2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS PO SPECIAL PHASE -I MOCK TEST - 256 (SOLUTION)

REASONING

(1-4) :

1. (2) From I. No of pages in a book $=528$

From II. Total no. of books $=15$
From III. Thickness of a page in each book $=0.5 \mathrm{~mm}$
Combining all statement together from I, II and III we can't find the thickness of the bundle because we don't know the thickness of the cover of each book
2. (5) From I and II. Tarun is married either to Milan or to Anushka. Besides, Tarun has a childVikas.
From II. Milan is childless.
From I, II and III. Since Tarun has a child, he can't be married to Milan. Thus, he is married to Anushka and Milan is his sister-in-law.
3. (2) Average monthly figures cannot lead us to exact monthly figures.
4. (2) From I. match is crucial \rightarrow ne jo mi

From II. crucial point for india \rightarrow ne le jee kee

From III. favour to india \rightarrow ja mo le

Now, from I and II crucial \rightarrow ne
... (iv)
From II and III. india \rightarrow le
(v)

Now, from (i) and (iv) we have, match/is \rightarrow jo/mi
Hence, combining all these statement we can't find the code of match.
Hence, statement I, II and III are not sufficient
(5-7) :

5. (2)
6. (1)
7. (1)
(8-10) :

8. (3)
9. (3)
10. (3)

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(11-15) :

11. (4)
12. (3)
13. (3)
14. (2)

15. (1)
(16-20) :

Floor	Person
8	C
7	D
6	F
5	A
4	B
3	G
2	E
1	H

16. (5)
17. (2)
18. (5)
19. (3)
20. (5)
(21-25) :
The machine rearranges one word and one number in each step. It first rearranges the largest number, then the smallest number, and then the second largest number and so on. While words are rearranged in alphabetical order from the right end.
21. (3) Input: gentle intellect 867836 ornate pursuit 52 superior superstar 14

Step I: 86 intellect 7836 ornate pursuit 52 superior superstar 14 gentle
Step II: 14867836 ornate pursuit 52 superior superstar gentle intellect
Step III: 78148636 pursuit 52 superior superstar gentle intellect' ornate
Step IV: 3678148652 superior superstar gentle intellect ornate pursuit
Step V: 5236781486 superstar gentle intellect ornate pursuit superior
Step VI: 5236781486 gentle intellect ornate pursuit superior superstar
22. (5)

Step II: 20987649 incisor misuse 38 lunar tangle tallow branch foresight
Step III: 76209849 misuse 38 lunar tangle tallow branch foresight incisor
Step IV: 3876209849 misuse tangle tallow branch foresight incisor lunar
23. (4) We can't proceed backward
24. (5) Input: sense 147375 rejoice sight regulate 62 gerund 16 forbid 49

Step I: 75 sense 1473 rejoice sight regulate 62 gerund 1649 forbid
Step II: 1475 sense 73 rejoice sight regulate 621649 forbid gerund
Step III: 731475 sense rejoice sight 621649 forbid gerund regulate
Step IV: 16731475 sense sight 6249 forbid gerund regulate rejoice
Step V: 6216731475 sight 49 forbid gerund regulate rejoice sense.
Step VI: 496216731475 forbid gerund regulate rejoice sense sight
25. (1) Input: liable 8285 ostrich girdle 92 arrest 62 shell 5196 heat

Step I: 96 liable 8285 ostrich girdle 9262 shell 51 heat arrest
Step II: 5196 liable 8285 ostrich 9262 shell heat arrest girdle
Step III: 925196 liable 8285 ostrich 62 shell arrest girdle heat
Step IV: 629251968285 ostrich shell arrest girdle heat liable
Step V: 856292519682 shell arrest girdle heat liable ostrich
Step VI: 828562925196 arrest girdle heat liable ostrich shell
(26-27) :

26. (1) I. True
II. Doubt.

