

n = 20

Ph: 09555108888, 09555208888

EXAMPLE 1997, GROUND PLOOR OPPOSITE MUKHEBUEE NAGAR POLICE STATION, OUTPAM LINES, GTB NAGAR, NEW DELHI - 99
13. (A) Let the capacity of the tank = LCM of 18 and 20 = 180 hires
Efficiency of
$$Q = \frac{180}{18} = 10$$
 hires / hrs.
Efficiency of $Q = \frac{180}{20} = 9$ hires / hrs.
If there is no leak, then the total time taken by (P + Q) to fill half of the tank $= \frac{90}{10+9} = \frac{90}{19}$ hrs.
When there is leak, then according to the question
The total time taken by them $= \frac{90}{19} + 1$ hr $= \frac{109}{19}$ hrs.
Efficiency of (P + Q) + leak $= \frac{90}{109}$ (Because $\frac{109}{19}$ hrs is taken by P, Q and leak to fill
half of the tank)
 $= 90 \times \frac{19}{109}$ hires / hrs.
We know that the efficiency of (P + Q) = (10 + 9) = 19 litres/hr
So, the efficiency of the leak $= 19 - \frac{1710}{109} - \frac{361}{100}$ (hres / hrs.
So the total time taken by the leak to empty the filled tank $= \frac{180}{301} = \frac{19620}{361}$ hrs. $= 54 + \frac{126}{361}$ hrs.
14. (D) Total fare for 3 days = ₹ (500 + 600 + 700) = ₹ 1800
According to their agreement.
A has to pay $= -\frac{2}{2+3+4} \times 1800 = ₹ 400$
B has to pay $= -\frac{2}{2+3+4} \times 1800 = ₹ 600$
C has to pay $= -\frac{3}{2+3+4} \times 1800 = ₹ 800$
 $\frac{100}{100} = \frac{100}{100} = \frac{100}{10$

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 Again, $\frac{x}{2b} = \frac{2a}{a+b}$ Apply componendo and dividendo, $\frac{x+2b}{x-2b} = \frac{3a+b}{a-b}$ (ii) Now. $\frac{x+2a}{x+2b} + \frac{x+2b}{x-2b} = \frac{a+3b}{-(a-b)} + \frac{3a+b}{a-b}$ $= \frac{-a - 3b + 3a + b}{a - b} = \frac{2a - 2b}{a - b} = 2$ 22. (B) Perimeter = 2(l + b)P = 2(l + w) $\frac{P}{2} - w = l$ Its area = $l \times b$ $k = \left(\frac{P}{2} - w\right) \times w$ $2k = Pw - 2w^2$ $2w^2 - Pw + 2k = 0$ 23. (D) Total quantity of milk = $2 \times 0.9 + 5 \times 0.8 + 9 \times 0.7 = 12.1$ litres Milk concentration in the resultant mixture = $\frac{12.1}{2+5+9} \times 100 = 75.625\%$ Water concentration in the resultant mixture = 100-75.625% = 24.735% Milk : Water = $\frac{75625}{24735}$ = 121: 39 24. (A) Let, Average age of 11 member hockey team = x years Total age of hockey team = 11x years When captain aged 26 years and goalkeeper aged 26 + 3 = 29 years are excluded. Total age of remaining 9 players = 11x - (26 + 29) = (11x - 55) years ATO, $\frac{11x-55}{9} = x - 1$ 11x - 55 = 9x - 92x = 44x = 22 years (B) Distance = Difference × $\frac{\text{Sum of speed}}{\text{Difference in speed}}$ = 165 × $\frac{155}{15}$ = 1705 km 25. (C) Volume of the cuboid = $12ky^2 + 8ky - 20k$ 26. $= 4k[3y^2 + 2y - 5]$ $= 4k[3y^2 + 5y - 3y - 5]$ = 4k[y(3y + 5) - 1(3y + 5)]= (4k)(y-1)(3y+5)Third dimension = 3y + 5

