QUANTITATIVE ABILITY - 75 (SOLUTION)

1. (C)

$\angle \mathrm{OCT}=90^{\circ}, \angle \mathrm{DCT}=45^{\circ}$ and $\angle \mathrm{OCB}=45^{\circ}$
Also, $\angle \mathrm{COB}=45^{\circ} \quad(\triangle \mathrm{BOC}$ is a right angled triangle $)$
$\angle \mathrm{AOC}=180^{\circ}-45^{\circ}=135^{\circ}$
Here, CD = 10
$\mathrm{BC}=5 \mathrm{~cm}=\mathrm{OB}$
Then, in $\triangle \mathrm{OBC}$,

$$
\begin{array}{ll}
\mathrm{OC}=5 \sqrt{2} & \text { (using Pythagoras theorem) } \\
\mathrm{OC}=\mathrm{OA}=5 \sqrt{2} &
\end{array}
$$

In $\triangle \mathrm{AOC}$,
$\mathrm{AC}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}-2 \mathrm{OA} \cdot \mathrm{OC} \cdot \cos 135^{\circ}$
$=2(\mathrm{OA})^{2}-2(\mathrm{OA})^{2} \cdot \cos 135^{\circ}$
$=2(5 \sqrt{2})^{2}-2(5 \sqrt{2})^{2} \times \frac{-1}{\sqrt{2}}$
$=100+\frac{100}{\sqrt{2}}$
$\mathrm{AC}^{2}=170.70$
$\mathrm{AC}=13 \mathrm{~cm}$
$\therefore \quad$ Perimeter of $\triangle \mathrm{AOC}=\mathrm{AC}+\mathrm{OC}+\mathrm{OA}$
$=13+5 \sqrt{2}+5 \sqrt{2}$
$=13+10 \times 1.414=27 \mathrm{~cm}$ (approx)
2. (C)

In smaller circle, $O P$ is diameter of the circle.
So, $\angle \mathrm{ORP}=90^{\circ}$
$\mathrm{OP}=10 \mathrm{~cm} \quad$ (radius of bigger circle)
$\mathrm{OR}=8 \mathrm{~cm}$
In $\triangle \mathrm{OPR}$,
$\mathrm{OP}^{2}=\mathrm{OR}^{2}+\mathrm{RP}^{2}$
$10^{2}=8^{2}+R P^{2}$
$100-64=R P^{2}$
$R P=\sqrt{36}=6 \mathrm{~cm}$
Also, $\mathrm{OR} \perp \mathrm{SP}$, so it passes through the centre.
$\therefore \quad \mathrm{SP}=2 \mathrm{RP}=2 \times 6=12 \mathrm{~cm}$
3. (B) $x+\frac{1}{x}=1$
$\mathrm{x}^{2}-\mathrm{x}+1=0$
Now, as $x \neq-1$
$(\mathrm{x}-1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)=0$
$\therefore \quad \mathrm{x}^{3}+1=0$
$\left(x^{3}\right)^{1333} x=-x$
$x^{4000}=-x$
and $\mathrm{p}=-\mathrm{x}^{4000}+\frac{1}{\mathrm{x}^{4000}}$
$=-x+\frac{1}{-x}=-\left(x+\frac{1}{x}\right)=-1$
Now, let $\mathrm{x}=2$
Then, $\mathrm{q}=2^{2^{2}}+1=16+1=17$
Unit's place digit $=7$
$\therefore \quad \mathrm{p}+\mathrm{q}=-1+7=6$
4. (D) The given numbers are 2^{2004} and 5^{2004}.

Let $\mathrm{a}=2004$
Total number of digits when 2^{1} and 5^{1} are written side by side $(25)=(1+1)$
Total number of digits when 2^{2} and 5^{2} are written side by side $(425)=(2+1)$
Similarly for 2^{3} and $5^{3}=(3+1)$ and so on.
\therefore Total number of digits, when 2^{2004} and 5^{2004} are written one after another is $2004+1=2005$
5. (C)

Campus

K D Campus Pvt. Ltd

Since, area of $\triangle \mathrm{ABC}=16 \sqrt{3}$
$\mathrm{AB}=16 \sqrt{3} \times 4 \sqrt{3}=8 \mathrm{~cm}$
$\therefore \quad \frac{\sqrt{3}}{4} \times \mathrm{AB}^{2}=16 \sqrt{3}$
Since, the given triangle is equilateral, therefore its centre is the centroid.
Since, $\Delta \mathrm{BGD}=\Delta \mathrm{AGD}$,
$\frac{1}{2}(\mathrm{BG})(\mathrm{GD})=\frac{1}{2}(\mathrm{AG})(\mathrm{GD})$
$\mathrm{BG}=\mathrm{GD} \quad(\mathrm{G}$ is on the perpendicular bisector of AB$)$
Also, $B G=\sqrt{19}$, since $\frac{1}{2} B G(8)=4 \sqrt{19}$
If E is mid-point of $A B$, then in right triangle $B G E$,
$\mathrm{BG}^{2}=\mathrm{BE}^{2}+\mathrm{GE}^{2}$
$\mathrm{GE}=\sqrt{19-16}=\sqrt{13}$
And $\mathrm{CG}=\mathrm{CE}-\mathrm{GE}=\frac{\sqrt{3}}{2}(8)-\sqrt{3}=3 \sqrt{3}$
Area of $\Delta \mathrm{CGD}=\frac{1}{2} \mathrm{CG}(\mathrm{GD})=\frac{1}{2}(3 \sqrt{3})(8)=12 \sqrt{3} \mathrm{~cm}^{2}$
6. (C) Let $\mathrm{PR}=\mathrm{QS}=\mathrm{x}$ and $\mathrm{RS}=\mathrm{y}$

Case (i)

Let a and b be the speeds of cars A and B respectively.
Car A travelled a distance of x with a speed of 'a' and a distance of y at a speed of $\frac{2 \mathrm{a}}{3}$.
In the time car B has covered SQ (i.e., x), car A at $\frac{2 a}{3}$ would cover a distance of $\frac{2}{3}(P R)+R S$
i.e. $\frac{2 x}{3}+y$
\therefore The ratio of their speeds $=\frac{\frac{2}{3} a}{b}=\frac{\frac{2 x}{3}+y}{x}=\frac{2 x+3 y}{3 x}$

Case (ii)

Car A travelled PM (or 2 x) at a and MT at $\frac{2 \mathrm{a}}{3}$, while car B travelled QT $\left(=\frac{8 \mathrm{x}}{9}\right)$ at b .
In the time car B covered a distance $Q T$, car A at a speed of $\frac{2 a}{3}$, would cover $\frac{2}{3}(P M)+M T$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLLCE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI-09
i.e. $\frac{4 x}{3}(y-x)+\frac{x}{9}$
\therefore The ratio of their speeds $=\frac{\frac{2 a}{3}}{b}=\frac{\frac{4 x}{3}+(y-x)+\frac{x}{9}}{\frac{8 x}{9}}=\frac{9 y+4 x}{8 x}$

Equating (i) and (ii) we get,
$\frac{2 x+3 y}{3 x}=\frac{9 y+4 x}{8 x}$
$8(2 x+3 y)=3(9 y+4 x)$
$y=\frac{4}{3} x$
By substituting the value of y in Equation (i), we get
$\frac{2 a}{3 b}=\frac{\frac{2 x}{3}+\frac{4 x}{3}}{x}=\frac{2}{1}$
$\frac{a}{b}=3$
\therefore The ratio speed of A and B is $3: 1$
7. (C) The 12 min saved in filling the drums is because of my contribution of few buckets of water. I poured one-third of each bucket in the smaller drum and the reamaining two thirds in the bigger drum i.e., t min is saved in filling the smaller drum, 2 t min are saved in filling the bigger drum.
$\therefore 3 t=12$
$\mathrm{t}=4$
So, 4 min are saved in filling the smaller drum,
So, the smaller drum was filled 4 minutes earlier than its normal filling time.
So, it was filled at $1: 26 \mathrm{pm}$.
8. (B) The sum of the squares of the first n odd natural numbers $=$ sum of the squares of the first $(2 n-1)$ natural numbers - sum of the squares of the first $(n-1)$ even natural numbers.