Only conclusion I follows.
27. (5) I. True II. True Both conclusion I and II follow.
(28-29) :

28. (5) I. True
II. True

Both Conclusion I and II follow.
29.
(1) I. True
II. False
Only conclusion I follows.
30. (1)

I. True
II. Doubt.

Only conclusion I follows.
31. (2) Given statements:
$\mathrm{L}>\mathrm{P} \geq \mathrm{T}=\mathrm{N}$
$\mathrm{R}=\mathrm{T}<\mathrm{Q} \leq \mathrm{S}$
Combining both statements, we get
$\mathrm{L}>\mathrm{P} \geq \mathrm{T}=\mathrm{N}=\mathrm{R}=\mathrm{T}<\mathrm{Q} \leq \mathrm{S}$
Thus, $\mathrm{L}<\mathrm{Q}$ is not true.
Again, $\mathrm{S}>\mathrm{N}$ is true.
And, $\mathrm{P} \geq \mathrm{S}$ is not true.
Hence, only II is true.
32. (3) Given statements:
$\mathrm{S}<\mathrm{U}=\mathrm{R} \leq \mathrm{N}$
B $>\mathrm{X} \geq \mathrm{W}$
$\mathrm{S}>\mathrm{J}=\mathrm{W}$
Combining all the statements, we get
$\mathrm{N} \geq \mathrm{R}=\mathrm{U}>\mathrm{S}>\mathrm{J}=\mathrm{W} \leq \mathrm{X}<\mathrm{B}$
Thus, $\mathrm{N}>\mathrm{J}$ is true.
Again, $\mathrm{B}<\mathrm{S}$ is not true. And, $\mathrm{U}>\mathrm{J}$ is true.
Hence, only I and III are true.
33. (5) Given statements:
$L=Q \geq R$
$\mathrm{M}=\mathrm{N}>\mathrm{P}$
$\mathrm{P}>\mathrm{V}=\mathrm{Z}<\mathrm{R}$
Combining all the statements, we get
$\mathrm{M}=\mathrm{N}>\mathrm{P}>\mathrm{V}=\mathrm{Z}<\mathrm{R} \leq \mathrm{Q}=\mathrm{L}$
Thus, $\mathrm{M} \geq \mathrm{R}$ is not true.
Again, $\mathrm{V}>\mathrm{Q}$ is not true.
And, $\mathrm{N} \leq \mathrm{R}$ is not true.
Hence none is true.
34. (4) Given statements:
$\mathrm{U} \geq \mathrm{V} \geq \mathrm{W}=\mathrm{X}$
$\mathrm{B}>\mathrm{C}=\mathrm{D} \geq \mathrm{U}$
Combining all the statements, we get
$\mathrm{B}>\mathrm{C}=\mathrm{D}>\mathrm{U} \geq \mathrm{V} \geq \mathrm{W}=\mathrm{X}$
Thus, $\mathrm{D} \geq \mathrm{V}$ is true.
Again, $\mathrm{C} \geq \mathrm{X}$ is true.
Also, $\mathrm{B}>\mathrm{U}$ is true.
Hence, all I, II and III are true.
35. (4) Given statements:
$A>B=M$
$\mathrm{M} \geq \mathrm{L}$
L > S
S < V

Combining all the statements, we get
A $>\mathrm{B}=\mathrm{M} \geq \mathrm{L}>\mathrm{S}<\mathrm{V}$
Thus, $\mathrm{M}>\mathrm{S}$ is true.
$\mathrm{L} \leq \mathrm{A}$ is not true.
$\mathrm{V}>\mathrm{A}$ is not true.
Hence, only conclusion I is true.

