200$
Initial investment of $\mathrm{A}=47200 \times 3=₹ 141600$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
4. (A) Let the total monthly sales of companies A and B be ₹ $2 x$ and ₹ $3 x$ and their total monthly expenditure be ₹ $3 y$ and ₹ $4 y$.
Given that A's profit $=1 / 5$ of sales $=2 x / 5$
$2 x-3 y=\frac{1}{5}(2 x)$
$\frac{4}{5}(2 x)=3 y \Rightarrow y=\frac{8}{15} x$
Profit of company $B=3 x-4 y$
$=3 x-4 \times \frac{8}{15} x=\frac{13 x}{15}$
Hence the ratio of the profits of the two companies $=\frac{2}{5} x: \frac{13 x}{15}=6: 13$
5. (C) According to the question, total number of toys is a perfect square number because the toys were packed in n boxes containing n toys each, without any remainder and among the options given only 1444 is a perfect square.
6. (B) Ratio of total capital of A and $\mathrm{B}=20000 \times 12: 35000 \times 12$
= 240000 : 420000
Now C gives 220000 to both to make the capital equal.
A's capitial : B's capital
= 240000 : 420000

- $220000: 220000$
$\underline{20000: 200000}$
\therefore Required ratio of divided amount $=1: 10$

7. (D) Let the number of minutes taken to empty the cistern be x min.

ATQ,
$\frac{x}{6}-\frac{x+5}{12}-\frac{x+5}{15}=0$
$\frac{x}{6}-\frac{x}{12}-\frac{x}{15}=\frac{5}{12}+\frac{5}{15}$
$\frac{x}{6}=\frac{45}{60}$
$x=45$ minutes
8. (B) Let extra hours per day are x.

$\frac{3}{2} \times 10=12+x$
$15=12+x$
$x=15-12=3$
Extra hours of work per day is 3 hours

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (D) ATQ,

Area of circular shell = Total surface area of cylinder
$\pi\left(12^{2}-8^{2}\right)=2 \pi R_{1}\left(R_{1}+h\right)$
$80 \pi=2 \pi\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{1} h\right)$
$40=R_{1}^{2}+R_{1} h$
$R_{1} h=40-R_{1}^{2}$
$\therefore \quad h=\frac{40-\mathrm{R}_{1}^{2}}{\mathrm{R}_{1}}$
10. (D) $l \cos ^{2} \theta+\mathrm{m} \sin ^{2} \theta=\frac{\cos ^{2} \theta\left(\operatorname{cosec}^{2} \theta+1\right)}{\operatorname{cosec}^{2} \theta-1}$
$=\frac{\cos ^{2} \theta\left(1+\sin ^{2} \theta\right)}{1-\sin ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta\left(1+\sin ^{2} \theta\right)}{\cos ^{2} \theta}$
$=1+\sin ^{2} \theta=\cos ^{2} \theta+\sin ^{2} \theta+\sin ^{2} \theta$
$=\cos ^{2} \theta+2 \sin ^{2}(l-1) \cos ^{2} \theta=(2-m) \sin ^{2} \theta$
$\tan ^{2} \theta=\frac{l-1}{2-m}$
$\therefore \quad \tan \theta=\sqrt{\frac{l-1}{2-m}}$
11. (D) It is easy to solve this question by using option.

By option (D),
Total number of apples at the starting $=255$
Number of apples sold to first customer $=\frac{255}{2}+\frac{1}{2}=128$
Remaining apples $=225-128=127$
Number of apples sold to second customer $=\frac{127}{2}+\frac{1}{2}=64$
Remaining apples $=127-64=63$
Number of apples sold to third customer $=\frac{63}{2}+\frac{1}{2}=32$
Remaining apples $=63-32=31$
Number of apples sold to fourth customer $=\frac{31}{2}+\frac{1}{2}=16$
Remaining apples $=31-16=15$, i.e. condition satisfied
12. (B) Let time spend on each Mathematics question $=x$ min

ATQ,
Total time spent $=50 x+100 \times \frac{x}{2}+50 \times \frac{x}{2}=3 \times 160$
$x(50+50+25)=180$
$x=\frac{180}{125}$
$\therefore \quad$ Required time $=50 \times \frac{180}{125}=72$ minutes
13. (C) It is true that congruent triangles will be similar but opposite is not true. Also III will be true.
14. (C)

Given $\mathrm{OA}=3 \mathrm{~cm}$
And $\mathrm{OM} \perp \mathrm{AC}$
Let $\angle \mathrm{AOM}=\theta$
In $\triangle \mathrm{AOM}$,
$\sin \theta=\frac{\mathrm{AM}}{\mathrm{OA}}$
$\sin \theta=\frac{A C}{20 A}=\frac{3}{2 \times 3}=\frac{1}{2}$
$\sin \theta=\sin 30^{\circ}$
$\theta=30^{\circ}$
15. (C)

We know that tangents from an external point on the circumference of the circle will be equal.
$\mathrm{AP}=\mathrm{AS}$
$B P=B Q$
$C R=C Q$
$\mathrm{DR}=\mathrm{DS}$
$\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}$
$A B+C D=A D+B C$
16. (A) Let the sides are $5 x$ and $12 x$.