Hence,
$S_{n}=\frac{(2 n-1)(2 n)(4 n-1)}{6}-4\left[\frac{(n-1)(n)(2 n-1)}{6}\right]=\frac{n(2 n-1)}{3}(2 n+1)$
As, $\mathrm{S}_{\mathrm{n}}=533 \mathrm{n}$,
$\mathrm{n}(2 \mathrm{n}-1)(2 \mathrm{n}+1)=1599 \mathrm{n}$
$4 n^{2}=1600$
$\mathrm{n}=20$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
9. (B)

$\angle \mathrm{PQA}$ (as shown) $=90^{\circ}$ (angle in a semicircle)
$(\mathrm{MP})(\mathrm{MA})=M Q^{2}$
If $\mathrm{BM}=1, \mathrm{MP}=1$ and $\mathrm{AM}=\sqrt{3}$
$\because \mathrm{AM}$ is the median and $\mathrm{MQ}=3^{\frac{1}{4}}$
$\therefore \mathrm{T}=\mathrm{MQ}^{2}=\sqrt{3}$, while $\mathrm{S}=\frac{\sqrt{3}}{4}(4)=\sqrt{3}$
$T=S$
10. (B) We get for $\mathrm{k} \geq 5$,
$2.4+4 \times 2+1.2(\mathrm{k}-5)=10.4+1.2(\mathrm{k}-5)$
11. (C) Given, $\angle \mathrm{GEC}=52^{\circ}$

$\angle \mathrm{OAE}=\angle \mathrm{GEC}=52^{\circ}$
(Alternate segment theorem)
As O is the centre of the circle A
In $\triangle \mathrm{OAE}$,
$\angle \mathrm{OCE}=180^{\circ}-90^{\circ}-52^{\circ}=38^{\circ} \quad(\because \angle \mathrm{AEC}$ is an angle in a semi-circle $)$
ACDE is a cyclic quadrilateral
$\mathrm{c}=180-\mathrm{a}=180-52^{\circ}=128^{\circ}$
$\therefore \quad \angle \mathrm{e}+\angle \mathrm{c}=38^{\circ}+128^{\circ}=166^{\circ}$
12. (D) For the value of d to be the maximum the number of full unit-squares that Priti counts must be the minimum, which is 4 unit-squares. (i.e., 4 full unit-squares will always fall within the circle)
$\therefore \quad \mathrm{d}=\pi \mathrm{r}^{2}-4=4 \pi-4=4(\pi-1)$
$=4(3.142-1)=4(2.142) \approx 8.56$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
13. (A) Let the capacity of the tank $=\mathrm{LCM}$ of 18 and $20=180$ litres

Efficiency of $P=\frac{180}{18}=10$ litres $/ \mathrm{hrs}$.
Efficiency of $Q=\frac{180}{20}=9$ litres $/$ hrs.
If there is no leak, then the total time taken by $(P+Q)$ to fill half of the $\operatorname{tank}=\frac{90}{10+9}=\frac{90}{19} \mathrm{hrs}$.
When there is leak, then according to the question
The total time taken by them $=\frac{90}{19}+1 \mathrm{hr}=\frac{109}{19} \mathrm{hrs}$.
Efficiency of $(P+Q)+$ leak $=\frac{90}{\frac{109}{19}} \quad$ (Because $\frac{109}{19} \mathrm{hrs}$ is taken by P, Q and leak to fill
half of the tank)
$=90 \times \frac{19}{109}$ litres $/ \mathrm{hrs}=\frac{1710}{109}$ litres $/ \mathrm{hrs}$.
We know that the efficiency of $(P+Q)=(10+9)=19$ litres $/ \mathrm{hr}$

So, the efficiency of the leak $=19-\frac{1710}{109}=\frac{361}{109}$ litres $/ \mathrm{hrs}$.
So the total time taken by the leak to empty the filled tank $=\frac{180}{\frac{361}{109}}=\frac{19620}{361} \mathrm{hrs} .=54 \frac{126}{361} \mathrm{hrs}$.
14. (D) Total fare for 3 days $=₹(500+600+700)=₹ 1800$

According to their agreement,
A has to pay $==\frac{2}{2+3+4} \times 1800=₹ 400$
B has to pay $==\frac{3}{2+3+4} \times 1800=₹ 600$
C has to pay $==\frac{4}{2+3+4} \times 1800=₹ 800$

Person	Amount Paid during the trip	Due amount according to ratio
A	500	400
B	600	600
C	700	800

But we can see that A paid ₹ 100 more and C paid ₹ 100 less than the amounts they should have paid.
Hence C has to pay ₹ 100 to A.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
15. (A)

Rice A

Rice B

$\begin{array}{ll}\text { Cost price } & 15 \times \mathrm{x} \\ & \downarrow 10 \% \text { profit }\end{array}$
Selling price 110% of $15 x$
$=16.5 \mathrm{x}=12 \mathrm{x}+60$

Now, $16.5 \mathrm{x}=12 \mathrm{x}+60+30$
$4.5 \mathrm{x}=90$
$x=\frac{90}{4.5}=₹ 20 \mathrm{~kg}$
Now, new selling price of mixture $=[15 \times 20+10(20+5)] \times \frac{120}{100}=₹ 660$
$\therefore \quad$ SP per $\mathrm{kg}=\frac{660}{25}=₹ 26.4 / \mathrm{kg}$
16. (C) The time taken to cover one kilometer for Raghav and Lucky is in the ratio $4: 3$

Their speeds are in the ratio $3: 4$.
Raghav covers $\frac{3}{7}$ th of the track and Lucky covers $4 / 7$ th from one crossing to the next i.e.
Raghav covers $\frac{3}{7} \times 800 \mathrm{~m}$ from one crossing to the next.
In 90 min , Raghav covers $\frac{90}{12} \times 1000=7500 \mathrm{~m}$
The number of crossings $=\frac{7500 \times \frac{7}{3}}{800}=\frac{175}{8}=21.87$
So, they will meet 21 times.
17. (A) The amount invested by P was 150% of the amount invested by Q and the amount invested by R is 25% more than the amount invested by Q .