$K D$
 Campus

 KD Campus

 KD Campus}

MATHS

36. (1) The given number series is based on the following pattern
$7 \times 0.5+0.5=4$
$4 \times 1+1=5 \neq 6$
$9 \times 1.5+1.5=9$
$9 \times 2+2=20$
$20 \times 2.5+2.5=52.5$
$52.5 \times 3+3=160.5$
Hence the wrong number is 6 .
37. (2) The given number series is based on the following pattern :
$4 \times 1.5=6$
$6 \times 2=12$
$12 \times 2.5=30$
$30 \times 3=90 \neq 75$
$90 \times 3.5=315$
$315 \times 4=1260$
Hence, the wrong number is 75 .
38. (4) The given number series is based on the following pattern:
$4-3=1^{2}$
$13-4=9=3^{2}$
$38-13=25=5^{2}$
$87-38=49=7^{2}$
$168-87=81=9^{2}$
$289-168=121=11^{2}$
Obviously, 166 is the wrong number.
39. (3) The number series follows the rule as mentioned below:
$4 \times 1+1=5$
$5 \times 2-1=9$
$9 \times 3+1=28 \neq 29$
$27 \times 4-1=111$
$111 \times 5+1=556$
$556 \times 6-1=3335$
Hence 29 is the wrong number.
40. (5) The followed pattern is :
$2 \times 2+2=6$
$6 \times 2+4=16$
$16 \times 2+6=38$
$38 \times 2+8=84$
$84 \times 2+10=178 \neq 176$
$178 \times 2+12=368$
Hence, the wrong number is 176 .
41. (5) Required number of appeared candidates who qualified from state P in 2008

$$
=\frac{126}{7} \times(11+7)=324
$$

\therefore Total number of appeared candidate from state P in $2008=\left(\frac{324}{60} \times 100\right)=540$

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (3) Let the number of appeared candidate from state Q in $2006=100$

Number of appeared candidate in 2007 from state Q in $2007=200$
\therefore Required number of appeared candidate from Q in $2006=\frac{408}{(30+90)} \times 100=340$
43. (1) Required difference $=450 \times \frac{60}{100}-600 \times \frac{43}{100}$
$=270-258=12$
44. (4) Required number of qualified candidate from state Q in 2010
$=(3 \times 210)-\left(280 \times \frac{60}{100}+550 \times \frac{50}{100}\right)=630-(168+275)$
$=630-443=187$
45. (3) Number of qualified candidate from state P in $2009=480 \times \frac{70}{100}=336$
\therefore Required number of qualified candidate from state P in $2010=\frac{336}{14} \times 9=216$
46. (1) ? $\approx 395+187=582$
47. (2) $?=\sqrt[3]{3380}+\sqrt{1300} \approx \sqrt[3]{3375}+\sqrt{1296}$
$=5+36=51$
48. (3) ? $\approx(5)^{2}+(21)^{3}+\sqrt{1089}=25+9261+33=9319$
49. (4) $? \approx \frac{7020}{3} \times \frac{13}{29}=1048.96 \approx 1050$
50. (5) $? \approx \frac{5000 \times 25}{100}-\frac{3000 \times 65}{100}=1250-1950=-700$
51. (4) Required ratio $=\frac{\text { Male employees in OS }}{\text { Male employees in Policy Servicing }}=\frac{\frac{7}{10} \times 10 \times \frac{3000}{\frac{2}{5} \times 150}}{\frac{3000}{100}}=\frac{21}{18}=\frac{7}{6}=7: 6$
52. (4) Number of male employees in Claims department $=\frac{30}{100} \times 3000 \times \frac{5}{9}=500$

Number of females employees in OS $=\frac{10}{100} \times 3000 \times \frac{3}{10}=90$

Required $\%=\left(\frac{500-90}{90}\right) \%=455.5 \% \approx 456 \%$
53. (1) Total number of employees in Admin $=\frac{20}{100} \times 3000=600$

Number of female employees in New Business $=\frac{25}{100} \times 3000 \times \frac{7}{15}=350$
$\therefore \quad$ Difference $=600-350=250$