ATQ,
$\frac{1}{2} \times 5 x \times 12 x=270$
$x^{2}=9$
$x=3$
Hypotenuse $=13 x=13 \times 3=39 \mathrm{~cm}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
17. (A)

Radius of circle APBQ $=\frac{5+4}{2}=\frac{9}{2}$
Area of circle $\mathrm{APBQ}=\pi \mathrm{R}^{2}=\pi\left[\frac{9}{2}\right]^{2}=\frac{81 \pi}{4}$ sq. cm.
18. (C) Area of square $>$ Area of rectangle
19. (A)

$$
\begin{aligned}
& \angle \mathrm{ABC}=50^{\circ} \\
& \angle \mathrm{DAB}=\angle \mathrm{ABC} \\
& \angle \mathrm{DAB}=50^{\circ} \\
& \text { In } \angle \mathrm{ADB} \\
& \angle \mathrm{~A}+\angle \mathrm{D}+\angle \mathrm{B}=180^{\circ} \\
& 50^{\circ}+\angle \mathrm{ADB}+65^{\circ}=180^{\circ} \\
& \angle \mathrm{ADB}=180^{\circ}-115^{\circ} \\
& \angle \mathrm{ADB}=65^{\circ}
\end{aligned}
$$

[alternate angle]
20. (A)

Area of the rhombus $=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}=\frac{1}{2} \times 55 \times 48=1320 \mathrm{~cm}^{2}$
Area of the rhombus $=$ base \times height $=\mathrm{DC} \times \mathrm{AE}$
So, DC \times AE $=1320$
$P \times \sqrt{\left(\frac{55}{2}\right)^{2}+\left(\frac{48}{2}\right)^{2}}=1320$
$P \times \sqrt{\frac{5329}{4}}=1320$
$P=\frac{1320}{36.5}=36.16$
So, $36<\mathrm{P}<37 \mathrm{~cm}$
21. (B) Let the radius of the circle be r and side of the square be a.
so, $2 \pi \mathrm{r}=4 a$ (Given)
$a=\frac{\pi r}{2}$

Area of the square $=\left(\frac{\pi r}{2}\right)^{2}=2.46 r^{2}$

Area of the circle $=\pi r^{2}=3.14 r^{2}$
So, (ii) > (i) option (B) is correct
22. (B) Given
$\mathrm{AC}^{2}=\mathrm{AB} \times \mathrm{CB}$
$\mathrm{A} \stackrel{\mathrm{x} \longrightarrow}{\rightleftarrows} \stackrel{\mathrm{C}}{\rightleftarrows}-2-x \longrightarrow \mathrm{~B}$
$x^{2}=2(2-x)$
$x^{2}+2 x-4=0$
$x=\frac{-2 \pm \sqrt{4+16}}{2 \times 1}=-1 \pm \sqrt{5}$
$\mathrm{BC}=2-(-1 \pm \sqrt{5})=3-\sqrt{5}$ unit than 2]
23. (C) By the property of triangle
24. (D)

Let height of the pillar $=h$ metres.
In $\triangle \mathrm{DAB}$,
$\tan 30^{\circ}=\frac{\frac{h}{3}}{50}$
$\frac{1}{\sqrt{3}}=\frac{h}{3 \times 50}$
$h=50 \sqrt{3}$ metres
25. (C)

BL is bisector of $\angle \mathrm{ABC}$

So, $\angle \mathrm{MBL}=\angle \mathrm{LBC}=x$ (let)
ML || BC
$\angle \mathrm{LBC}=\angle \mathrm{MLB}=x$
$\angle \mathrm{MLB}=\angle \mathrm{BML}$
Can't be 90°, then triangle does not exist.
26. (A) Let the Length of candles be L.

The rate of burn of first candle $=\frac{L}{4}$ per hour

The rate of burn of second candle $=\frac{L}{3}$ per hour
Let after x hour the ratio be $2: 1$.
ATQ,
$\mathrm{L}-\frac{x \mathrm{~L}}{4}=2\left(\mathrm{~L}-\frac{x \mathrm{~L}}{3}\right)$
$\mathrm{L}\left(1-\frac{x}{4}\right)=2 \mathrm{~L}\left(1-\frac{x}{3}\right)$
$\frac{4-x}{4}=2\left(\frac{3-x}{3}\right)$
$x=2 \frac{2}{5}$ hours $=2$ hours 24 min.
27. (A) Total Pipe $=6$

1 outlet pipe takes $=6$ hours
1 Inlet pipe takes = 9 hours
Tank is filled in only 9 hour which means the efficiency of one inlet pipe is utilized and rest became neutral which is possible only in one case

3 inlet pipes $=2$ outlet pipes
\therefore Total number of inlet pipe $=4$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
28. (D) Ratio of speed $=6: 5$

Speed of Train is 20% faster than the car.
Let, the time taken $=\mathrm{t}$ min
According to question,
$6(\mathrm{t}-12.5)=5 \mathrm{t}$
$\mathrm{t}=6 \times \frac{12.5}{10}=75 \mathrm{~min}$
$\mathrm{t}=1 \frac{1}{4}$ hours

Speed of car $=\frac{75}{t}=\frac{75}{\frac{5}{4}}$
$\mathrm{S}_{\mathrm{c}}=60 \mathrm{~km} / \mathrm{hr}$
29. (A) $4 A=6 B$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{B}}{\mathrm{C}} \quad \frac{\mathrm{B}}{\mathrm{C}}=\frac{11}{6}$
$\left\{\begin{array}{l}\frac{\mathrm{A}}{\mathrm{B}}=\frac{6}{4} \times \frac{11}{11}=\frac{66}{44} \\ \frac{\mathrm{~B}}{\mathrm{C}}=\frac{11}{6} \times \frac{4}{4}=\frac{44}{24} \\ =\mathrm{A}: \mathrm{B}: \mathrm{C} \\ =66: 44: 24 \\ =33: 22: 12\end{array}\right.$
30. (B) $\mathrm{A} \rightarrow \mathrm{B} 100 \%$ pure milk
$B \rightarrow 2: 5$
C $\rightarrow 3: 8$

Now, $B+C=36$ litre $=(14+22)$ litre

$$
\text { (4 + 6 litre) (10 litre + } 16 \text { litre) }
$$

$$
10 \text { litre } 26 \text { litre }
$$

Now, to make $\mathrm{M}: \mathrm{W}=1: 1$

$=36$ litre

10 litre (M) 26 litre (W)

26 litre: 26 litre
$=52$ litre

Thus, 16 litre of milk A is added.
31. (C) Let the population be x.