Let Q invested $₹ 4 x$ at the rate of 12.5% per annum.
The investment of $P=150 \%$ of $4 x=6 x$ at the rate of 10% per annum and the investment of $R=125 \%$ of $4 x=5 x$ at the rate of 20% per annum.
ATQ,
SI received by P in 2 years $=₹ 1.2 \mathrm{x}$
SI received by Q in 2 years $=₹ x$
SI received by R in 2 years $=₹ 2 x$
Total interest received $=₹(1.2 x+x+2 x)=₹ 4.2 x$
ATQ,
$4.2 \mathrm{x}=4200$
$\mathrm{x}=1000$
Difference between amount invested by P and $R=(6 x-5 x)=x=₹ 1000$

K D Campus Pvt. Ltd

18. (C) Let the capacity of the tank be x gallons.

Quantity of water filled in the tank in 1 minute when all the pipes A, B and C are opened
simultaneously $=\frac{x}{20}+\frac{x}{24}-3$
ATQ,
$\frac{x}{20}+\frac{x}{24}-3=\frac{x}{15}$
$\frac{x}{20}+\frac{x}{24}-\frac{x}{15}=3$
$\frac{6 x+5 x-8 x}{120}=3$
$3 x=3 \times 120$
$x=\frac{3 \times 120}{3}=120$ gallons
19. (B) Let speed of car $=x \mathrm{~km} / \mathrm{hr}$.

Here, Distance covered by the car in 27 minutes = Distance covered by the sound in (28 minutes 30 seconds -27 minutes)
$x \mathrm{~km} / \mathrm{hr} \times\left(\frac{27}{60}\right)$ hours $=\left(330 \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}\right) \times\left(\frac{1.5}{60} \mathrm{hr}\right)$
$x=330 \times \frac{18}{5} \times \frac{1.5}{60} \times \frac{60}{27}=66$
Speed of car $=66 \mathrm{~km} / \mathrm{hr}$.
20. (B) $\frac{2 x^{2}+3 x y+2 y^{2}}{2 x^{2}-3 x y+2 y^{2}}=\frac{2\left(x^{2}+y^{2}+2 x y\right)-x y}{2\left(x^{2}+y^{2}-2 x y\right)+x y}=\frac{2(x+y)^{2}-x y}{2(x-y)^{2}+x y}$
$=\frac{2 \times(6)^{2}-1}{2 \times(4 \sqrt{2})^{2}+1}=\frac{2 \times 36-1}{2 \times 32+1}=\frac{71}{65}$
$\because x=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $x y=1 \Rightarrow y=\frac{1}{x}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$

$$
\Rightarrow x+y=\frac{\sqrt{2}+1}{\sqrt{2}-1}+\frac{\sqrt{2}-1}{\sqrt{2}+1}=6
$$

and $x-y=\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{2}-1}{\sqrt{2}+1}=4 \sqrt{2}$
21. (D) $x=\frac{4 a b}{a+b}$
$\frac{x}{2 a}=\frac{2 b}{a+b}$
Apply componendo and dividendo,

$$
\begin{equation*}
\frac{x+2 a}{x-2 a}=\frac{a+3 b}{b-a} \tag{i}
\end{equation*}
$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
Again,
$\frac{x}{2 b}=\frac{2 a}{a+b}$
Apply componendo and dividendo,
$\frac{x+2 b}{x-2 b}=\frac{3 a+b}{a-b}$
Now,
$\frac{x+2 a}{x+2 b}+\frac{x+2 b}{x-2 b}=\frac{a+3 b}{-(a-b)}+\frac{3 a+b}{a-b}$
$=\frac{-a-3 b+3 a+b}{a-b}=\frac{2 a-2 b}{a-b}=2$
22. (B) Perimeter $=2(l+b)$
$\mathrm{P}=2(l+w)$
$\frac{P}{2}-w=l$
Its area $=l \times b$
$k=\left(\frac{P}{2}-w\right) \times w$
$2 k=\mathrm{P} w-2 w^{2}$
$2 w^{2}-\mathrm{P} w+2 k=0$
23. (D) Total quantity of milk $=2 \times 0.9+5 \times 0.8+9 \times 0.7=12.1$ litres

Milk concentration in the resultant mixture $=\frac{12.1}{2+5+9} \times 100=75.625 \%$
Water concentration in the resultant mixture $=100-75.625 \%=24.735 \%$
Milk: Water $=\frac{75625}{24735}=121: 39$
24. (A) Let, Average age of 11 member hockey team $=x$ years

Total age of hockey team = $11 x$ years
When captain aged 26 years and goalkeeper aged $26+3=29$ years are excluded.
Total age of remaining 9 players $=11 x-(26+29)=(11 x-55)$ years
ATQ,
$\frac{11 x-55}{9}=x-1$
$11 x-55=9 x-9$
$2 x=44$
$x=22$ years
25. (B) Distance $=$ Difference $\times \frac{\text { Sum of speed }}{\text { Difference in speed }}=165 \times \frac{155}{15}=1705 \mathrm{~km}$
26. (C) Volume of the cuboid $=12 k y^{2}+8 k y-20 k$
$=4 k\left[3 y^{2}+2 y-5\right]$
$=4 k\left[3 y^{2}+5 y-3 y-5\right]$
$=4 k[y(3 y+5)-1(3 y+5)]$
$=(4 k)(y-1)(3 y+5)$
Third dimension $=3 y+5$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
27. (B) \because diagonals of a llgm bisect each other.

\therefore Coordinates of mid point of $\mathrm{AC}=$ Coordinates of mid point of BD
$\left[\frac{1+x}{2}, \frac{2+6}{2}\right]=\left[\frac{3+4}{2}, \frac{5+y}{2}\right]$
$\frac{1+x}{2}=\frac{7}{2}$ and $\frac{2+6}{2}=\frac{5+y}{2}$
$x=6$ and $y=3$
28. (A) The given linear equations have no solution.
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{3}{2 k-1}=\frac{1}{k-1} \neq \frac{1}{2 k+1}$
$3 k-3=2 k-1$
$k=2$
29. (D) Maximum temperature of Ontario on 1 st November $=4^{\circ} \mathrm{C}$

Minimum temperature of Bhuj on 1st January $=-7^{\circ} \mathrm{C}$
\therefore Required difference $=4-(-7)=11^{\circ} \mathrm{C}$
30. (A) There is second highest temperature of Kabul on 1 st October $=37^{\circ} \mathrm{C}$

The minimum temperature of Sydney is on 1 st January $=13^{\circ} \mathrm{C}$
31. (C) Difference of temperature in Bhuj on 1st September $=24-14=10^{\circ} \mathrm{C}$

Difference of temperature in Bhuj on 1st October $=35-21=14^{\circ} \mathrm{C}$
Difference of temperature in Bhuj on 1st November $=19-8=11^{\circ} \mathrm{C}$
Difference of temperature in of Bhuj on 1 st December $=9-2=7{ }^{\circ} \mathrm{C}$
Difference of temperature in Bhuj on 1st January $=-7+4=-3^{\circ} \mathrm{C}$.
Hence, the second highest difference in temperature is on 1 st November.
32. (D) Required average $=\frac{12+9+15+2+5}{5}=\frac{43}{5}=8.6^{\circ} \mathrm{C}$
33. (B) Required ratio $=\frac{9}{15}=3: 5$
34. (D) Let height of glass $=h$

