QUANTITATIVE ABILITY - 77 (SOLUTION)

1. (C)

Fig.(ii)

$P C Q$ is also an equilateral triangle.
$P C=P Q=P M=a$
$\frac{\mathrm{a}}{\mathrm{PA}}=\frac{\sqrt{3}}{2}$
$P A=\frac{2 \mathrm{a}}{\sqrt{3}}$
$\mathrm{AC}=\mathrm{AP}+\mathrm{PC}=\frac{2 \mathrm{a}}{\sqrt{3}}+\mathrm{a}=1$
$a=\frac{\sqrt{3}}{(2+\sqrt{3})}=\sqrt{3}(2-\sqrt{3})$
Now, in figure (iii)
$\mathrm{PM}=\mathrm{MT}=\mathrm{a}$
Let the each side of square RSYX be K , then $\mathrm{RT}=\mathrm{K}$ also (since RTS is an equilateral triangle)

Fig.(iii)

$$
\frac{K}{R M}=\frac{\sqrt{3}}{2}
$$

$R M=\frac{2 K}{\sqrt{3}}$
$M T=R T+R M=K+\frac{2 K}{\sqrt{3}}$
$M T=\frac{(\sqrt{3}+2)}{\sqrt{3}} K$
But, MT = a
$a=\left(\frac{\sqrt{3}+2}{\sqrt{3}}\right) K$
$K=\frac{\sqrt{3} a}{(\sqrt{3}+2)}$
But, $\mathrm{a}=\sqrt{3}(2-\sqrt{3})$
$K=\frac{\sqrt{3} a}{(\sqrt{3}+2)}[\sqrt{3}(2-\sqrt{3})]$
$K=\frac{3(2-\sqrt{3})^{2}}{1}=3(7-4 \sqrt{3})$
$\therefore \quad$ Area of square RSYX $=\mathrm{K}^{2}=[3(7-4 \sqrt{3})]^{2}$
$\mathrm{K}^{2}=[9(49+48-56 \sqrt{3})]$
$\mathrm{K}^{2}=(873-504 \sqrt{3}) \mathrm{cm}^{2}$
2. (A) $\angle \mathrm{ACB}=60^{\circ}$
$\left(\because \angle \mathrm{ACB}+\angle \mathrm{ADB}=180^{\circ}\right)$

And $\angle \mathrm{CAB}=30^{\circ}$
$\left(\because \angle \mathrm{ACB}+\angle \mathrm{CAB}=90^{\circ}\right)$
$\mathrm{AC}=2 \times 6=12 \mathrm{~cm}^{2}$
$\frac{\mathrm{BC}}{\mathrm{AC}}=\sin 30^{\circ}=\frac{1}{2}$
$B C=6 \mathrm{~cm}$
And $\frac{\mathrm{BC}}{\mathrm{AB}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\mathrm{AB}=6 \sqrt{3} \mathrm{~cm}$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 6 \times 6 \sqrt{3}=18 \sqrt{3} \mathrm{~cm}^{2}$
3. (A)

Area of $\triangle \mathrm{BAE}=\frac{1}{4} \mathrm{AC} \times \frac{1}{3} \mathrm{BD}=\frac{1}{12}$ Area of $\triangle \mathrm{ABC}$
4. (C)

Area of quadrant $=\frac{1}{4} \pi a^{2}$

Area of triangle ACB $=\frac{a^{2}}{2}$

Area of segment $=\frac{\pi a^{2}}{4}-\frac{a^{2}}{2}=\frac{a^{2}}{4}(\pi-2)$

Area of semi-circle $=\frac{1}{2} \pi\left(\frac{a \sqrt{2}}{2}\right)^{2}=\frac{\pi a^{2}}{4}$

Area of shaded region $=\pi a^{2}-\frac{a^{2}}{4}(\pi-2)=\frac{a^{2}}{2}$ sq unit

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
5. (D) Let the original speed be $\mathrm{skm} / \mathrm{h}$, scheduled time $=\mathrm{t}$ hours and total distance $=\mathrm{D} \mathrm{km}$ Then, $s \times t=\frac{3}{4} D$

And $s \times(t+3)=D$
From equation (i) and (ii), we get
$\mathrm{st}=\frac{3}{4}[\mathrm{~s}(\mathrm{t}+3)]$
$\mathrm{t}=9 \mathrm{~h}$
And let $\mathrm{s}=1 \mathrm{~km} / \mathrm{h}$, then $\mathrm{D}=12 \mathrm{~km}$
Again, since he doubles his speed after k hours then,
$\mathrm{s}_{1} \mathrm{t}_{1}+\mathrm{s}_{2} \mathrm{t}_{2}=\mathrm{D}$
$1 \times k+2 \times(9-k)=12$
$\mathrm{k}=6 \mathrm{~h}$
6. (B) In ideal case:

Time taken to fill the tank by A and $B=\frac{50}{41.66}=\frac{6}{5}$ hours

Time taken by A, B and C to fill rest half of the tank $=\frac{50}{16.66}=3$ hours

Total time $=\frac{6}{5}+3=4$ hours 12 minutes

In second case :

Time taken to fill $\frac{3}{4}$ tank by A and $B=\frac{75}{41.66}=\frac{9}{5}$ hours

Time taken by A, B and C to fill rest $\frac{1}{4} \operatorname{tank}=\frac{25}{16.66}=\frac{3}{2}$ hours

Total time $=\frac{9}{5}+\frac{3}{2}=3$ hours 18 minutes
Therefore, difference in time $=54$ minutes
7. (A)

Obviously, $P_{S}>P_{C}$, therefore percentage gain of P_{c} is greater than P_{s}.
8. (A) Rice

Wheat
25
9
$\frac{\times x}{25 x} \quad \frac{\times 5 x}{45 x}$
$70 \mathrm{x}=350$
$\mathrm{x}=5$
Hence, the price of Rice = ₹ 5 per kg
Price of wheat $=₹ 25$ per kg
Now, the price of wheat $=₹ 30$ per kg
Let the new amount of Rice be M kg , then
$M \times 5+9 \times 30=350$
$\mathrm{M}=16$
Hence decrease (in\%) of amount of rice $=\frac{25-16}{25} \times 100=36 \%$
9. (A) Priti $=\frac{5}{6}$ Lucky
and Ravi $=$ Raghav $=\frac{9}{10}$ Priti

Also Priti $=\frac{2}{3}$ Priya
And Priya - Lucky $=3$
From (i) and (iii),
$\frac{\text { Lucky }}{\text { Priya }}=\frac{4}{5}$