According to question,
100% of $x+15 \%$ of $x=45$ million (Jan, 2006)
In Jan 2005 :
$x=\frac{45}{115} \times 100$ million $=39$ million
32. (A)

Total booked seats $85 \%=425$
Vacant seats $=73$
33. (B)

$\because \quad \tan \alpha=\frac{5}{12}$
$\frac{\mathrm{AB}}{\mathrm{BP}}=\frac{5}{12}$
$\frac{\mathrm{AB}}{\mathrm{BC}+300}=\frac{5}{12}$
$\tan \mathrm{B}=\frac{3}{4}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{4}$
On dividing (i) by (ii), We have
$\frac{\mathrm{BC}}{\mathrm{BC}+300}=\frac{5}{12} \times \frac{4}{3}=\frac{5}{9}$
$9 B C=5 B C+1500$
$\mathrm{BC}=\frac{1500}{4}=375 \mathrm{~m}$
Height of the pole $=\mathrm{AB}=\frac{3}{4} \times \mathrm{BC}=\frac{3}{4} \times 375$
$=\frac{1125}{4}=281.25 \mathrm{~m}$
34. (A) $(\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^{2}+(\cos \mathrm{A}+\sec \mathrm{A})^{2}$
$=\sin ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A}+2 \sin \mathrm{~A} \cdot \operatorname{cosec} \mathrm{~A}+\cos ^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A}+2 \cos \mathrm{~A} \cdot \sec \mathrm{~A}$
$=\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A}+2.1+2.1$
$=1+1+\cot ^{2} \mathrm{~A}+1+\tan ^{2} \mathrm{~A}+4$
$=7+\cot ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~A}$
35. (D)

In $\triangle \mathrm{ABQ}$,
$\tan \beta=\frac{Q A}{A B}$
$\tan \beta=\frac{b}{A B}$
$A B=\frac{b}{\tan \beta}$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
In $\triangle \mathrm{ABP}$,
$\tan \alpha=\frac{P B}{A B}$
$\tan \alpha=\frac{P B}{\frac{b}{\tan \beta}}$
$\mathrm{PQ}=\tan \alpha \cdot \frac{b}{\tan \beta}=b \tan a \cot \beta$
36. (C)

In $\Delta \mathrm{CBD}$,
$\tan \beta=\frac{h}{B D}$
$\mathrm{BD}=\frac{h}{\tan \beta}-h \cot \beta$
In $\triangle \mathrm{CBA}$,

$$
\begin{aligned}
& \tan \alpha=\frac{C B}{B A}=\frac{C B}{B D+D A} \\
& \tan \alpha=\frac{h}{h \cot \beta+\frac{h}{2}} \quad(\because \mathrm{BD}=\mathrm{h} \cot \beta) \\
& \tan \alpha=\frac{h}{h\left(\cot \beta+\frac{h}{2}\right)} \\
& \cot \beta+\frac{1}{2}=\frac{1}{\tan \alpha} \\
& \cot \beta+\frac{1}{2}=\cot \alpha \\
& \cot \alpha-\cot \beta=\frac{1}{2}
\end{aligned}
$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
37. (B)

Let the height of the tower be x unit
In $\triangle \mathrm{CBA}$,
$\tan \alpha=\frac{C B}{B A}=\frac{x}{B A}$
$\mathrm{BA}=\frac{x}{\tan \alpha}=x \cot \alpha$
(i)

In $\triangle \mathrm{DBA}$,
$\tan \beta=\frac{D B}{B A}=\frac{h+x}{x \cot \alpha}$

$$
(\because B A=x \cot \alpha)
$$

$x \cot \alpha=\frac{h+x}{\tan \beta}=(h+x) \cot \beta$
$x(\cot \alpha-\cot \beta)=h \cot \beta$
$x=\frac{h \cot \beta}{\cot \alpha-\cot \beta}$
$x=\frac{\frac{h}{\tan \beta}}{\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}}$
$x=\frac{h}{\tan \beta} \times \frac{\tan \alpha \tan \beta}{\tan \beta-\tan \alpha}=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$
38. (B) $2\left(\sin ^{6} q+\cos ^{6} q\right)-3\left(\sin ^{4} q+\cos ^{4} q\right)+1$