Then, radius of glass $=\frac{h}{2}$
ATQ,

$$
\begin{aligned}
& \frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} \times h=32000\left[\frac{4}{3} \times \pi \times\left(\frac{1}{20}\right)^{3}\right] \\
& \frac{h^{3}}{4}=16 \\
& h=4 \mathrm{~cm}
\end{aligned}
$$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
35. (B) Total number of spherical balls $=\frac{11 \times 10 \times 5}{\frac{4}{3} \times \pi \times\left(\frac{5}{20}\right)^{3}}$
$=\frac{26400}{\pi}<8800 \quad$ [as given $\pi>3$]
36. (C) Height of new cone $=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2}}=\frac{(1.6)^{2} \times 3.6}{(1.2)^{2}}=6.4 \mathrm{~cm}$
37. (A) Let side of square $=x \mathrm{~cm}$

Area of square $=x^{2} \mathrm{~cm}^{2}$
Breadth of rectangle $=\frac{3}{2} x$
Length of rectangle $=20 \mathrm{~cm}$
ATQ,
$\left(\frac{3}{2} x\right) \times 20=3 \times x^{2}$
$x=10 \mathrm{~cm}$
38. (B) $\mathrm{S}_{1} 4 \mathrm{~km} / \mathrm{hr} \sum_{12 \mathrm{~km}} 3$ hours -10 minutes
$\mathrm{S}_{2} 3 \mathrm{~km} / \mathrm{hr} \frac{12 \mathrm{~km}}{\underline{4} \text { hours }}-\frac{ \pm 10 \text { minutes }}{-1 \text { hours }} \frac{ \pm 20 \text { minutes }}{-20}$
So, distance between school and his house $=\frac{12}{60} \times 20=4 \mathrm{~km}$
39. (B) Runs scored by $\mathrm{A}=x$

Runs scored by B $=y$
Runs scored by $\mathrm{C}=z$
$x: y=y: z=3: 2$ (given)
ATQ,
$x+y+z=342$
$\frac{9 z}{4}+\frac{3 z}{2}+z=342$
Then, runs scored by A, B and C is 162,108 and 72 respectively.
40. (C) ATQ,
$A+B+C=900$
$A+\frac{3}{2} A+2 A=900$
$\mathrm{A}=₹ 200$
Amount received by A, B and C is ₹200, ₹300 and ₹400 respectively.
41. (C)

ATQ,
Fourth person gets $=\frac{3}{16} \times 1200=₹ 225$
42. (B) Let work done by A in one day $=a$

Let work done by B in one day $=b$
So, total work $=5(a+b)$
ATQ,
Total work $=3\left(2 a+\frac{1}{3} b\right)$

So, $3\left(2 a+\frac{1}{3} b\right)=5(a+b)$
$a=4 b$
$b=\frac{a}{4}$

Total work $=5\left(a+\frac{a}{4}\right)=\frac{25}{4} \mathrm{a}$

Time taken by A to complete the work $=\frac{25 a}{4 \times a}=6 \frac{1}{4}$ days
43. (C) Let the total number of packages be x.

ATQ,
$\frac{2}{5} x+3=\frac{x}{2}$
$\frac{1}{10} x=3$
$x=30$
44. (B) If number of individuals be x.

Then, 60% of $x-20 \%$ of $x=720$
40% of $x=720$
$x=\frac{720}{40} \times 100=1800$
45. (D) Number of pages in notebook $\mathrm{X}=120$

Number of pages in notebook Y = 110\% of $120=132$
Number of pages in notebook Z = 90\% of $120=108$
Total number of pages in all the notebooks $=120+132+108=360$
Number of pages torn by Shyam
In notebook $\mathrm{X}=5 \%$ of $120=6$
In notebook $\mathrm{Y}=10 \%$ of $132=13.2$
In notebook $Z=15 \%$ of $108=16.2$
Total number of pages torn $=6+13.2+16.2=35.4$
$\therefore \quad$ Required percentage $=\frac{35.4}{360} \times 100 \%=9.837 \% \approx 10 \%$
46. (B) Quantity of petrol in the mixture $=\frac{1}{2} \times 2+\frac{3}{5} \times 3+\frac{4}{5} \times 1$
$=1+\frac{9}{5}+\frac{4}{5}=1+\frac{13}{5}=\frac{18}{5}$ litres

And quantity of kerosene in the mixture $=\frac{1}{2} \times 2+\frac{2}{5} \times 3+\frac{1}{5} \times 1$
$=1+\frac{6}{5}+\frac{1}{5}=1+\frac{7}{5}=\frac{12}{5}$ litres
Thus, Ratio of petrol and kerosene $=\frac{18}{5}: \frac{12}{5}=3: 2$
47. (C) CP for the manufacturer $=30.09 \times \frac{100}{118} \times \frac{100}{120} \times \frac{100}{125}=₹ 17$
48. (B) Let the total profit be ₹ x.

Then, 40% of x is distributed in the ratio $125000: 85000=25: 17$
Therefore, the share of the first partner $=40 \%$ of $x\left(\frac{25}{25+17}\right)=40 \%$ of $x\left(\frac{25}{42}\right)$
$=\left(\frac{40 x}{100}\right)\left(\frac{25}{42}\right)=₹ \frac{5 x}{21}$

And the share of the second partner $=40 \%$ of $x\left(\frac{17}{42}\right)=\frac{17 x}{105}$
Now, from the question,
The difference in share $=\frac{5 x}{21}-\frac{17 x}{105}=300$
$\frac{x(25-17)}{105}=300$
$x=\frac{300 \times 105}{8}=₹ 3937.50$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (C) Total number of students $=90$

Now, each of 50% of students get 20% of the total number of students i.e., 20% of $90=18$
Also, each of remaining 50% of students get 10% of the total number of students i.e. 10% of $90=9$

Hence, total number of sweets distributed $=45 \times 18+45 \times 9=45 \times(18+9)$
$=45 \times 27=1215$
50. (A) Let the parts of money invested at 10% and 15% per annum be P_{1} and P_{2} respectively.