Priya $=\frac{5}{4}$ Lucky

Priya - Lucky $=\frac{5 \text { Lucky }}{4}-$ Lucky $=3$
From (iv) and (v),
Lucky $=12$ and Priya $=15$ and Priti $=10$
Also Ravi $=$ Raghav $=9$ and Bharat $=11$, since Priti $<$ Bharat $<$ Lucky and Bharat is integer \therefore Lucky : Bharat = 12: 11
10. (A) Let there be n people (initially) in the group, then the total earning of the group $=\mathrm{n} \times 50$

Again, $\mathrm{n} \times 50=(\mathrm{n}-2) \times 49+(2 \mathrm{x}+45)$
$n=2 x-53 ;$
where x is lowest earning of any person.
Now, since $42<x<47$ and $n \in$ prime numbers
Then the only possible value of $n=37$ for $x=45$

K D Campus Pvt. Ltd

11. (A)

Total students who are studying at least one subject $=21+1+2+1+9+3+8=45$ Number of students, who are not studying any of the three subjects $=80-45=35$
12. (A) Number of workers $=x$ and number of officers $=y$

Case: (I)
$x+y=400$
Case: (II)
$2000 \times x+10000 \times y=400 \times 3000$
$x+5 y=\frac{400 \times 3000}{2000}$
$x+5 y=600$
(ii)

Subtracting (ii) from (i),
$(x+5 y)-(x+y)=200$
$y=50$
Number of officers $=y=50$
Number of workers $=x=400-50=350$
13. (A) Let their ages be x and y.

ATQ,
$\frac{1}{x}+\frac{1}{y}=5\left(\frac{1}{x}-\frac{1}{y}\right)$
$y+x=5(y-x)$
$6 x=4 y$
$\frac{x}{y}=\frac{2}{3}$
Now, $\frac{x y}{x+y}=\frac{14.4}{1}$
$x y=14.4(x+y)$
From Equation (i) and (ii),
$x=24$ years and $y=36$ years
14. (D) By the rule of alligation,

Quantity of rice sold at 10% gain $=\frac{12}{12+3} \times 50=40 \mathrm{~kg}$
Quantity of rice sold at 5% loss $=\frac{3}{12+3} \times 50=10 \mathrm{~kg}$
15. (A) Let x represents number of students and y represents the number of rows.

Then,
Number of students in each row $=\frac{x}{y}$
Case: (I)
$\left(\frac{x}{y}+4\right) \times(y-2)=x$
$2 y^{2}-4 y=x$
Case: (II)
$\left(\frac{x}{y}-4\right) \times(y+4)=x$
$y^{2}+4 y=x$
From equation (i) and (ii),
$2 y^{2}-4 y=y^{2}+4 y$
$y(y-8)=0$
$y=8$
Total number of students
$x=2(8)^{2}-4 \times 8=128-32=96$
16. (C) Mohan can reach the middle in 12.5 minute

Puran can reach the middle in 25 minute
So, required time $=25-12.5=12.5$ minute
17. (B) Number of men $=\frac{2}{5} \times 25=10$

Number of women $=\frac{3}{5} \times 25=15$
Amount distributed among men and women $=275 \times 80 \%=₹ 220$
Let the wages paid to a man be ₹ $5 x$ and to a woman be ₹ $4 x$, then
$10 \times 5 x+15 \times 4 x=220$
$50 x+60 x=220$
$x=2$
\therefore Wages received by a woman $=2 \times 4=₹ 8$
18. (A) According to question,

$$
\begin{aligned}
& \left(8 \frac{1}{2} \%-5 \%\right) \text { of sum }=350 \\
& \text { Sum }=\frac{350}{3.5} \times 100=₹ 10000
\end{aligned}
$$

19. (B)

Profit received by Anu = ₹ $110+₹ 350=₹ 460$
Profit received by Bimla $=₹ 420$
20. (B) Venn-Diagram of Failed Students

Percentage of failed students $=30 \%+35 \%-27 \%=38 \%$
Percentage of passed students $=100 \%-38 \%=62 \%$
Now, Let total number of students be x
ATQ,
62% of $x=248$
$\therefore \quad x=248 \times \frac{100}{62}=400$
21. (C) Let the maximum marks be x.

ATQ,
$296-259=5 \%$ of x
$\frac{5}{100} x=37$
$x=740$
22. (D) Only the option (D) gives the difference of votes between two candidates as 308.
23. (B) Let the cost price of colour printer and computer system be ₹ x and $₹ y$ respectively. According to question,
$x \times \frac{120}{100}+y \times \frac{90}{100}=x+y$
$0.2 x=0.1 y$
$x \times \frac{85}{100}+y \times \frac{105}{100}=x+y-800$
$0.05 y=0.15 x-800$
From equations (i) and (ii),
$x=₹ 16000$
24. (B) $\frac{x}{\sqrt{8}}=\frac{2 \sqrt{3}}{\sqrt{3}+\sqrt{2}}$

On applying componendo and dividendo,
$\frac{x+\sqrt{8}}{x-\sqrt{8}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
Again,
$\frac{x}{\sqrt{12}}=\frac{2 \sqrt{2}}{\sqrt{3}+\sqrt{2}}$
$\frac{x+\sqrt{12}}{x-\sqrt{12}}=\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
From Equation (i) + Equation (ii),
$\frac{x+\sqrt{8}}{x-\sqrt{8}}+\frac{x+\sqrt{12}}{x-\sqrt{12}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}$
$=\frac{3 \sqrt{3}+\sqrt{2}-3 \sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{2(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}}=2$
25. (C) $x^{2}+\frac{1}{x^{2}}+2=3$
$x^{2}+\frac{1}{x^{2}}=1$
$x^{4}+1=x^{2}$
$\therefore \quad x^{4}-x^{2}+1=0$
Now,
$x^{206}+x^{200}+x^{90}+x^{84}+x^{18}+x^{12}+x^{6}+1$
$=x^{200}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{12}\left(x^{6}+1\right)+1\left(x^{6}+1\right)$
$=\left(x^{6}+1\right)\left(x^{200}+x^{84}+x^{12}+1\right)$
$=\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{200}+x^{84}+x^{12}+1\right)=0$
26. (A) $a^{3}+b+c^{3}-3 a b c$
$=\frac{1}{2}(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}$
$\therefore \frac{a^{3}-b^{3}+c^{2}-3 a b c}{a+b+c}=\frac{\frac{1}{2}(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}}{(a+b+c)}$
$=\frac{1}{2}\left(3^{2}+5^{2}+1^{2}\right)=\frac{1}{2} \times 35=17.5$
27. (B)