KD Campus

54. (4) Required ratio $=\frac{\text { Numbcr males in OS }+ \text { Number of males in New Business }}{\text { Number of females in OS }+ \text { Number of females in New Business }}$

$$
\begin{aligned}
& =\frac{3000 \times \frac{10}{100} \times \frac{7}{10}+3000 \times \frac{25}{100} \times \frac{8}{15}}{3000 \times \frac{10}{100} \times \frac{3}{10}+3000 \times \frac{25}{100} \times \frac{7}{15}}=\frac{210+400}{90+350} \\
& =\frac{610}{440}=\frac{61}{44}=61: 44
\end{aligned}
$$

55. (5) Number of female employees in Admin $=\frac{20}{100} \times 3000 \times \frac{2}{3}=400$
56. (4) The given data are inadequate.
57. (5) From statement II,

If the age of Rani $=x$ years,
then Surekha's age $=2 x$ years
$\therefore \quad x+2 x=72$
$3 x=72$ years
$x=\frac{72}{3}=24$ years
\therefore Rani's age $=24$ years
Now, as per the given information in statement I, Nidhi's age can be determined.
58. (2) Statement I is superfluous.

From statement II,

Number of boys in the school $=3500 \times \frac{60}{100}=2100$
Number of girls in the school $=3500-2100=1400$
\therefore Required ratio $=2100: 1400=3: 2$
59. (5) Let Mr. Mehta's present income be ₹ x.

From statements I and II,
10% of $x=2500$
$x \times \frac{10}{100}=2500$
$x=2500 \times 10=₹ 25000$
60. (3) From statement I,

Speed of the bus $=\frac{\text { Distance covered }}{\text { Time Taken }}=\frac{80}{5}=16 \mathrm{kmph}$
As per the information in statement II, the speed of the bus can also be determined.
61. (5) Total number of m_{2} car in all active together $=\frac{90000}{100}$
$\left[\frac{14.3 \times 7}{18}+\frac{16.2 \times 5}{9}+\frac{18.4 \times 3}{10}+\frac{16.8 \times 3}{9}+\frac{12.6 \times 2}{5}+\frac{21.7 \times 2}{10}\right]$
$=5005+8100+4968+5040+4536+3906=31555$

$K D$
 Campus
 KD Campus

62. (1) $M_{1-\mathrm{D}}=90000 \times \frac{16.8}{100} \times \frac{4}{9}=6720$
$M_{1-E}=90000 \times \frac{12.6}{100} \times \frac{2}{5}=4536$
\therefore Required difference $=6720-4536=2184$
63. (5) $\mathrm{M}_{1-\mathrm{D}}=90000 \times \frac{16.8}{100} \times \frac{4}{9}=6720$
$M_{3-A}=90000 \times \frac{14.3}{100} \times \frac{4}{18}=2860$
$\therefore \quad$ Required $\%=\left(\frac{6720}{2860} \times 100\right) \%=234.96 \neq 235 \%$
64. (5) $\operatorname{Total}_{\mathrm{F}}=\frac{90000}{100} \times 21.7=19530$
$\operatorname{Total}_{B}=\frac{90000}{100} \times 16.2=14580$
$\therefore \quad$ Required $\%=\left[\frac{(19530-14580)}{14580} \times 100\right] \%=33.95 \% \neq 34 \%$
65. (2) Total $_{\mathrm{C}}=\frac{90000}{100} \times 18.4=16560$
$M_{2-D}=\frac{90000}{100} \times 16.8 \times \frac{3}{9}=5040$
$\therefore \quad$ Required ratio $=\frac{16560}{5040}=\frac{23}{7}=23: 7$
66. (5) Vimal's present age $=8+2=10$ years
$\mathrm{F}+10=2(\mathrm{~V}+10)$
$F+10=2(10+10)=40$
$\mathrm{F}=30$
$\therefore \quad$ Neha's present age $=\frac{1}{6} \times 30=5$ years
67. (4) Total marks $=150+100=250$

Sushma obtained $=60 \%$ of $250=150$
Therefore, she got in History $=150-90=60$
68. (1) Megha saves 20% of $40=₹ 8$ on each toy.