ATQ,
$\frac{P_{1} \times 10 \times 1}{100}+\frac{P_{2} \times 15 \times 1}{100}=1900$
$10 \mathrm{P}_{1}+15 \mathrm{P}_{2}=190000$
$2 \mathrm{P}_{1}+3 \mathrm{P}_{2}=38000$
Also, $\frac{P_{1} \times 15 \times 1}{100}+\frac{P_{2} \times 10 \times 1}{100}=2100$
$15 \mathrm{P}_{1}+10 \mathrm{P}_{2}=210000$
$3 \mathrm{P}_{1}+2 \mathrm{P}_{2}=42000$
On solving equation (i) and (ii), we get
$P_{2}=₹ 6000$
51. (C) Let total required distance $=d$

Speed of train $=v \mathrm{~km} / \mathrm{h}$ and time taken $=t$ hour
Then,
According to first condition,
$\frac{150}{v}+\frac{d-150}{\frac{3}{5} v}=t+8$
According to second condition,
$\frac{410}{v}+\frac{d-410}{\frac{3}{5} v}=t+4$
Subtracting equation (ii) from equation (i),
$\frac{-360}{v}+\frac{360}{\frac{3}{5} v}=4$
$v=\frac{-360+600}{4}=\frac{240}{4}=60 \mathrm{~km} / \mathrm{h}$
$\therefore \quad$ Time $(\mathrm{t})=\frac{d}{60}$
Now, from Eq. (i),

$$
\frac{150}{60}+\frac{d-150}{\frac{3}{5} \times 60}=\frac{d}{60}+8
$$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

$$
\begin{aligned}
& \frac{d-150}{36}-\frac{d}{60}=8-\frac{5}{2} \\
& \frac{5(d-150)-3 d}{36 \times 5}=\frac{11}{2} \\
& 2 d-750=\frac{11}{2} \times 36 \times 5=990 \\
& d=\frac{1740}{2}=870 \mathrm{~km}
\end{aligned}
$$

52. (C)

Since the bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ meet at T .
$\angle \mathrm{QTR}=90^{\circ}+\frac{1}{2} \angle \mathrm{QPR}$
$\angle \mathrm{QTR}=90^{\circ}+\frac{1}{2}(80)^{\circ}$
$\angle \mathrm{QTR}=90^{\circ}+40^{\circ}=130^{\circ}$
In \triangle QTR, we have

$$
\angle \mathrm{TQR}+\angle \mathrm{QTR}+\angle \mathrm{TRQ}=180^{\circ}
$$

$$
\angle \mathrm{TQR}+130^{\circ}+30^{\circ}=180^{\circ} \quad\left[\because \angle \mathrm{TRQ}=\angle \mathrm{PRT}=30^{\circ}\right]
$$

$\angle \mathrm{TQR}=20^{\circ}$
Thus, $\angle \mathrm{TQR}=20^{\circ}$ and $\angle \mathrm{QTR}=130^{\circ}$
53. (D) Required $\%=\left(\frac{48}{40} \times 100\right) \%=120 \%$
54. (B) Required ratio $=(61+54):(54+48)=115: 102$
55. (C) Required average price per product

$$
\begin{aligned}
& =\frac{(43 \times 16+44 \times 15+45 \times 14.5+48 \times 16+55 \times 18+55 \times 15)}{43+44+45+48+55+55} \times 1000 \\
& =\left(\frac{688+660+652.5+768+990+825}{290}\right) \times 1000 \\
& =\left(\frac{4583.5}{290}\right) \times 1000=₹ 15,805.17
\end{aligned}
$$

56. (A) Required difference $=(60 \times 75) \times 1000-(44 \times 15) \times 1000$
$=4500000-660000=₹ 3840000=₹ 38.4$ lakh
57. (D) Total amount $=57 \times 5.6 \times 1000+45 \times 50 \times 1000=319200+2250000$
$=₹ 2281900=₹ 22.819$ lakh

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
58. (A) $\tan 15^{\circ}=2-\sqrt{3}$
$\tan 15^{\circ} \cot 75^{\circ}+\tan 75^{\circ} \cdot \cot 15^{\circ}$
$=\tan ^{2} 15^{\circ}+\frac{1}{\tan ^{2} 15^{\circ}}$
$=(2-\sqrt{3})^{2}+(2+\sqrt{3})^{2}$
$=4+3-4 \sqrt{3}+4+3+4 \sqrt{3}=14$
59. (C) Surface area of the tent $=2 \pi r h+\pi r l$
$=\pi r(2 h+l)=\frac{22}{7} \times 70(6+80)$
$=220 \times 86=18920 \mathrm{~m}^{2}$

Width of canvas $=2 \mathrm{~m}$
\therefore Length of canvas $=\frac{18920}{2}=9460 \mathrm{~m}$
60. (C)

Required surface area $=2 \times 2 \pi r^{2}+2 \pi r h$
$=4 \times \frac{22}{7} \times 2.5 \times 2.5+2 \times \frac{22}{7} \times 2.5 \times 9$
$=2 \times \frac{22}{7} \times 2.5(5+9)=220 \mathrm{~mm}^{2}$
61. (B) $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2}$

On comparing
$\sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2}$
$x=y=z=\sin \frac{\pi}{2}=1$
$x+y+z=1+1+1=3$
62. (D) Let the height of ladder $\mathrm{BD}=x \mathrm{~m}$

In $\triangle B C D$,
$\sin 60^{\circ}=\frac{2.7}{B D}$
$\frac{\sqrt{3}}{2}=\frac{2.7}{B D}$
$\mathrm{BD}=\frac{2.7}{\sqrt{3}} \times 2$
$\mathrm{BD}=\frac{5.4 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{9 \sqrt{3}}{5} \mathrm{~m}$
63. (C)

AD and BE are medians.
$\mathrm{AD}=9 \mathrm{~cm}, \mathrm{BE}=6 \mathrm{~cm}$
In $\triangle B G D$,
$\angle \mathrm{G}=90^{\circ}$
$\mathrm{BG}=\frac{2}{3} \times \mathrm{BE}=\frac{2}{3} \times 6=4 \mathrm{~cm}$
$\mathrm{GD}=\frac{1}{3} \times \mathrm{AD}=\frac{1}{3} \times 9=3 \mathrm{~cm}$
$\mathrm{BD}^{2}=\mathrm{BG}^{2}+\mathrm{GD}^{2}=4^{2}+3^{2}=16+9=25$
$\therefore \quad \mathrm{BD}=\sqrt{25}=5 \mathrm{~cm}$
64. (A) $\angle \mathrm{BIC}=180^{\circ}-(\angle \mathrm{IBC}+\angle \mathrm{ICB})$

$=180^{\circ}-\left(\frac{\angle A B C}{2}+\frac{\angle A C B}{2}\right)$
$=180^{\circ}-\left(\frac{65^{\circ}+55^{\circ}}{2}\right)=180^{\circ}-60^{\circ}$
$\therefore \quad \angle \mathrm{BIC}=120^{\circ}$
65. (B) $\because \mathrm{AB}+\mathrm{BC}=12$
$B C+C A=14$
$C A+A B=18$
$2(A B+B C+C A)=44$
$\therefore \mathrm{AB}+\mathrm{BC}+\mathrm{CA}=22$
Perimeters of the circle $=2 \pi r$
$2 \times \frac{22}{7} \times r=22$
$r=\frac{7}{2}=3.5 \mathrm{~cm}$
Hence, the radius of circle $=3.5 \mathrm{~cm}$
66. (C) Here, $\mathrm{BD}=6 \mathrm{~cm}$