OABC is a rhombus with centre O .
Let diagonal of the rhombus be $\mathrm{OB}=2 x$ and $\mathrm{AC}=2 y$
Radius of the circle $=\mathrm{OB}=\mathrm{OA}=\mathrm{OC}=2 x$
In $\triangle \mathrm{POC}$,
$\mathrm{OC}^{2}=\mathrm{OP}^{2}+\mathrm{PC}^{2}$
$(2 x)^{2}=x^{2}+y^{2}$
$4 x^{2}=x^{2}+y^{2}$
$3 x^{2}=y^{2} \Rightarrow x=\frac{y}{\sqrt{3}}$
Also, area of rhombus $=\frac{1}{2} \times(2 x)(2 y)=32 \sqrt{3}$
$x=4$
\therefore Radius of circle $=2 \times 4=8 \mathrm{~m}$
28. (C) $a \sin \theta+b \cos \theta=c$

On squaring,
$a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta=c^{2}$
Let $\mathrm{a} \cos \theta-\mathrm{b} \sin \theta=k$
$a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta=k^{2}$
From equation (i) \& (ii),
$a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=c^{2}+k^{2}$
$k^{2}=a^{2}+b^{2}-c^{2}$
$k= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
29. (D) $\sec \theta=\frac{4 x^{2}+1}{4 x}$
$\therefore \quad b=4 x, h=4 x^{2}+1$

Then,
$P=\sqrt{\left(4 x^{2}+1\right)^{2}-(4 x)^{2}}=\sqrt{16 x^{4}+8 x^{2}+1-16 x^{2}}$
$=\sqrt{16 x^{4}-8 x^{2}+1}=4 x^{2}-1$
$\therefore \quad \sec \theta+\tan \theta=\frac{4 x^{2}+1}{4 x}+\frac{4 x^{2}-1}{4 x}$
$=\frac{4 x^{2}+1+4 x^{2}-1}{4 x}=\frac{8 x^{2}}{4 x}=2 x$
30. (B) $\cos \theta\left(\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}\right)=4$
$\cos \theta\left(\frac{1+\sin \theta+1-\sin \theta}{1-\sin ^{2} \theta}\right)=4$
$\cos \theta\left(\frac{2}{\cos ^{2} \theta}\right)=4$
$\cos \theta=\frac{1}{2}$
$\cos \theta=\cos 60^{\circ}$
$\theta=60^{\circ}$
31. (B) $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cos \theta=a^{2}+b^{2}$
$\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \sin \theta+\frac{2 a b}{a^{2}+b^{2}} \cos \theta=1$

Let $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\sin \theta \& \frac{2 a b}{a^{2}+b^{2}}=\cos \theta$
Then, above equation becomes
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sin \theta=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
$\cos \theta=\frac{2 a b}{a^{2}+b^{2}}$
$\therefore \quad \tan \theta=\frac{a^{2}-b^{2}}{2 a b}=\frac{1}{2 a b}\left(a^{2}-b^{2}\right)$
32. (D) $\frac{\cos ^{4} \alpha}{\cos ^{2} \beta}+\frac{\sin ^{4} \alpha}{\sin ^{2} \beta}=1$

By taking $\alpha=\beta$, it satisfies the above equation
$\therefore \frac{\cos ^{4} \beta}{\cos ^{2} \alpha}+\frac{\sin ^{4} \beta}{\sin ^{2} \alpha}=1$
33. (B) $l \cos ^{2} \theta+\mathrm{m} \sin ^{2} \theta=\frac{\cos ^{2} \theta}{\cot ^{2} \theta}\left(\frac{1+\sin ^{2} \theta}{\sin ^{2} \theta}\right)$
$l \cos ^{2} \theta+m-m \cos ^{2} \theta=1+1-\cos ^{2} \theta$
$l \cos ^{2} \theta+\cos ^{2} \theta-\mathrm{m} \cos ^{2} \theta=2-\mathrm{m}$
$\cos ^{2} \theta=\frac{2-m}{l-m+1}$
$\sec ^{2} \theta=\frac{l-m+1}{2-m}$
$\tan ^{2} \theta+1=\frac{l-m+1}{2-m}$
$\tan ^{2} \theta=\frac{l-m+1-2+m}{2-m}$
$\tan ^{2} \theta=\frac{l-1}{2-m}$
$\therefore \tan \theta=\sqrt{\frac{l-1}{2-m}}$
34. (D)

In $\triangle A P Y$ and $\triangle B P X$,
$\angle \mathrm{X}=\angle \mathrm{Y}=90^{\circ}$
A tangent is always perpendicular to the radius through the point of contact.
$\Delta \mathrm{APY} \sim \Delta \mathrm{BPX}$
[By AA similarity]
$\therefore \quad \frac{A Y}{B X}=\frac{A P}{P B}$
$\frac{5}{2}=\frac{A P}{P B}$
P divides $A B$ externally in the ratio of $7: 2$.
35. (D)

Number of people who either watch TV or read newspaper $=(65+40-25) \%=80 \%$
Number of people who neither watch TV nor read newspaper $=(100-80) \%=20 \%$
36. (C) Total work $=124 \times 120=14880$

Work completed in 64 days $=\frac{2}{3} \times 14880=9920$
Remaining work for remaining 60 days $=(14880-9920)=4960$
ATQ,
$\frac{M_{1} D_{1}}{W_{1}}=\frac{M_{2} D_{2}}{W_{2}}$
$\frac{120 \times 64}{9920}=\frac{M_{2} \times 60}{4960}$
$M_{2}=64$
Number of workmen who can be reduced $=120-64=56$
37. (B) When a value is first increased and then decreased by the same percentage, then the initial value is always decreased by $\frac{x^{2}}{100} \%$. (irrespective of initial value)

So, loss percent $=\frac{(15)^{2}}{100}=2.25 \%$
38. (B) Given,
$\frac{x}{2 x+y+z}=\frac{y}{x+2 y+z}=\frac{z}{x+y+2 z}=a$
$\therefore \quad x=a(2 x+y+z), y=a(x+2 y+z)$
$z=a(x+y+2 z)$
$x+y+z=a(4 x+4 y+4 z)$
$4 a=1$
$a=\frac{1}{4}$
39. (C) Let length and breadth of blackboard be $x \mathrm{~m}$ and $(x-8) \mathrm{m}$ respectively.