$$
\begin{aligned}
& =2\left[\left(\sin ^{2} q\right)^{3}+\left(\cos ^{2} q\right)^{3}\right]-3\left[\left(\sin ^{2} q\right)^{2}+\left(\cos ^{4} q\right)^{2}\right]+1 \\
& =2\left[\left(\sin ^{2} q+\cos ^{2} q\right)^{3}-3 \sin ^{2} q \cos ^{2} q\left(\sin ^{2} q+\cos ^{2} q\right)\right] \\
& -3\left[\left(\sin ^{2} q+\cos ^{2} q\right)^{2}-2 \sin ^{2} q \cdot \cos ^{2} q\right]+1 \\
& =2\left[1^{3}-3 \sin ^{2} q \cdot \cos ^{2} q \cdot(1)\right]-3\left[(1)^{2}-\sin ^{2} q \cdot \cos ^{2} q\right]+1 \\
& =2-6 \sin ^{2} q \cos ^{2} q-3+6 \sin ^{2} q \cos ^{2} q+1 \\
& =2-3+1=0
\end{aligned}
$$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
39. (C) $\sin \theta+\sin ^{2} \theta+\sin ^{3} \theta=1$
$\sin \theta+\sin ^{3} \theta=1-\sin ^{2} \theta$
On squaring both sides,
$\left[(\sin \theta)\left(1+\sin ^{2} \theta\right)\right]^{2}=\cos ^{4} \theta$
$\left(1-\cos ^{2} \theta\right)\left(2-\cos ^{2} \theta\right)^{2}=\cos ^{4} \theta$
$\left(1-\cos ^{2} \theta\right)\left[4-4 \cos ^{2} \theta+\cos ^{4} \theta\right]=\cos ^{4} \theta$
$4-4 \cos ^{2} \theta+\cos ^{4} \theta-4 \cos ^{2} \theta+4 \cos ^{4} \theta-\cos ^{6} \theta=\cos ^{4} \theta$
$-\cos ^{6} \theta+4 \cos ^{4} \theta-8 \cos ^{2} \theta+4=0$
$\cos ^{6} \theta-4 \cos ^{4} \theta+8 \cos ^{2} \theta=4$
40. (C) $a=(\sqrt{3}+\sqrt{2})^{-3}, \quad b=(\sqrt{3}-\sqrt{2})^{-3}$
$a b=[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^{-3}$
$=[3-2]^{-3}=(1)^{-3}=1$
$=(a+1)^{-1}+(b+1)^{-1}=\frac{1}{a+1}+\frac{1}{b+1}$
$=\frac{b+1+a+1}{a b+b+a+1}==\frac{a+b+2}{1+a+b+1}$
$=\frac{a+b+2}{a+b+2}=1$
41. (A) Let 1 child's 1 day's work $=x$ and 1 adult's 1 day's work $=y$

Then,
$12 x=\frac{1}{16}$
$x=\frac{1}{192}$
$8 y=\frac{1}{12}$
$y=\frac{1}{96}$
Work done in 3 days by 16 adults $=16 \times \frac{1}{96} \times 3=\frac{1}{2}$ part
Remaining work $=\frac{1}{2}$ part
Now, (6 adults +4 children)'s 1 day's work $=\frac{6}{96}+\frac{4}{192}=\frac{1}{12}$
i.e. $\frac{1}{12}$ work is done by them is 1 day

So, $\frac{1}{2}$ work will be done by them in $=12 \times \frac{1}{2}$ days $=6$ days
42. (C) Time taken by A to complete the work $=\frac{4 \times 3}{2}=6$ days

Time taken by B to complete the work $=\frac{6 \times 5}{3}=10$ days
$\therefore \quad$ A and B together will complete the work in $\frac{6 \times 10}{6+10}$ days $=3 \frac{3}{4}$ days
43. (C) Completed road in 80 days by 280 workers $=\frac{7}{2} \mathrm{~km}=3.5 \mathrm{~km}$

Remaining road to be completed in 20 days $=1.5 \mathrm{~km}$
Let, total x workers are needed to construct the 1.5 km road in 20 days.

So, $\frac{280 \times 80}{\mathrm{x} \times 20}=\frac{3.5}{1.5}$
$x=280 \times \frac{80}{20} \times \frac{1.5}{3.5}$
$x=480$ workers
Number of more workers needed $=(480-280)=200$ workers
44. (C) For the first trader,

Let the CP of the article $=₹ 100$
SP = ₹ 120
Now, For the second trader,
SP of the article $=₹ 120$
Gain $=20 \%$
Let the CP be ₹ x.

Gain $=₹ 24$
Now when difference of gains $=₹ 4$, then $S P=₹ 120$
So, When the difference $=₹ 85$, then $\mathrm{SP}=\frac{120}{4} \times 85=₹ 2550$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
45. (A) By Alligation method

Required ratio of mixture $=\frac{1}{18}: \frac{1}{10}=10: 18=5: 9$
ATQ,
Amount of the former mixture $=3$ litre
So, required of the later mixture $=3 \times \frac{9}{5}$ litre $=5 \frac{2}{5}$ litre
46. (C) ATQ,
$\frac{2}{5} \mathrm{~A}+40=\frac{2}{7} \mathrm{~B}+20=\frac{9}{17} \mathrm{C}+10=x \quad$ (let)
$A=\frac{5}{2}(x-40), \quad B=\frac{7}{2}(x-20)$ and $C=\frac{17}{9}(x-10)$
$\frac{5}{2}(x-40)+\frac{7}{2}(x-20)+\frac{17}{9}(x-10)=600$
$x=100$
A's share $=₹ \frac{5}{2}(100-40)=₹ 150$
47. (A) Let x be the initial no. of people in the company.