$\mathrm{DC}=8 \mathrm{~cm}$
$\mathrm{BC}=\sqrt{(6)^{2}+(8)^{2}}=\sqrt{36+64}=10 \mathrm{~cm}$
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{EOC}$,
$\angle \mathrm{ADC}=\angle \mathrm{OEC}=90^{\circ}$
$\angle \mathrm{ACD}=\angle \mathrm{OCE} \quad$ (common angles)
$\angle \mathrm{CAD}=\angle \mathrm{EOC} \quad$ (remaining angles)
$\triangle \mathrm{ACD} \sim \Delta \mathrm{EOC}$
Also, $\mathrm{AD}=\mathrm{AE}=6 \mathrm{~cm} \quad$ (the length of two tangents drawn from an external point to circle are equal)
$\mathrm{EC}=\mathrm{AC}-\mathrm{AE}=10-6=4 \mathrm{~cm}$
In similar $\triangle \mathrm{ACD}$ and $\triangle \mathrm{EOC}$,
$\frac{D C}{A D}=\frac{E C}{O E}$
$\mathrm{OE}=\frac{A D \times E C}{D C}=\frac{6 \times 4}{8}=3 \mathrm{~cm}$
Required of sphere $=3 \mathrm{~cm}$
Now, volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times 36 \times 8$
And volume of sphere $=\frac{4}{3} \pi r^{3} h=\frac{4}{3} \times \pi \times 27$
Required fraction of water $=\frac{\frac{4}{3} \pi \times 27}{\frac{1}{3} \pi \times 36 \times 8}=\frac{4 \times 27}{36 \times 8}=\frac{3}{8}$
67. (A)

In $\triangle \mathrm{ADC}$,
$\tan 60^{\circ}=\frac{h}{A P}$
$\sqrt{3}=\frac{h}{A P}$
$\mathrm{AP}=\frac{h}{\sqrt{3}}$
In $\triangle \mathrm{BPL}$,
$\tan 30^{\circ}=\frac{h}{P B}$
$\mathrm{PB}=\frac{h}{\tan 30}=\frac{h}{\frac{1}{\sqrt{3}}}=h \sqrt{3}$
$\mathrm{AP}+\mathrm{PB}=\frac{h}{\sqrt{3}}+h \sqrt{3}$
$100=\frac{h+3 h}{\sqrt{3}}$
$h=25 \sqrt{3} \mathrm{~m}$
68. (A)

$\mathrm{AB}=7 \mathrm{~m}$
$\mathrm{CD}=h \mathrm{~m}=$ Height of Tower
Let $\mathrm{AC}=x \mathrm{~m}$
In $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{7}{x}$
$x=7 \mathrm{~m}$
Now,
In $\triangle \mathrm{BED}$,
$\tan 60^{\circ}=\frac{h-7}{x}$
$\sqrt{3}=\frac{h-7}{x}$
$h=7(\sqrt{3}+1) \mathrm{m}$
69. (D)

Let radius of cone $=\mathrm{rcm}$
Clearly, Volume of cylinder $=10$ [Volume of cone + Volume of hemisphere]
$\pi \times 6 \times 6 \times 15=10\left[\frac{1}{3} \pi \times r^{2} \times 4 r+\frac{2}{3} \pi r^{3}\right]$
$[\because$ height of cone $=4 \times$ radius $]$
$36 \times 15 \pi=10 \times \pi \times 2 \times r^{3}$
$r^{3}=27$
$r=3$
Hence, diameter of ice-cream cone $=2 \times 3=6 \mathrm{~cm}$
70. (B) External surface area of the shuttlecock $=$ External surface area of frustrum + External surface area of hemisphere

$=\pi(\mathrm{R}+r) l+2 \pi r^{2}$
$=\pi(\mathrm{R}+r)\left(\sqrt{h^{2}+(R-r)^{2}}+2 \pi r^{2}\right.$
where $\mathrm{R}=2.5 \mathrm{~cm}, r=1 \mathrm{~cm}, h=6 \mathrm{~cm}$
Required surface area $=\frac{22}{7} \times 3.5 \sqrt{36+1.5^{2}}+2 \times \frac{22}{7} \times 1$
$=11 \times 6.18+6.28=74.26 \mathrm{~cm}^{2}$
71. (A) In $\Delta \mathrm{ORS}, \mathrm{OR}=\mathrm{OS}=$ Radii
$\angle \mathrm{ORS}=y^{\circ}$
$\angle \mathrm{POR}=y^{\circ}+y^{\circ}=2 y^{\circ}$ [external angle property]
In $\triangle \mathrm{POR}$,
$\angle \mathrm{OPR}+\angle \mathrm{POR}+\angle \mathrm{PRO}=180^{\circ}$
$x^{\circ}+2 y^{\circ}+90^{\circ}=180^{\circ}$
$x^{\circ}+2 y^{\circ}=90^{\circ}$
72. (B) $(x+1)$ and $(x-2)$ are factors of $x^{3}+(a+1) x^{2}-(b-2) x-6$

At $x=-1$,
$(-1)^{3}+(a+1)(-1)^{2}-(b-2)(-1)-6=0$
$-1+a+1+b-2-6=0$
$a+b=8$
At $x=2$,
$2^{3}+(a+1) 2^{2}-(b-2) \times 2-6=0$
$8+4 a+4-2 b+4-6=0$
$2 a-b=-5$
On adding (i) and (ii),
$3 a=3$
$a=1$ and $b=7$
73. (A) $\tan (x+y) \tan (x-y)=1$
$\tan (x+y)=\frac{1}{\tan (x-y)}=\cot (x-y)$
$\tan (x+y)=\tan \left[90^{\circ}-(x-y)\right]=x+y=90^{\circ}-(x-y)$
$2 x=90^{\circ}$
$\frac{2 x}{3}=30^{\circ}$
$\tan \frac{2 x}{3}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
74. (D)

$B C($ ratio value $)=4$
$4=28$
$1=7$
$\sqrt{3}=7 \sqrt{3}$
$h=7 \sqrt{3} \mathrm{~m}$
75. (C) Let $x \mathrm{~km} / \mathrm{hr}$ be the speed of the car in the return journey.

Speed of the car in onward journey $=\frac{130}{100} \times x=\frac{13 x}{10} \mathrm{~km} / \mathrm{hr}$
$=\frac{2 \times \frac{13 x}{10} \times x}{\frac{1.3 x}{10}+x}=\frac{26 x}{23} \mathrm{~km} / \mathrm{hr}$

Average speed $=500 \times \frac{23}{26 x}=17$
$x=26 \mathrm{~km} / \mathrm{hr}$

Speed in the onward journey $=\frac{13 \times 26}{10}=33.8 \mathrm{~km} / \mathrm{hr}$
76. (D) Speed of the first train $=54 \mathrm{kmph}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}$

Time
Sum of lengths of both trains
$12=\frac{195+225}{(15+x)}$
$180+12 x=420$
$12 x=420-180=240$
$x=20 \mathrm{~m} / \mathrm{s}=\left(20 \times \frac{18}{5}\right) \mathrm{km} / \mathrm{hr}=72 \mathrm{kmph}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
77. (B) Ratio of men to women $(15 \times 10) \mathrm{M}=(25 \times 8) \mathrm{W}$
$150 \mathrm{M}=200 \mathrm{~W}$
$3 \mathrm{M}=4 \mathrm{~W}$
$W=\frac{3}{4} M$
1 man's work $=\frac{1}{150}$
$(10 W+3 M)=\frac{21}{2} M$ can do the work in $\frac{1}{150} \times \frac{21}{2}=\frac{7}{100}$ days
$\frac{65}{100}$ work done by 10 women in x days.
8 women complete a piece of work in 25 days
10 women complete the $\frac{65}{100}$ work in $25 \times \frac{8}{10} \times \frac{65}{100}=13$ days
78. (A) Time $=\frac{\text { Distance }}{\text { Speed }}$

Let the speed of the boat be $x \mathrm{~km} / \mathrm{hr}$ and speed of the stream be $y \mathrm{~km} / \mathrm{hr}$.
Relative speed of boat while going upstream $=(x+y) \mathrm{km} / \mathrm{hr}$
Given, A man rows to a place 90 km away and back to the starting point in 9 hours 36 minutes.