ATQ,
$x \times(x-8)=(x+7)(x-12)$
$x^{2}-8 x=x^{2}-5 x-84$
$x=\frac{84}{3}=28 \mathrm{~cm}$
Length $=28 \mathrm{~cm}$
Breadth $=x-8=20 \mathrm{~m}$
40. (A) Total area of two parks $=\pi\left(8^{2}+6^{2}\right)=100 \pi$

Area of bigger park $=\pi \times 100$
$\pi \times r^{2}=\pi \times 100$
$r^{2}=100$
$\therefore \quad r=10 \mathrm{~m}$
41. (C) In $\Delta \mathrm{OC}_{1} \mathrm{C}_{2}$,

$\left(\mathrm{OC}_{1}\right)^{2}=(\mathrm{OC})^{2}+\left(\mathrm{CC}_{1}\right)^{2}$
$(r+1)^{2}=(\mathrm{PC}-\mathrm{OP})^{2}+1$
$(r+1)^{2}=(2-r)^{2}+1$
$r^{2}+1+2 r=4+r^{2}-4 r+1$
$6 r=4$
$r=\frac{2}{3}$
42. (B)

$\frac{B D}{A B}=\frac{D C}{A C}$
$\frac{B D}{D C}=\frac{3}{5}$
$\mathrm{BD}: \mathrm{DC}=3: 5$
Now, $\mathrm{BD}=\frac{3}{(3+5)} \times 6=\frac{18}{8}=2.25 \mathrm{~cm}$
43. (C)

Let $\mathrm{BC}=h$ be the height of the pillar, then $\mathrm{CD}=2 h$.
Also, let $\angle \mathrm{BAC}=\angle \mathrm{CAD}=\alpha$ and $\mathrm{AB}=\mathrm{d}$

In $\Delta \mathrm{ABC}$,
$\tan \alpha=\frac{h}{d}$
And in $\triangle \mathrm{ABD}$,
$\tan 2 \alpha=\frac{3 h}{d}$
$\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{3 h}{d}$
$\frac{\frac{2 h}{d}}{1-\left(\frac{h}{d}\right)^{2}}=\frac{3 h}{d}$
$\frac{2}{3}=1-\left(\frac{h}{d}\right)^{2}$
$\frac{h}{d}=\frac{1}{\sqrt{3}}$
$h: d=1: \sqrt{3}$
44. (A) $t-2=\sqrt[3]{4}+\sqrt[3]{2}$
$(t-2)^{3}=4+2+3 \sqrt[3]{4} \sqrt[3]{2}(\sqrt[3]{4}+\sqrt[3]{2})$
$t^{3}-2^{3}-3 \times 2 \times t(t-2)=6+6 t-12$
$t^{3}-6 t^{2}+6 t-2=0$
45. (D) Let leakage alone can empty the full cistern in $x \mathrm{~h}$.

ATQ,
$\frac{\frac{9}{2} \times x}{x-\frac{9}{2}}=5$
$\frac{9}{2} x=5 x-\frac{45}{2}$
$\frac{1}{2} x=\frac{45}{2}$
$x=45$ hours
46. (D) Let the two digits number be $10 x+y$.

Two digits number in reverse order $=10 y+x$
According to question,
$10 \times 2 x+\frac{y}{2}=10 y+x$
$20 x-x=10 y-\frac{y}{2}$
$19 x=\frac{19 y}{2}$
$\frac{x}{y}=\frac{1}{2}$
Unit's digit is two times the ten's digits.

K D Campus Pvt. Ltd

47. (C) Let P and Q be any number say, $\mathrm{P}=17$ and $\mathrm{Q}=9$.

Again, let divisor $=5$

$$
\begin{array}{lll|l}
\text { Clearly, } r_{1} \Rightarrow & 5) 17(3 & \mathrm{P}+\mathrm{Q}=26 \\
\Rightarrow \mathrm{r}_{1}=2 & \frac{-15}{2} & \text { 5) } 26(5 \\
\text { Also, } & & \text { 5) } 9(1 & \frac{-25}{1} \\
& & \frac{-5}{4} & \mathrm{r}_{3}=1
\end{array}
$$

Divisor $=5=r_{1}+r_{2}-r_{3}$
$5=2+4-1=5$
48. (B) Let the two digits number be A and B.

According to question,
35% of $A+B=120 \%$ of B
$35 A=20 B$
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{20}{35}=\frac{4}{7}$
B:A = 7: 4
49. (D) Let the five numbers be x, y, z, u, and v

According to question,
$x+y+z+6=u+v$
$x+y+z=2 u v$
From (i) and (ii),
$2 u+6=u+v$
$v-u=6$
Neither u nor v can be calculated with the help of the above relation.
50. (B) Let the cost of 1 orange $=₹ x$

Let the cost of 1 apple $=₹ 1.75 x$
ATQ,
$\frac{40}{1.75 x}+\frac{16}{x}=14$
$40+16 \times 1.75=14 \times 1.75 \times x$
$40+28=24.5 x$
$x=₹ \frac{68}{24.5}$
Cost of 1 apple $=\frac{1.75 \times 68}{24.5}$
Number of apples $=\frac{40 \times 24.5}{17.5 \times 68}=8.24=8$ (approx.)
51. (B) Mechanical Electronic

Atleast 67 electronic graduates should be there to fulfill the conditions given in the question.
52. (C) Cost of painting on Monday $=₹ x$

Cost of painting on Tuesday $=₹ x+3 y$
Cost of painting on Wednesday $=₹ x+2 y$
Cost of painting on Thursday $=₹ x+y$
Cost of painting on Friday $=₹ x+2 y$
Average daily earning $=\frac{5 x+8 y}{5}=x+\frac{8}{5} y$
53. (B)

	Sugar	Water		Sugar	Water	
1st Solution	15	85	\Rightarrow	3	$:$	17
2nd Solution	5	95		1	$:$	19
Desired Solution				1	$:$	9

By Allegation:-

$\therefore 20$ litres of $1^{\text {st }}$ solution must be mixed with equal quantity of $2^{\text {nd }}$ solution to make sugar 10% in total mixture
54. (D) Ratio of the students in the states A and C appearing for exam in $1998=3: 6=1: 2$

As the increment in the next year is same for the student of both the states.
\therefore The number of students who appeared in the state A in $1998=$ any one of them $-3,6,9$, 12 etc.
55. (B) Let the number of children be n.

Number of note books each child have $=\frac{1}{8} n$
ATQ,
$\frac{1}{2} n \times 16=n \times \frac{1}{8} n$
$8 n=\frac{n^{2}}{8}$
$n=64$

Number of note books distributed $=64 \times \frac{1}{8} \times 64=512$
56. (A) Total Price of component $=₹ 50,000$

Expected rejection $=5 \%=₹ 2,500$
Remaining $=₹ 47,500=$ C.P. $+25 \%$ Profit
C.P. = ₹ 38,000

But, 50% goods rejected, so he was paid 50% of 50,000 , i.e. ₹ 25,000
So, Loss = ₹ $38000-₹ 25,000=₹ 13,000$
57. (D) $10 \mathrm{M}+15 \mathrm{~W}=6$ days
$\therefore \quad 60 \mathrm{M}+90 \mathrm{~W}=1$ days
$100 \mathrm{M}=1$ day
$60 \mathrm{M}+90 \mathrm{~W}=100 \mathrm{M}$
$4 \mathrm{M}=9 \mathrm{~W}$
$\therefore \quad 1 \mathrm{M}=\frac{9}{4} \mathrm{~W}$
$10 \mathrm{M}=\frac{45}{2} \mathrm{~W}$
$\frac{45}{2} W+15 W=6$ days
$\frac{75}{2} \mathrm{~W}=6$ days
$1 \mathrm{~W}=225$ days
58. (B) Suppose women take x hours to complete the work.