She bought $=\frac{240}{8}=30$ toys
69. (3) Interest for 2 years $=10+10+\frac{10 \times 10}{100}=21 \%$

Interest for 3 years $=21+10+\frac{21 \times 10}{100}=33.1 \%$
Now, $(33.1-21) \%$ of $\mathrm{P}=12100$
12. 1% of $\mathrm{P}=12100$
$\mathrm{P}=\frac{12100 \times 100}{12.1}=1$ lakh

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
70. (3) CP of 100 kg of mixture $=1100-300=₹ 800$

CP of 1 kg of mixture $=\frac{800}{100}=₹ 8$
By the Method of Alligation:

\therefore Required ratio $=3: 2$

(81-90) :

81. (2) 'Tried' replace with 'Try'.
82. (5) No corrections required.
83. (5) Here 'will' is not auxiliary verb - No corrections required.
84. (1) 'that be pacified' replace with 'To pacify him'.
85. (2) 'need' used as verb. It will "needed".
86. (3) Sentence is not interrogative.
87. (4) 'Compatible' replace with 'Competing'.
88. (2) We use present perfect verb with 'so far'.
89. (1) Adverb (potentially) + adjective (serious) + Noun (damage).
90. (5) No correction required.

VOCABULARIES

Word
Agrarian
Arable
Distort
Intermittent
Leveraging
Outstrip, out do
Staunch

Divergence
Diversified
Pragmatic
Accentuate
Alleviate
Clout
Defunct
Envy
fettered

Meaning in English

Related to farming
Suitable for growing crops
To deform or disfigure
Irregular/Discountinuous
Providing an ability
To defeat or surpass
Strong or loyal in support

Difference
of defferent compostion
Practical
To worsen
To lessen suffering or pain
Influence, power
No longer working
A feeling of discounted/jealousy
A restraint or check on someone freedom, Restricted

Meaning in Hindi
वृन षि सं बं ध \uparrow
वृन षिए य' ग य
विवृत तकर्रदे ना
रक रक कर
क्ष मता प्र दा न करना
आ गे निकल ज ना
क्ट टर, उ $\bar{\Gamma}$ सा ही (अप्मे
$\mathrm{H}^{1} \mathrm{~T}^{\wedge}$ न

Campus
 KD Campus

IBPS PO SPECIAL PHASE -I MOCK TEST - 256 (ANSWER KEY)

1. (2)
2. (5)
3. (2)
4. (2)
5. (2)
6. (1)
7. (1)
8. (3)
9. (3)
10. (3)
11. (4)
12. (3)
13. (3)
14. (2)
15. (1)
16. (5)
17. (2)
18. (5)
19. (3)
20. (5)
21. (3)
22. (5)
23. (4)
24. (5)
25. (1)
26. (1)
27. (5)
28. (5)
29. (1)
30. (1)
31. (2)
32. (3)
33. (5)
34. (4)
35. (4)
36. (1)
37. (2)
38. (4)
39. (3)
40. (5)
41. (5)
42. (3)
43. (1)
44. (4)
45. (3)
46. (1)
47. (2)
48. (3)
49. (4)
50. (5)
51. (4)
52. (4)
53. (1)
54. (4)
55. (5)
56. (4)
57. (5)
58. (2)
59. (5)
60. (3)
61. (5)
62. (1)
63. (5)
64. (5)
65. (2)
66. (5)
67. (4)
68. (1)
69. (3)
70. (3)
71. (3)
72. (1)
73. (2)
74. (4)
75. (5)
76. (2)
77. (3)
78. (2)
79. (1)
80. (3)
81. (2)
82. (5)
83. (5)
84. (1)
85. (2)
86. (3)
87. (4)
88. (2)
89. (1)

90 (5)
91. (5)
92. (3)
93. (1)
94. (4)
95. (4)
96. (3)
97. (5)
98. (3)
99. (1)
100.(2)