ATQ,

$$
\begin{aligned}
& \frac{35 x+5 \times 32}{x+5}=34 \\
& 35 x+160=34 x+170 \\
& x=10
\end{aligned}
$$

48. (D) Initial bowling average $=12.4$

After improving bowling average by 0.2
New bowling average $=12.4-0.2=12.2$
Now, let x be the number of wickets taken before the last match.
ATQ,
$\frac{12.4 x+26}{x+4}=12.2$
$12.4 x+26=12.2 x+48.8$
$0.2 x=22.8$
$x=\frac{22.8}{0.2}=114$
Number of wickets taken before the last match $=114$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (A) Average speed during the entire journey $=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{3584 \mathrm{~km}}{2 \text { days } 8 \text { hours }}=\frac{3584 \mathrm{~km}}{56 \text { hours }}=64 \mathrm{~km} /$ hour
Now, Average speed during the remaining part (last 8 hr .) of journey
$=\frac{3584-(1440+1608)}{8} \mathrm{~km} / \mathrm{hr}$.
$=\frac{3584-3048}{8}=\frac{536}{8}=67 \mathrm{~km} / \mathrm{hr}$
So, required difference $=(67-64) \mathrm{km} / \mathrm{hr}=3 \mathrm{~km} / \mathrm{hr}$
50. (B) Weight of lead per kg in the new alloy $=\frac{3}{(5+4+2) \times 2}=\frac{3}{24}=\frac{1}{8} \mathrm{~kg}$
51. (A) In 2010, profit of Company $M=4.5$ crore

Profit of Company $(P+N)=(4+3)=7$ crore
\therefore Required $\%=\frac{4.5}{7} \times 100=64.28 \%$
52. (D) Expenditure of Company M in the year 2011 is 75 crore.

Profit of Company M in year 2011 is 4 crore.
Income of Company M in year 2011 is $75+4=79$ crore
Now, expenditure of Company P in the year 2011 is 68 crore.
Profit of Company P in the year 2011 is 7 crore.
Income of Company P in the year 2011 is $(68+7)=75$ crore
\therefore Required ratio $=79: 75$
53. (B) In the year 2012 profit of Company M = 6 crore

Expenditure $=\sigma\left(1+\frac{50}{100}\right)=9$ crore
Income $=(9+6)=15$ crore
Profit of Company N in the year $2012=6.5$ crores
Expenditure $=6.5\left(1+\frac{60}{100}\right)=6.5 \times \frac{8}{5}=1.3 \times 8=10.4$ crore
Hence, Income $=(6.5+10.4)=16.9$ crore
Again, Profit of Company P in the year $2012=5$ crore
Expenditure $=5\left(1+\frac{80}{100}\right)=5 \times \frac{9}{8}=9$ crore
Hence, Income $=(9+5)=14$ crore
Now, average income of all three companies $=\frac{1}{3}(15+16.9+14)=\frac{45.9}{3}=15.3 \mathrm{crore}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
54. (C) Profit of Company N in the year $2009=2$ crore

Profit of Company N in the year $2012=6.5$ crore
Increase $=(6.5-2)=4.5$ crore
Increase $\%=\frac{4.5}{2} \times 100=225 \%$
55. (D) Income of Company P in the year $2010=40$ crore

Income of Company M in the year $2010=40\left(1+\frac{20}{100}\right)=48$ crore
Now, profit of Company M in the year $2010=4.5$ crore
$\therefore \quad$ Expenditure of Company M in the year $2010=(48-4.5)$ crore $=43.5$ crore
56. (C) Let $x=$ number of benches

ATQ,
$6(x+1)=7 x-5$
$7 x-6 x=6+5$
$x=11$
Number of students $=6(x+1)=72$
57. (C) Let the number of workers be x.

ATQ,
$x \times 8500=7 \times 10000+(x-7) 7800$
$85 x=700+78(x-7)$
$85 x-78 x=700-546$
$7 x=154$
$x=\frac{154}{7}=22$
58. (B) Let the average expenditure per students $=₹ x$

Original total expenses $=₹ 35 x$
Now total expenses $=₹(35 x+42)$
New average expenditure per student $=₹(x-1)$
$\frac{35 x+42}{35+7}=\frac{35 x+42}{42}=(x-1)$
$35 x+42=42 x-42$
$x=12$
The original expenditure $=35 \times 12=₹ 420$
59. (B) Let the amount invested by P and Q are ₹ $5 x$ and ₹ $6 x$ respectively

Ratio of investment of P, Q and $\mathrm{R}=5 x \times 12: 6 x \times 12: 6 x \times 6=5: 6: 3$
Total profit $=₹ 98000=20 \%$ of total investment
Total investment $=₹ \frac{98000 \times 100}{20}=₹ 490000$
So, R's investment $=\frac{3}{14} \times 490000=₹ 105000$
60. (B) Let 't' be time taken to arise the water level by 7 cm .

Now, radius of pipe $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
So, Water flow by pipe $=$ volume of tank
$\pi \times \frac{7}{100} \times \frac{7}{100} \times 5 \times \frac{5}{18} \times t=50 \times 44 \times \frac{7}{100}$
$t=\frac{100 \times 18 \times 50 \times 44 \times 7 \times 7}{22 \times 7 \times 7 \times 25}$
$t=7200$ seconds
$t=\frac{7200}{60 \times 60}=2$ hours
61. (D) Let L and $S=$ length and speed of the train

So, $L=(S-6) \mathrm{kmph} \times 5 \mathrm{sec}$
$\mathrm{L}=(\mathrm{S}-7.5) \mathrm{kmph} \times 5.5 \mathrm{sec}$
From (i) and (ii),
$(\mathrm{S}-6) \mathrm{kmph} \times 5 \mathrm{sec}=(\mathrm{S}-7.5) \mathrm{kmph} \times 5.5 \mathrm{sec}$
$5 \mathrm{~S}-30=5.5 \mathrm{~S}-41.25$
$\mathrm{S}=22.5 \mathrm{kmph}$
$\mathrm{L}=22.92 \mathrm{~m}$
62. (A) $\frac{P \sin \theta-q \cos \theta}{P \sin \theta+q \cos \theta}=\frac{P \tan \theta-q}{P \tan \theta+q}$
$=\frac{P \frac{P}{q}-q}{P \frac{P}{q}+q}=\frac{P^{2}-q^{2}}{p^{2}+q^{2}}$
63. (B) $\sin \theta=\frac{3}{4}$