Then child will complete in $(x+15)$ hrs.
According to question,
$\frac{18}{x+15}$ work $+\left(\frac{6}{x}\right)$ work $=\frac{3}{5}$
$\frac{18 x+6(x+15)}{x(x+15)}=\frac{3}{5}$
$3 x^{2}+45 x=90 x+30 x+450$
$x^{2}-30 x+5 x+180=0$
$x(x-30)+5(x-30)=0$
$(x+5)(x-30)=0$
$x=30$
1 work is completed by a women in 30 hours
$\therefore \quad \frac{2}{5}$ work is completed by a women in $\frac{2}{5} \times 30=12$ hours
59. (A)

$\mathrm{AP}=\mathrm{n} A B$
Now,

$$
\begin{equation*}
\tan \beta=\frac{\frac{A B}{\frac{2}{A P}}=\frac{\frac{A B}{2}}{n \cdot A B}}{=\frac{1}{2 n}} \tag{i}
\end{equation*}
$$

Now,
$\tan (\alpha+\beta)=\frac{A B}{A P}=\frac{A B}{n \cdot A B}=\frac{1}{n}$
$\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}=\frac{1}{n}$
$\frac{\tan \alpha+\frac{1}{2 n}}{1-\tan \alpha \cdot \frac{1}{2 n}}=\frac{1}{n}$
$\frac{2 n \tan \alpha+1}{2 n-\tan \alpha}=\frac{1}{n}$
$2 n^{2} \tan \alpha+n=2 n-\tan \alpha$
$2 n^{2} \tan \alpha+\tan \alpha=2 n-n$
$\tan \alpha\left[2 \mathrm{n}^{2}+1\right]=\mathrm{n}$
$\therefore \quad \tan \alpha=\frac{n}{2 n^{2}+1}$
60. (B)

$\mathrm{C}_{1}=$ Centre of small circle
$\mathrm{C}_{2}=$ Centre of bigger circle

$$
\mathrm{AB}=2 \mathrm{AC}=2 \times 2 \sqrt{2}=4 \sqrt{2} \mathrm{~cm}
$$

61. (A) $\operatorname{cosec} \theta-\sin \theta m$ and $\sec \theta-\cos \theta=n$

Now,
$m=\operatorname{cosec} \theta-\sin \theta=\frac{1}{\sin \theta}-\sin \theta$
$\mathrm{m}=\frac{\cos ^{2} \theta}{\sin \theta}$
$\mathrm{n}=\sec \theta-\cos \theta$
$\mathrm{n}=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{\sin ^{2} \theta}{\cos \theta}$
$\therefore\left(\mathrm{m}^{2} \mathrm{n}\right)^{2 / 3}+\left(\mathrm{mn}^{2}\right)^{2 / 3}$
$=\left(\frac{\cos ^{4} \theta}{\sin ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)^{2 / 3}+\left(\frac{\cos ^{2} \theta}{\sin \theta} \times \frac{\sin ^{4} \theta}{\cos ^{2} \theta}\right)^{2 / 3}$
$=\left(\cos ^{3} \theta\right)^{2 / 3}+\left(\sin ^{3} \theta\right) 2 / 3$
$=\sin ^{2} \theta+\cos ^{2} \theta=1$

K D Campus Pvt. Ltd

62. (A) $a \sec \theta+b \tan \theta+c=0$
$p \sec \theta+9 \tan \theta+r=0$
$\frac{\sec \theta}{b r-9 c}=\frac{\tan \theta}{c p-a r}=\frac{1}{a q-b p}$
$\sec \theta=\frac{b r-c p}{a q-b p}$
and $\tan \theta=\frac{c p-a r}{a q-b p}$
Now,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\left(\frac{b r-c q}{a q-c q}\right)^{2}-\left(\frac{c p-a r}{a q-b p}\right)^{2}=1$
$(b r-c q)^{2}-(c p-a r)^{2}=(a q-b p)^{2}$
63. (D) $\frac{\cos ^{4} \alpha}{\cos ^{2} \beta}+\frac{\sin ^{4} \alpha}{\sin ^{2} \beta}=1$
$\cos ^{4} \alpha \cdot \sin ^{2} \beta+\sin ^{4} \alpha \cdot \cos ^{2} \beta=\cos ^{2} \beta \cdot \sin ^{2} \beta$
$\cos ^{4} \alpha\left(1-\cos ^{2} \beta\right)+\cos ^{2} \beta\left(1-\cos ^{2} \alpha\right)^{2}=\cos ^{2} \beta\left(1-\cos ^{2} \beta\right)$
$\cos ^{4} \alpha-\cos ^{4} \beta \cdot \cos ^{2} \beta-2 \cos ^{2} \alpha \cdot \cos ^{2} \alpha+\cos ^{4} \alpha \cdot \cos ^{2} \beta=\cos ^{2} \beta-\cos ^{4} \beta$
$\cos ^{4} \alpha-2 \cos ^{2} \alpha \cdot \cos ^{2} \beta+\cos ^{4} \beta=0$
$\left(\cos ^{2} \alpha-\cos ^{2} \beta\right)^{2}=0$
$\cos ^{2} \alpha=\cos ^{2} \beta$
$1-\sin ^{2} \alpha=1-\sin ^{2} \beta$
$\sin ^{2} \alpha=\sin ^{2} \beta$
$\therefore \frac{\cos ^{4} \beta}{\cos ^{2} \alpha}+\frac{\sin ^{4} \beta}{\sin ^{2} \alpha}$
$\frac{\cos ^{2} \beta \cos ^{2} \alpha}{\cos ^{2} \alpha}+\frac{\sin ^{2} \beta \sin ^{2} \alpha}{\sin ^{2} \alpha}$
$\cos ^{2} \beta+\sin ^{2} \beta=1$
64. (A) Required average $=(70+80+66+58+76+64) \times \frac{50}{100 \times 6}$
$=\frac{414 \times 50}{600}=34.5$
65. (A) Required total $=150 \times \frac{65}{100}+100 \times \frac{68}{100}+50 \times \frac{66}{100}+100 \times \frac{69}{100}+125 \times \frac{80}{100}+50 \times \frac{80}{100}$ $=97.5+68+33+69+100+40=407.5$