Time taken $=\left(9+\frac{36}{60}\right) \mathrm{hrs}=9.6$ hours
ATQ,
$\frac{90}{x-y}+\frac{90}{x+y}=9.6$
$\frac{1}{x-y}+\frac{1}{x+y}=\frac{8}{75}$
Also the time taken to travel 5 km downstream is equal to time taken to travel 3 km upstream.
ATQ,
$\frac{5}{x+y}=\frac{3}{x-y}$
$5 x-5 y=3 x+3 y$
$x=4 y$
Substituting value of x in equation (i), we get
$\frac{1}{3 y}+\frac{1}{5 y}=\frac{8}{75}$
$\frac{8}{15 y}=\frac{8}{75}$
$y=5 \mathrm{~km} / \mathrm{hr}$
$x=4 \times 5=20 \mathrm{~km} / \mathrm{hr}$
Time taken for the boat to cover a distance of 60 km in still water $=\frac{60}{20}=3$ hours
79. (B) In $\triangle \mathrm{EAD}$,
$\tan \alpha=\frac{h}{A D}$

$\mathrm{AD}=\frac{h}{\tan \alpha}$

$$
\left(\because \frac{1}{\tan \alpha}=\cot \alpha\right)
$$

$\mathrm{AB}+\mathrm{BD}=h \cot \alpha$
$\mathrm{BD}=h \cot \alpha-x$
In $\triangle \mathrm{EBD}$,
$\tan 2 \alpha=\frac{h}{B D}$
$\mathrm{BD}=\frac{h}{\tan 2 \alpha}=h \cot 2 \alpha$
$h \cot \alpha-x=h \cot 2 \alpha$
$\frac{h \cos \alpha}{\sin \alpha}-x=h \frac{\cos 2 \alpha}{\sin 2 \alpha}$
$\frac{h \cos \alpha}{\sin \alpha}-\frac{h \cos 2 \alpha}{\sin \alpha}=x$
$h\left[\frac{\cos 2 \alpha-\sin \alpha-\sin \alpha \cdot \cos 2 \alpha}{\sin \alpha \cdot \sin 2 \alpha}\right]=x$
$h\left[\frac{\sin (2 \alpha-\alpha)}{\sin \alpha \cdot \sin 2 \alpha}\right]=x$
$h\left[\frac{\sin \alpha}{\sin \alpha \cdot \sin 2 \alpha}\right]=x$
$h=x \sin 2 \alpha$
80. (C) $x+y=z$

Now, $\cos ^{2} x+\cos ^{2} y+\cos ^{2} z=1+\left(\cos ^{2} x-\sin ^{2} y\right)+\cos ^{2} z$
$=1+\cos (x+y) \cos (x-y)+\cos ^{2} z$
$=1+\cos z \cos (x-y)+\cos ^{2} z$
$=1+[\cos (x-y)+\cos (x+y)]$
$=1+\cos z[\cos (x-y)+\cos (x+y)]$
$=1+\left[2 \cos \frac{(x-y+x+y)}{2} \cdot \cos \frac{(x-y-x-y)}{2}\right]$
$=1+2 \cos z \cdot \cos x \cdot \cos y$
$=1+2 \cos x \cdot \cos y \cdot \cos z$
81. (B) Let AB be the leaning tower and Let C and D be two given stations at distance a and b respectively from the foot A of the tower.
Let $\mathrm{AE}=x$ and $\mathrm{BE}=h$

In $\triangle \mathrm{AEB}$, we have
$\tan \theta=\frac{h}{x}$
$x=h \cot \theta$
In Δ CEB, we have
$\tan \alpha=\frac{h}{a+x}$
$a+x=h \cot \alpha$
$x=h \cot \alpha$
In $\triangle \mathrm{DEB}$, we have
$\tan \beta=\frac{h}{b+x}$
$b+x=h \cot \beta$
$x=h \cot \beta-b$
On equation the values of x obtained from equations (i) and (ii), we have
$h \cot \theta=h \cot \alpha-a$
$h(\cot \alpha-\cot \theta)=a$
$h=\frac{a}{\cot \alpha-\cot \theta}$
On equation the values of x obtained from equations (i) and (ii), we get (iv)
$h \cot \theta=h \cot \beta-b$
$h(\cot \beta-\cot \theta)=b$

Equation the value of h from equation (iv) and (v), we get
$\frac{a}{\cot \alpha-\cot \theta}=\frac{b}{\cot \beta-\cot \theta}$
$a(\cot \beta-a \cot \theta)=b(\cot \alpha-\cot \theta)$
$(b-a) \cot \theta=b \cot \alpha-a \cot \beta$
$\cot \theta=\frac{b \cot \alpha-a \cot \beta}{b-a}$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
82. (D)

Geography
From the diagram, it is given that
$a+x=40$;
$b+x=40$
$c+x=30$
$a+b+c+3 x=100$

Since no students have failed in all the three subjects,
$p+q+r+a+b+c+x=150$
$p+q+r+110-2 x=150 \quad[$ From (i), $a+b+c+x=110-2 x]$
$p+q+r=150-110+2 x$
$p+q+r=150-110+20 \quad[x=10$, given $]$
$p+q+r=60$
Hence, the required number of students is 60 .
83. (B) $\mathrm{P}=25 \%=\frac{1}{4}, x=10 \mathrm{~km} / \mathrm{h}$
$\mathrm{Q}=45 \%=\frac{45}{100}=\frac{9}{20}, y=5 \mathrm{~km} / \mathrm{h}$
$\mathrm{R}=30 \%=\frac{30}{100}=\frac{3}{10}, z=15 \mathrm{~km} / \mathrm{h}$
Required average speed

$$
\frac{1}{\frac{P}{x}+\frac{Q}{y}+\frac{R}{z}}=\frac{1}{\frac{1}{4 \times 10}+\frac{9}{20 \times 5}+\frac{3}{10 \times 15}}
$$

$$
=\frac{1}{\frac{5+18+4}{200}}=\frac{200}{27}=7.40 \mathrm{~km} / \mathrm{h}
$$

84. (C)

$=\frac{\left[\frac{13}{4} \div\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{30-1}{12}\right)\right\}\right]}{\frac{1}{3}}=\frac{\left[\frac{13}{4} \div\left\{\frac{5}{4}-\frac{29}{24}\right\}\right]}{\frac{1}{3}}$
$=\frac{\left[\frac{13}{4} \div \frac{1}{24}\right]}{\frac{1}{3}}=\frac{13}{4} \times 24 \times 3$
$=13 \times 18=234$

Campus

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
85. (C) LCM of $\left(2\right.$ and $\left.5 \frac{1}{2}\right)=\operatorname{LCM}$ of $\left(2\right.$ and $\left.\frac{11}{2}\right)$

Required answer $=\frac{\text { LCM of } 2 \text { and } 11}{\text { HCF of } 1 \text { and } 2}=\frac{22}{1}=22$ feet
86. (D) Let the number of first class tickets $=x$

Number of $2^{\text {nd }}$ class tickets $=18-x$
ATQ,
$10 x+4(18-x)=110$
$x=8$
$2^{\text {nd }}$ class tickets $=10$
New cost $=10 \times 10+3 \times 38=₹ 124$
87. (C) Let the fixed charges be ₹ x and charge per km be ₹ y.