Then, $\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}$
$=\sqrt{\frac{\frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}-1}}=\sqrt{\frac{\frac{1-\cos ^{2} \theta}{\frac{\sin ^{2} \theta}{1-\cos ^{2} \theta}} \frac{\cos ^{2} \theta}{2}}{}}$
$=\sqrt{\frac{\sin ^{2} \theta}{\sin ^{2} \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta}}=\sqrt{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\sqrt{\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}}=\sqrt{\frac{1-\frac{9}{16}}{\left(\frac{3}{4}\right)^{2}}}$
$=\frac{\sqrt{7}}{4} \times \frac{4}{3}=\frac{\sqrt{7}}{3}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
64. (A) $\sin ^{4} \theta-\cos ^{4} \theta$
$=\left(\sin ^{2} \theta\right)-\left(\cos ^{2} \theta\right)^{2}$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2}$
$=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2}$
Hence (A) is not a correct statement.
65. (D) Let $R Q$ be the height of building, i.e., $R Q=10 \mathrm{~cm}, \mathrm{~S}$ be the position of helicopter.

In $\triangle P Q R$,
$\frac{\mathrm{RQ}}{\mathrm{PQ}}=\tan 30^{\circ}$
$\mathrm{PQ}=\frac{\mathrm{RQ}}{\tan 30^{\circ}}=10 \sqrt{3} \mathrm{~m}$

In $\Delta \mathrm{SPQ}$,
$\tan 60^{\circ}=\frac{\mathrm{SQ}}{\mathrm{PQ}}$
$\frac{S Q}{P Q}=\sqrt{3}$
$\mathrm{SQ}=\mathrm{PQ} \times \sqrt{3}=10 \sqrt{3} \times \sqrt{3}=30 \mathrm{~m}$
66. (C) As $\mathrm{BC} \| \mathrm{AD}$ and the diagonals of a trapezium divide each other proportionally.

So, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
$\frac{3 x-1}{5 x-3}=\frac{2 x+1}{6 x-5}$
$(3 x-1)(6 x-1)$
$(5 x-3)(2 x+1)$
$18 x^{2}-15-6 x+5$
$10 x^{2}+5 x-6 x-3$
$8 x^{2}-20 x+8=0$
$4 x^{2}-10 x+4=0$
$4 x^{2}-8 x-2 x+4=0$
$4 x(x-2)-2(x-2)=0$
$(4 x-2)(x-2)=0$
$x=\frac{1}{2}$ or $x=2$
But as $x=\frac{1}{2}$ will make OC negative.
$\therefore \quad x=2$

K D Campus Pvt. Ltd

67. (D) As $\mathrm{DE} \| \mathrm{BC}$, so by basic proportionality theorem.

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

$\frac{x}{x-2}=\frac{x+2}{x-1}$
$x(x-1)=(x+2)(x-2)$
$x^{2}-x=x^{2}-4$
$x=4$
68. (D) Let length of rectangle $=x$ and breadth of rectangle $=y$
$(x+2)(y-2)=x y+20$
$x y+2 y-2 x-4=x y+20$
$2 y-2 x=24$
$y-x=12$
Also, $(x-2)(y-1)=x y-37$
$x y-x-2 y+2=x y-37$
$2 y+x=39$
On solving equations (i) and (ii), we get
$x=5$ and $y=17$
Hence, area of rectangle $=x y$
$=5 \times 17=85$ sq. m
69. (A) Distance travelled by Hyderabad Express in $1 \mathrm{~h}=50 \mathrm{~km}$

Distance travelled by Nalgonda Express in $\frac{1}{2} h=20 \mathrm{~km}$

At $6: 30$, distance between 2 trains $=30 \mathrm{~km}$
Time taken to travel this $30 \mathrm{~km}=\frac{30}{50+40}=\frac{1}{3} \mathrm{~h}$
$=\frac{1}{3} \times 60=20 \mathrm{~min}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
70. (D) Suppose D got x marks.

Marks obtained by C $=80 \%$ of $x=\frac{4 x}{5}$
Marks obtained by B $=125 \%$ of $\frac{4 x}{5}=\frac{125}{100} \times \frac{4 x}{5}=x$
Marks obtained by A $=90 \%$ of $x=\frac{9 x}{10}$
ATQ,
$\frac{9 x}{10}=360$
$x=400$
Percentage of marks obtained by D $=\frac{400}{500} \times 100=80 \%$
71. (B) Present worth of money for Anu,
$1120-\mathrm{P}=\frac{\mathrm{P} \times 6 \times 2}{100}$
$P=₹ 1000$
Present worth of money for Biresh $1081.50-\frac{P \times 6 \times 1}{100}$
$108150-100 \mathrm{P}=3 \mathrm{P}$
$\mathrm{P}=₹ 1050$
$\therefore \quad$ Biresh should pay ₹ 50 .
72. (C) The Venn diagram represents the no. of students who passed in the respective subjects.