K D Campus Pvt. Ltd

66. (D) Total marks of Jitu in all the subjects together
$=150 \times \frac{60}{100}+100 \times \frac{74}{100}+50 \times \frac{62}{100}+100 \times \frac{54}{100}+125 \times \frac{60}{100}+50 \times \frac{64}{100}$
$=90+74+31+54+75+32=356$
$\therefore \quad$ Required $\%=\left(\frac{356}{575} \times 100\right) \%=61.91 \% \approx 62 \%$
67. (B) Marks obtained by Lucky in chemistry $=150 \times \frac{85}{100}=127.5$

Physics $=125 \times \frac{70}{100}=87.5$
Marks obtained by Priti in Chemistry $=150 \times \frac{65}{100}=97.5$
Physics $=125 \times \frac{80}{100}=100$
Marks obtained by Alka in Chemistry $=150 \times \frac{70}{100}=105$
Physics $=125 \times \frac{60}{100}=75$
Marks obtained by Javed in Chemistry $=150 \times \frac{80}{100}=120$
Physics $=125 \times \frac{90}{100}=112.5$
Marks obtained by Bipin in Chemistry $=150 \times \frac{90}{100}=135$
Physics $=125 \times \frac{70}{100}=87.5$
Marks obtain by Jitu in Chemistry $=150 \times \frac{60}{100}=90$

Physics $=125 \times \frac{60}{100}=75$
Only Javed is to be pas the examination.
68. (C) Total means obtained by Priti in all the subjects together
$=150 \times \frac{85}{100}+100 \times \frac{62}{100}+50 \times \frac{72}{100}+100 \times \frac{68}{100}+125 \times \frac{70}{100}+50 \times \frac{70}{100}$
$=127.5+62+36+68+87.5+35=416$
Similarly by
$\mathbf{A l k a}=150 \times \frac{70}{100}+100 \times \frac{72}{100}+50 \times \frac{68}{100} \times 100 \times \frac{78}{100}+125 \times \frac{60}{100}+50 \times \frac{66}{100}$
$=105+72+34+78+75+33=397$

Javed $=150 \times \frac{80}{100}+100 \times \frac{78}{100}+50 \times \frac{76}{100}+100 \times \frac{82}{100}+125 \times \frac{90}{100}+50 \times \frac{58}{100}$
$=120+78+38+82+112.5+29=459.5$
$\boldsymbol{B i p i n}=150 \times \frac{90}{100}+100 \times \frac{80}{100}+50 \times \frac{72}{100}+100 \times \frac{66}{100}+125 \times \frac{70}{100}+50 \times \frac{76}{100}$
$=135+80+36+66+87.5+38=442.5$
Jitu $=356$
\therefore Required answer is Javed.
69. (B)
$\sqrt{2+\sqrt{2+\sqrt{2+2 \cos ^{8} \theta}}}$
$=\sqrt{2+\sqrt{2+\sqrt{\left.2+2 \cos ^{2} 4 \theta-1\right)}}}$
$=\sqrt{2+\sqrt{2+\sqrt{4 \cos ^{8} 4 \theta}}}=\sqrt{2+\sqrt{2+2 \cos 4 \theta}}$
$=\sqrt{2+\sqrt{2+2\left(2 \cos ^{2} 2 \theta-1\right)}}=\sqrt{2+\sqrt{4 \cos ^{2} 2 \theta}}$
$=\sqrt{2+2 \cos 2 \theta}=\sqrt{2+2\left(\cos ^{2} \theta-1\right)}$
$=\sqrt{4 \cos ^{2} \theta}=2 \cos \theta$
70. (C) $\cos \theta=\frac{1}{2}\left(a+\frac{1}{a}\right)$

Squaring both sides,
$\cos ^{2} \theta=\frac{1}{4}\left[\left(a+\frac{1}{a}\right)^{2}\right]$
$2 \cos ^{2} \theta=\frac{1}{2}\left[\left(a+\frac{1}{a}\right)^{2}\right]$
Subtracting 1 from both sides,
$2 \cos ^{2} \theta-1=\frac{1}{2}\left[\left(a+\frac{1}{a}\right)^{2}\right]-1$
$2 \cos ^{2} \theta-1=\frac{1}{2}\left(a^{2}+\frac{1}{a^{2}}+2\right)-1$
$2 \cos ^{2} \theta-1=\frac{1}{2}\left(a^{2}+\frac{1}{a^{2}}\right)+1-1$
$2 \cos ^{2} \theta-1=\frac{1}{2}\left(a^{2}+\frac{1}{a^{2}}\right)$

Campus

K D Campus Pvt. Ltd

71. (D) $a=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& b=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& c=-\operatorname{cosec} \frac{\pi}{4}=-\sqrt{2} \\
& a+b+c=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0 \\
& a^{3}+b^{3}+c^{3}=3 a b c \\
& =3 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}(-\sqrt{2})=\frac{-3}{2} \sqrt{2}
\end{aligned}
$$

72. (D) Multiplying
$a^{\mathrm{x}} \cdot a^{\mathrm{y}} \cdot a^{z}=(x+y+z)^{\mathrm{x}+\mathrm{y}+z}$
$a^{(\mathrm{x}+\mathrm{y}+\mathrm{z})}=(x+y+z)^{\mathrm{x}+\mathrm{y}+\mathrm{z}}$
$a=x+y+z$
73. (A)
$\frac{1}{1+a^{2}-a}-\frac{1}{1+a^{2}+a}-\frac{2 a}{1+a^{2}+a^{4}}$
$=\frac{1+a^{2}+a-1-a^{2}+a}{\left(a+a^{2}\right)^{2}-a^{2}}-\frac{2 a}{1+a^{2}+a^{4}}$
$=\frac{2 a}{1+a^{4}+a^{2}}+\frac{2 a}{1+a^{2}+a^{4}}=0$
74. (A) $\frac{p}{b-c}=\frac{q}{c-a}=\frac{r}{a-b}$
$\mathrm{P}=\mathrm{k}(\mathrm{b}-\mathrm{c}), q=k(c-a), r(a-b)$
then, $p+q+r$
$=k(b-c+c-a+a-b)=0$
75. (A) $p q r=1$

$$
\begin{aligned}
\therefore & p=\frac{1}{q r} \text { and } \frac{1}{p}=q r \\
& \frac{1}{1+\frac{1}{q r}+\frac{1}{q}}+\frac{1}{1+q+\frac{1}{r}}+\frac{1}{1+r+q r} \\
& =\frac{q r}{q r+q+1}+\frac{r}{q r+r+1}+\frac{1}{q r+r+1} \\
& =\frac{q r+r+1}{q r+r+1}=1
\end{aligned}
$$