Then,
$x+20 y=205$
(i)
(ii)
$x+25 y=255$
Solving equation (i) and equation (ii), we get
$y=10, x=5$
Putting the value of y in (i), we get
$x+20 \times 10=205$
$x+200=205$
$x=5$
$\therefore \quad$ Amount paid for a distance of $50 \mathrm{~km}=x+50 y=5+50 \times 10=₹ 505$
88. (D) $\frac{5 \sin 75^{\circ} \sin 77^{\circ}+3 \cos 13^{\circ} \cos 15^{\circ}}{\cos 15^{\circ} \cdot \sin 77^{\circ}}+\frac{7 \sin 81^{\circ}}{\cos 9^{\circ}}$
$\frac{5 \sin \left(90^{\circ}-15^{\circ}\right) \sin 77^{\circ}+2 \cos \left(90^{\circ}-77^{\circ}\right) \cos 15^{\circ}}{\cos 15^{\circ} \cdot \sin 77^{\circ}}+\frac{7 \sin \left(90^{\circ}-9^{\circ}\right)}{\cos 9^{\circ}}$
$\frac{5 \cos 15^{\circ} \sin 77^{\circ}+2 \cos 15^{\circ} \sin 77^{\circ}}{\cos 15^{\circ} \cdot \sin 77^{\circ}}+\frac{7 \cos 9^{\circ}}{\cos 9^{\circ}}=(5+2)+7=14$
89. (B) $\tan \mathrm{A}+\sin \mathrm{A}=p$
$\tan ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}+2 \tan \mathrm{~A} \sin \mathrm{~A}=p^{2}$
Again, $\tan \mathrm{A}-\sin \mathrm{A}=q$
$\tan ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}-2 \tan \mathrm{~A} \sin \mathrm{~A}=q^{2}$
Subtracting Eq. (ii) from (i), we get
$p^{2}-q^{2}=4 \tan A \sin A$
$\tan \mathrm{A} \sin \mathrm{A}=\frac{p^{2}-q^{2}}{4}$
Also, $(\tan A-\sin A)(\tan A+\sin A)=p q$
$\tan ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=p q$
$\frac{\sin ^{2} A}{\cos ^{2} A}-\sin ^{2} A=p q$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$\frac{\sin ^{2} A\left(1-\cos ^{2} A\right)}{\cos ^{2} A}=p q$
$\frac{\sin ^{2} A \sin ^{2} A}{\cos ^{2} A}=p q$
$\tan ^{2} \mathrm{~A} \sin ^{2} \mathrm{~A}=p q$
$\tan ^{2} \mathrm{~A} \sin ^{2}=p q$
Also, $\tan \mathrm{A} \sin \mathrm{A}=\frac{p^{2}-q^{2}}{4}$
[From equation (iii)]
$\sqrt{p q}=\frac{p^{2}-q^{2}}{4}$
$p^{2}-q^{2}=4 \sqrt{p q}$
90. (C)

In $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{h}{x}$
(i)

In $\triangle \mathrm{DEC}$,
$\tan \left(90^{\circ}-0\right)=\frac{2 h}{y}$
To get $2 h^{2}$, we have to multiply equation (i) and (ii), we get
$\tan \theta \times \tan \left(90^{\circ}-\theta\right)=\frac{h}{y} \times \frac{2 h}{y}$
$\tan \theta \cot \theta=\frac{2 h^{2}}{x y}$
$1=\frac{2 h^{2}}{x y}$
$2 h^{2}=x y$
91. (D) $\sin x+\sin y=a$ and $\cos x+\cos y=b$
$a^{2}+b^{2}=\sin ^{2} x+\cos ^{2} x+\sin ^{2} y+\cos ^{2} x+2 \sin x \sin y+2 \cos x \cos y$
$=1+1+2[\sin x \sin y+\cos x \cos y]$
$\frac{a^{2}+b^{2}-2}{2}=\cos x \cos y+\sin x \sin y$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
92. (A)

$\angle \mathrm{SRQ}=90^{\circ}$
$\angle \mathrm{QRP}=\angle \mathrm{QSR}=y^{\circ}$
$\angle \mathrm{PRS}=90^{\circ}+y^{\circ}$
In $\triangle \mathrm{PRS}$,
$\angle \mathrm{SRP}+\angle \mathrm{RPS}+\angle \mathrm{PSR}=180^{\circ}$
$\left(90^{\circ}+y^{\circ}\right)+x^{\circ}+y^{\circ}=180^{\circ}$
$x^{\circ}+2 y^{\circ}=90^{\circ}$
93. (B) Ratio of the capital invested by A, B and C $=20000 \times 5+15000 \times 7: 20000 \times 5+16000 \times$ $7: 20000 \times 5+26000 \times 7=205: 212: 282$

B's share in total profit $=69900 \times \frac{212}{699}=₹ 21200$
94. (B) Let his speed is x and y is speed of wind.

ATQ,
$\frac{1}{x+y}=\frac{3}{60}$
$x+y=20$
$\frac{1}{x-y}=\frac{4}{60}$
$x-y=15$
$x=\frac{35}{2} \mathrm{~km} / \mathrm{h}$
Time $=\frac{1}{\frac{35}{2}}=\frac{2}{35}=\frac{2}{35} \times 60=3 \frac{3}{7} \mathrm{~min}$
95. (B) Let the height and radius be ' r '.

Ratio of volumes $=\frac{1}{3} \pi r^{2} \times r: \frac{2}{3} \pi r^{3}: \pi r^{2} \times r=1: 2: 3$
96. (A) Girls in college R and $\mathrm{S}=1500+3000=4500$

Boys in college R and $S=2500+4500=7000$
Ratio of Girls \& Boys = 4500:7000=9:14
97. (A) Required Percentage $=\frac{4500}{3500} \times 100=128.57 \% \approx 129 \%$
98. (C) Boys $=5500+3500+2500+4500+4000$

Average of boys $=\frac{20000}{5}=4000$
99. (B) Girls in college R and $\mathrm{S}=1500+3000=4500$

Girls in College P and $\mathrm{T}=2500+1500=4000$
Required ratio $=4500: 4000=9: 8$
100. (C) Total number of students from College $S=4500+3000=7500$

Total number of students from college $P=5500+2500=8000$
Required Ratio $=7500: 8000=15: 16$

Campus

K D Campus Pvt. Ltd

QUANTITATIVE ABILITY - 75 (ANSWER KEY)

| 1. | (C) | 26. | (C) | 51. | (C) | 76. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | (D) 1 (B)