Number of students who passed in one or more subjects $=11+9+13+17+15+19+7=91$

Number of students who failed in all the subjects $=100-91=9$
73. (B) $y-5=-(\sqrt[3]{25}+\sqrt[3]{5})$
$=-5^{\frac{2}{3}}-5^{\frac{1}{3}}=-\left(5^{\frac{2}{3}}+5^{\frac{1}{3}}\right)$
$(y-5)^{3} \quad=-5^{2}-5-3 \cdot 5^{\frac{2}{3} .5^{\frac{1}{3}}\left(5^{\frac{2}{3}}+5^{\frac{1}{3}}\right)}$
$(x-5)^{3}=-25-5+15(y-5)$
$y^{3}-15 y^{2}+75 y-125=-30+15 y-75$
$y^{3}-15 y^{2}+60 y+40=60$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
74. (D) we have,
$a \sec \theta+b \tan \theta+\mathrm{c}=0$
and $p \sec \theta+q \tan \theta+r=0$
Solving these two equations for $\sec \theta$ and $\tan \theta$ by the cross multiplication, we get
$\frac{\sec \theta}{b r-q c}=\frac{\tan \theta}{c p-a r}=\frac{1}{a q-b p}$
$\sec \theta=\frac{b r-c q}{a q-b p}$ and $\tan \theta=\frac{c p-a r}{a q-b p}$
Now, $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\left(\frac{b r-c q}{a q-b p}\right)^{2}-\left(\frac{c p-a r}{a q-b p}\right)^{2}=1$
$(b r-c q)^{2}-(c p-a r)^{2}=(a q-b p)^{2}$
75. (D)

Given that,
radius $=7 \mathrm{~cm}$
diameter $=14 \mathrm{~cm}$
Area of the triangle $=7^{2}=49$ sq. cm .
Area of semi-circle $=\frac{\pi r^{2}}{2}=\frac{\frac{22}{7} \times 7^{2}}{2}$
$=11 \times 7=77$ sq. cm.
\therefore Required answer $=$ Area of semi-circle - Area of the largest triangle $=(77-49)=28 \mathrm{sq} . \mathrm{cm}$.
76. (A) Total number of students qualified in the examination from colleges R and S
$=(3250+1500)=4750$
Average number of students qualified in the examination from colleges R and S
$=\frac{4750}{2}=2375$
Total number of students appeared in the examination from colleges R and S
$=(3750+2500)=6250$
Average number of students appeared in the examination from colleges R and S
$=\frac{6250}{2}=3125$
\therefore Required percentage $=\left(\frac{2375 \times 100}{3125}\right)=76 \%$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
77. (C) Total number of students appeared in the scholarship exam from R and T
$=(3750+3000)=6750$
Total number of students qualified in the scholarship exam from R and T
$=(3250+2250)=5500$
$\therefore \quad$ Required ratio $=\frac{6750}{5500}=27: 22$
78. (D) Required ratio $=\frac{2250}{1500}=3: 2$
79. (C) Total number of students appeared for the scholarship exam from college $\mathrm{S}=2500$

Total number of students appeared for the exam from all the colleges
$=(3500+2750+3750+2500+3000)=15500$
$\therefore \quad$ Required percentage $=\frac{2500 \times 100}{15500}=16.12 \%$
80. (A) Total number of students appeared for the exam from all the colleges
$=(3500+2750+3750+2500+3000)=15500$
Average $=\frac{15500}{5}=3100$
Total number of students qualified for the exam from all the colleges
$=(2250+1500+3250+1500+2250)=10750$
Average $=\frac{10750}{5}=2150$
$\therefore \quad$ Required difference $=(3100-2150)=950$
81. (B) D

In $\triangle \mathrm{ABC}$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{A B}{8}$
$A B=\frac{8}{\sqrt{3}} m$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Again,
$\cos 30^{\circ}=\frac{B C}{A C}$
$\frac{\sqrt{3}}{2}=\frac{8}{A C}$
$A C=\frac{16}{\sqrt{3}}$
$\mathrm{DB}=\mathrm{AB}+\mathrm{AD}=\mathrm{AB}+\mathrm{AC}$
$=\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}$
82. (B) Let the tank get empty in $m \mathrm{~h}$ after 8 am .

Now, work done [by L in $m \mathrm{~h}+$ by M in $(m-1)+$ by N in $(m-3) \mathrm{h}$] $=0$
$\frac{m}{15}+\frac{m-1}{12}-\frac{m-3}{4}=0$
$4 m+5(m-1)-15(m-3)=8$
$6 m=40$
$m=\frac{20}{3} \mathrm{~h}=6 \mathrm{~h} 40 \mathrm{~min}$
\therefore Tank will be emptied 6 h 40 min after 8 am i.e., at $2: 40 \mathrm{pm}$.
83. (A)

Let ABCD be a rectangular grass plot whose length $=l=80 \mathrm{~m}$ and breadth $=b=60 \mathrm{~m}$ Two roads of width $\mathrm{W}=10 \mathrm{~m}$ (shaded part) are crossing each other at the middle of plot.
Area of roads $=W(l+b-W)=10(80+60-10) \mathrm{m}^{2}=1300 \mathrm{~m}^{2}$
Cost of gravelling the roads = rate of gravelling / $\mathrm{m}^{2} \times$ area of roads
$=2 \times 1300=₹ 2600$
84. (C) Let $\mathrm{r}=$ radius of hemisphere bowl.
$2 \pi \mathrm{r}=176$
$\mathrm{r}=28 \mathrm{~cm}$
Volume of the quantity in hemispherical punch bowl $=\frac{1}{2} \times \frac{2}{3} \pi^{3}=\frac{1}{3} \pi \times 28^{3} \mathrm{~cm}^{3}$
Volume of the bowl in which food is to be served $=\frac{2}{3} \pi \times 2^{3} \mathrm{~cm}^{3}$.
Number of persons served $=\frac{\frac{1}{3} \pi \times 28^{3}}{\frac{2}{3} \pi \times 2^{3}}=1372$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
85. (B) Given roots are real and equal.
$B^{2}-4 A C=0$
$\left[-2\left(a^{2}-b c\right)\right]^{2}-4\left(c^{2}-a b\right)\left(b^{2}-a c\right)=0$
$4\left(a^{4}+b^{2} c^{2}-2 a^{2} b c-c^{2} b^{2}+a c^{3}+a b^{3}-a^{2} b c=0\right.$
$4 a\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=0$
$a^{3}+b^{3}+c^{3}=3 a b c$
86. (B) Required punctuality $=\frac{1250+1400}{1400+1490} \times 100 \%$
$=\frac{2650}{2890} \times 100 \%=91.7 \%$
87. (C) $x-y=w+z+6$
$\frac{x+y=w-z-3}{2 x=2 w+3}$
$2 x-2 w=3$
$x-w=\frac{3}{2}=1.5$
88. (C) $(\sqrt[3]{3.5}+\sqrt[3]{2.5})\left\{(\sqrt[3]{3.5})^{2}-\sqrt[3]{8.75}+(\sqrt[3]{2.5})^{2}\right\}$
$=(\sqrt[3]{3.5})^{3}+(\sqrt[3]{2.5})^{3} \quad$ [by using $\left.(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}\right]$
$=3.5+2.5=6$
89. (C)