76. (C)

From \triangle BDC since $\angle \mathrm{y}=90^{\circ}-\mathrm{x}$
$\therefore \quad \angle \mathrm{ADM}=\mathrm{y}$
In $\triangle \mathrm{BDC}$,
$\frac{x}{y}=\frac{40}{100}$
In $\triangle \mathrm{ADM}$,
$\frac{x}{y}=\frac{100}{A M}$
(ii)

From (i) and (ii),
$\frac{40}{100}=\frac{100}{A M}$
$\mathrm{AM}=250 \mathrm{~m}$
Now, $A B=250+40=290 \mathrm{~m}$
77. (C) Let angle of elevation for A, B and C are $\theta, 2 \theta$ and 3θ. (According to given condition we choose that)

From $\triangle \mathrm{PAB}$,
$2 \theta=\theta+\angle \mathrm{APB}$
$\angle \mathrm{APB}=\theta$
$\therefore \quad \angle \mathrm{PAB}=\angle \mathrm{ABP}=\theta$
$\mathrm{AB}=\mathrm{BP}=\mathrm{a}$
Similarly, in $\triangle \mathrm{BPC}$,
$\angle \mathrm{BPC}=\theta$

From $\triangle \mathrm{OBP}, \sin 2 \theta=\frac{h}{a}$
$\mathrm{h}=\mathrm{a} \sin 2 \theta$
h. $2 \mathrm{a} \sin \theta \cos \theta$

From $\triangle \mathrm{PBC}$,
$\frac{\mathrm{PB}}{\sin (180-30)}=\frac{\mathrm{BC}}{\sin \theta}$
(by sine rule)
$\frac{a}{\sin 3 \theta}=\frac{b}{\sin \theta}$
$\frac{a}{b}=\frac{\sin 3 \theta}{\sin \theta}$
$\frac{a}{b}=\frac{3 \sin \theta-4 \sin ^{3} \theta}{\sin \theta}$
$\frac{a}{b}=3-4 \sin ^{2} \theta$
$4 \sin ^{2} \theta=3-\frac{a}{b}$
$\sin ^{2} \theta=\frac{3 b-a}{4 b}$
$\sin \theta=\sqrt{\frac{3 b-a}{4 b}}$
$\left(\cos ^{2} \theta=1-\sin ^{2} \theta\right)$
$\cos ^{2} \theta=1-\frac{3 b-a}{4 b}=\frac{a+b}{4 b}$
$\cos \theta=\sqrt{\frac{a+b}{4 b}}$
Putting value of $\sin \theta$ and $\cos \theta$ in (i), we get
$\mathrm{h}=2 a \sqrt{\frac{3 b-a}{4 b}} \cdot \sqrt{\frac{a+b}{4 b}}$
$h=\frac{a}{2 b} \sqrt{(a+b)(3 b-a)}$
78. (B) The number of candidates taking SSC exam in the year $2013=\frac{272}{17} \times 48=768$

The number of candidates taking SSC exam in the year $2016=\frac{272+238}{20} \times 32=816$
$\therefore \quad$ Required ratio $=768: 816=16: 17$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
79. (D) Total number of candidates in the year $2012=4000 \times \frac{110}{100}=4400$

And the total number of candidates in the year $2014=4000 \times \frac{110}{100} \times \frac{90}{100} \times \frac{110}{100}=4356$
\therefore Required difference $=4400-4356=44$
80. (D) Let the total number of candidates in the year 2016 $=100$

Total number of candidates in the year 2013=70
$\therefore \quad$ Required $\%=\left[\frac{100 \times \frac{20}{100}}{70 \times \frac{48}{100}} \times 100\right] \%=59.52 \% \approx 60 \%$
81. (C) Required average $\%=\frac{15+20+35+40+45+48}{6}$
$=33.83 \% \approx 34 \%$
82. (C) The number of candidates taking SSC exam in the year $2012=\frac{436}{20} \times 45=981$

The number of candidates taking SSC exam in the year $2014=\frac{520}{40} \times 45=585$
$\therefore \quad$ Required more $\%=\left(\frac{981-585}{585} \times 100\right) \%$
$=67.69 \% \approx 68 \%$ more
83. (C) Man : Day : Time = work
$117: 33: 8=\frac{4}{7}$
$x: 13: 9=\frac{3}{7}$
$x=\frac{117 \times 33 \times 8 \times 3}{13 \times 9 \times 4}$
$=\frac{92664}{468}=198$
\therefore Required number $=198-117=81$
84. (C) Ratio of the amount of water filled in the cistern $=1^{2}: \frac{16}{9}: 4=9: 16: 36$ 36 cubic unit of water is filled by the pipe of largest diameter in 61 minutes.

1 cubic unit of water is filled by the pipe of largest diameter in $61 \times \frac{36}{61}$
61 cubic unit of water is filled by the pipe largest diameter in $\frac{61 \times 36}{61}=36$ minutes
85. (C) Time taken by pipe B (to empty) is less than the time taken by pipe A (to fill) Rate of empty > Rate of filling

Now, Time required to empty the $\frac{2}{5}$ th of the tank already filled when both the pipe A and B are opened together $=\frac{2}{5} \times\left(\frac{10 \times 6}{10-6}\right.$ minutes $)=6$ minutes
86. (D) Logical solution:-

Let the initial no. of total passengers $=x$
Initial ratio of male to female passengers $=3: 1$ (Given)
Initial no. of total passengers (x) must be completely divisible by 4.
$(\because 3+1=4)$
....... condition (i)
Also, change in the number of initial passengers $=(-16+6)=-10$
And Finally no. of male to female passengers $=2: 1$
Final number of total passengers (i.e. $x-10$) must be completely divisible by 3.
$(\because 2+1=3)$ condition (ii)

And among the options given only option $(D)=64$ fulfills both the criteria.
87. (A)

Ratio of fares $=\quad 8 \quad$| | $1^{\text {st }}$ | $:$ | $2^{\text {nd }}$ | $:$ |
| :--- | :--- | :--- | :--- | :--- |
| $3^{\text {rd }}$ | | | | |

New ratio $=8 \times \frac{5}{6}: 6 \times \frac{11}{12}:$
$=\frac{20}{3}: \frac{11}{2}: 3=9: 12: 26$
Ratio of passanger $=9: 12: 26$
Collection from $1^{\text {st }}$ class:
$\frac{60}{60+66+78} \times 1088=\frac{65280}{204}=₹ 320$
88. (A) Given that:

Average age of 11 yrs players $=28$ years
Total age of players $=11 \times 28=308$ years
Now, Total ages of three groups $=[3 \times 25+3 \times 28+3 \times 30]=249$ years
Difference in their ages $=(308-249)=59$ years
This will be the average of captain age and younger player age.
Now, As per question $=59-11=48=$ sum of their ages
Average $=\frac{48}{2}=24$
$\therefore \quad$ Age of Captain $=24+11=35$ years
89. (B) Given that
$\frac{1}{x+1}+\frac{2}{y+2}+\frac{1009}{z+1009}=1$
Then,
$\frac{x}{(x+1)}+\frac{y}{(y+2)}+\frac{z}{(1009+z)}$
Now,
x, y and z are distributed or divided over 1 .
$\therefore \quad x=\frac{1}{3}, y=\frac{1}{3}$ and $z=\frac{1}{3}$
From equation (i) and (ii), we conclude that
$x=2, y=4$ and $z=2 \times 1009$
[from equation (i)]
Then the arrangement will divide into three parts.
Now, putting the value of following in equation (A)
$\frac{2}{(2+1)}+\frac{4}{(4+2)}+\frac{2 \times 1009}{2 \times 1009+1009}$
$\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=2$
90. (D) $x+\frac{1}{x}=\mathrm{p}$

Squaring both side,
$\left(x+\frac{1}{x}\right)^{2}=\mathrm{p}^{2}$
$x^{2}+\frac{1}{x^{2}}+2=\mathrm{p}^{2}$
$x^{2}+\frac{1}{x^{2}}=\mathrm{p}^{2}-2$
cubic both sides,
$\left(x^{2}+\frac{1}{x^{2}}\right)^{3}=\left(\mathrm{p}^{2}-2\right)^{3}$
$x^{6}+\frac{1}{x^{6}}+3\left(p^{2}-2\right)=p^{6}-8-6 p^{2}+12 p$
$x^{6}+\frac{1}{x^{6}}=p^{6}-9 p^{2}+12 p-2$
91. (B) $x^{2}+\mathrm{P} x-4=0[-4]$

Putting $x=-4$ in above equation:-
$(-4)^{2}-4 \mathrm{P}-4=0$
$16-4=4 \mathrm{P}$
$\mathrm{P}=3$
Now,
$x^{2}+\mathrm{P} x+q=0 \quad$ [Equal roots]
Discriminant $=0$
$P^{2}-4 q=0$
$\left[\mathrm{D}=b^{2}-4 a c\right]$
$4 \mathrm{q}=\mathrm{p}^{2}$
$q=\frac{p^{2}}{4}=\frac{9}{4}$
92. (D)

Let the side of right isosceles triangle $=a$ unit
Now,
In $\triangle \mathrm{BCD}$ [equilateral triangle]
Height $=\frac{\sqrt{3}}{2} a$

Area $(\triangle \mathrm{BCD})=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}=\frac{1}{2} \times \mathrm{a} \times \frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{4} a^{2}$ sq. unit
In equilateral ($\triangle \mathrm{AEC})$
Side $=\sqrt{a^{2}+a^{2}}=a \sqrt{2}$ unit
Height $=\frac{\sqrt{3}}{2} \times a \times \sqrt{2}=\frac{\sqrt{6}}{2} a$

Area $(\triangle \mathrm{AEC})=\frac{1}{2} \times b \times h=\frac{1}{2} \times a \sqrt{2} \times \frac{\sqrt{6}}{2} a$
$=\frac{\sqrt{12}}{4} a^{2}=\frac{2 \sqrt{3}}{4}$

Now, $\frac{\operatorname{ar}(\triangle B C D)}{\operatorname{ar}(\triangle A E C)}=\frac{\frac{\sqrt{3}}{4} a^{2}}{\frac{2 \sqrt{3}}{4} a^{2}}=\frac{1}{2}=1: 2$
93. (C) $x\left[3-\frac{2}{x}\right]=\frac{3}{x}, x \neq 0$
$3 x-2=\frac{3}{x}$
$3 x-\frac{3}{x}=2$
Squaring both sides,
$9 x^{2}+\frac{9}{x^{2}}-18=4$
$9\left[x^{2}+\frac{1}{x^{2}}\right]=22$
$\left[x^{2}+\frac{1}{x^{2}}\right]=\frac{22}{9}=2 \frac{4}{9}$
94. (A) Initial amount of mixture $=8 l$

Using by option A, total amount released $=21$

So, After first release, oxygen $=1.28-16 \%$ of 2 litres
After second release, oxygen $=9.96-0.24=0.72$ litres
(which is 9% of 8 litres)
95. (B) Let CP of $\mathrm{car}=100 \%$

ATQ,
$(90 \%+5000) \times \frac{120}{100}=100000$
$108 \%+6000=100000$
$108 \%=94000$
$100 \%=\frac{94000}{108} \times 100=₹ 87000$
96. (B) Required sales $=₹(1773+1115)=₹ 2888$ crore
97. (A)
98. (A)
99. (B) Required average $=\frac{8730+924}{2}=₹ 4827$ crores
100. (B) Required difference $=₹(5345-1841)=₹ 3504$ crore

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 77 (ANSWER KEY)

1. (C)	26. (A)	51. (B)	76. (C)
2. (A)	27. (B)	52. (C)	77. (C)
3. (A)	28. (C)	53. (B)	78. (B)
4. (C)	29. (D)	54. (D)	79. (D)
5. (D)	30. (B)	55. (B)	(D)
6. (B)	31. (B)	56. (A)	(C)
7. (A)	32. (D)	57. (D)	82. (C)
8. (A)	33. (B)	58. (B)	83. (C)
9. (A)	34. (D)	59. (A)	84. (C)
10. (A)	35. (D)	60. (B)	85. (C)
11. (A)	36. (C)	61. (A)	86. (D)
12. (A)	37. (B)	62. (A)	87. (A)
13. (A)	38. (B)	63. (D)	88. (A)
14. (D)	39. (C)	64. (A)	89. (B)
15. (A)	40. (A)	65. (A)	90. (D)
16. (C)	41. (C)	66. (D)	91. (B)
17. (B)	42. (B)	67. (B)	92. (D)
18. (A)	43. (C)	68. (C)	93. (C)
19. (B)	44. (A)	69. (B)	94. (A)
20. (B)	45. (D)	70. (C)	95. (B)
21. (C)	46. (D)	71. (D)	96. (B)
22. (D)	47. (C)	72. (D)	97. (A)
23. (B)	48. (B)	73. (A)	98. (A)
24. (B)	9. (D)	74. (A)	99. (B)
25. (C)	50. (B)	75. (A)	100. (B)