$$
₹ \underline{500}
$$

Required Sum
Rate of Interest 12%
S.I. after 4 years 480
S.I. is same
$\frac{₹ 500}{\text { Required Sum }}=\frac{10 \%}{12 \%}$
$\frac{₹ 500}{\text { Required Sum }}=\frac{5}{6}$
Required sum $=₹ \frac{500}{5} \times 6=₹ 600$
90. (B) Radius of the shot put ball $=7 \mathrm{~cm}$

Height of the cylinder $=\frac{7}{3} \mathrm{~cm}$
Volume of the shot put = Volume of the cylinder

$$
\begin{aligned}
& \frac{4}{3} \pi \times 7^{3}=\pi \times R^{2} \times \frac{7}{3} \\
& \mathrm{R}^{2}=\frac{\frac{4}{3} \pi \times 7^{3} \times \frac{3}{7}}{\pi} \\
& \mathrm{R}=\sqrt{4 \times 7^{2}}=2 \times 7=14 \mathrm{~cm} \\
& \mathrm{~d}=2 \mathrm{R}=2 \times 14=28 \mathrm{~cm}
\end{aligned}
$$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
91. (B) Let x hour $=$ time taken by pipe A alone to empty the pool
$2 x$ hour = time taken by pipe B alone to empty the pool
So, Time taken by pipe A \& B together to empty the pool $=\frac{x \times 2 x}{x+2 x}$ hours
$=\frac{2 x^{2}}{3 x}$ hours $=\frac{2}{3} x$ hours
Time taken by pipe C alone to empty the pool $=\left(\frac{2}{3} x \times 2\right)=\frac{4}{3} x$ hours

Part of the pool which will be empty when A, B \& C work together $=\left(\frac{1}{x}+\frac{1}{2 x}+\frac{3}{4 x}\right)$ part
$=\left(\frac{4+2+3}{4 x}\right)$ part $=\frac{9}{4 x}$ part
Total time taken by A, B \& C working together to empty the pool $=\frac{4 x}{9}$
$=400$ minutes $\quad[6$ hour 40 minutes $=400 \mathrm{~min}]$
$x=\frac{400 \times 9}{4}=900$ minutes $=15$ hours
92. (B) Volume of water due to 2 cm rain on a square km land $=1 \mathrm{~km} \times 1 \mathrm{~km} \times 2 \mathrm{~cm}$
$=1000 \mathrm{~m}+1000 \mathrm{~m} \times \frac{2}{100} \mathrm{~m}=20000 \mathrm{~m}^{3}$
50% of volume of rain drops $=10000 \mathrm{~m}^{3}$
Now, Required level by which the water level in the pool will be increased
$=\frac{10000}{100 \times 10}=10 \mathrm{~m}$
93. (D) Let the number be x and y.
$1^{\text {st }}$ number $\times 2^{\text {nd }}$ number
H. C. F \times L. C. M
$3 x \times 4 x=2028$
$x^{2}=\frac{2028}{3 \times 4}=169$
$x^{2}=\sqrt{169}$
$x=13$
\therefore Sum of numbers $=3 x+4 x=7 x$
$=7 \times 13=91$
94. (D) $5^{x+3}=625=5^{4}$
$x+3=4$
$x+3=4$
$x+4-3=1$
$\therefore \quad 8^{x+2}=8^{3}=512$
95. (B) $21 \frac{51}{169}=\frac{21 \times 169+51}{169}=\frac{3600}{169}$
$\therefore \sqrt{21 \frac{51}{169}}=\sqrt{\frac{3600}{169}}$
$=\frac{60}{13}=4 \frac{8}{13}$
96. (A) Required expenditure $=\frac{72}{360} \times 90,000=₹ 18000$
97. (A) Cement + steel + supervision $=72^{\circ}+54^{\circ}+54^{\circ}=180^{\circ}$

Percent of total cost $=\frac{180}{360} \times 100=50 \%$
98. (A) Required percentage $=\frac{72-54}{72} \times 100=25 \%$
99. (B) Required exceed $=90-54=36^{\circ}$

Required amount $=\frac{36}{360} \times 90,000=₹ 9000$
100. (C) Cement + Steel + Timber $=72+54+36=162$

Labour + Timber $=90+36=126$

Required $\%=\frac{36}{126} \times 100=28.57 \%$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 78 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (B) } & \text { 26. } & \text { (A) } & \text { 51. } & \text { (A) } & \text { 76. }\end{array}$ (A) $)$