Ph: 09555108888, 09555208888

EXAMPLE 197. GOUND FOOR OPPOSITE MURRENT EACH PUTE TABLE ALL STATUS. OUTFAULTINES, GTE MAGAR, NEW DELHI-08
49. (C) fotal number of students = 90
Now, each of 50% of students get 20% of the total number of students *i.e.*, 20% of 90 = 18
Also, each of remaining 50% of students get 10% of the total number of students *i.e.*, 20% of 90 = 18
Also, each of remaining 50% of students get 10% of the total number of students *i.e.*, 20% of 90 = 18
Also, each of remaining 50% of students get 10% of the total number of students *i.e.*, 10% of 90 - 9
Hence, total number of sweets distributed = 45 × 18 + 45 × 9 = 45 × (18 + 9)
= 45 × 27 = 1215
50. (A) Let the parts of money invested at 10% and 15% per annum be P₁ and P, respectively.
ATQ,

$$\frac{A \times 10 \times 1}{100} + \frac{B \times 15 \times 1}{100} = 1900$$

$$10P_1 + 15P_2 = 190000$$

$$2P_1 + 3P_2 - 38000 \dots (ii)$$
Also, $\frac{A \times 15 \times 1}{100} + \frac{B \times 10 \times 1}{100} = 2100$

$$15P_1 + 0P_1 = 210000$$

$$3P_1 + 2P_2 - 42000 \dots (ii)$$

$$On solving equation (ij) and (ij), we get
$$P_2 = ₹ 6000$$
51. (C) Let total required distance = d
Subtracting to first condition,

$$\frac{150}{v} + \frac{d - 150}{3} - t + 8 \dots (ii)$$
Subtracting equation (ii) from equation (i),

$$\frac{-360}{v} + \frac{360}{3} = 4$$

$$v - \frac{-360 + 600}{3} - \frac{240}{4} - 60 \text{ km/h}$$

$$\therefore Time (i) = \frac{d}{60}$$
Now, from Eq. (i),

$$\frac{150}{60} + \frac{d - 150}{3} - \frac{d}{10} + 8$$
Ph: 095551082838, 095552082883$$

09555108888, 09555208888

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09 77. (B) Ratio of men to women $(15 \times 10)M = (25 \times 8)W$ 150 M = 200 W 3M = 4WW = $\frac{3}{4}$ M 1 man's work = $\frac{1}{150}$ $(10W + 3M) = \frac{21}{2}$ M can do the work in $\frac{1}{150} \times \frac{21}{2} = \frac{7}{100}$ days $\frac{65}{100}$ work done by 10 women in x days. 8 women complete a piece of work in 25 days 10 women complete the $\frac{65}{100}$ work in $25 \times \frac{8}{10} \times \frac{65}{100} = 13$ days (A) Time = $\frac{\text{Distance}}{\text{Speed}}$ 78. Let the speed of the boat be x km/hr and speed of the stream be y km/hr. Relative speed of boat while going upstream = (x + y) km/hrGiven, A man rows to a place 90 km away and back to the starting point in 9 hours 36 minutes. Time taken = $(9 + \frac{36}{60})$ hrs = 9.6 hours ATQ, $\frac{90}{x-y} + \frac{90}{x+y} = 9.6$ $\frac{1}{x-y} + \frac{1}{x+y} = \frac{8}{75}$ (i) Also the time taken to travel 5 km downstream is equal to time taken to travel 3 km upstream. ATQ, $\frac{5}{x+y} = \frac{3}{x-y}$ 5x - 5y = 3x + 3yx = 4ySubstituting value of x in equation (i), we get $\frac{1}{3y} + \frac{1}{5y} = \frac{8}{75}$ $\frac{8}{15y} = \frac{8}{75}$ y = 5 km/hr $x = 4 \times 5 = 20 \text{ km/hr}$ Time taken for the boat to cover a distance of 60 km in still water = $\frac{60}{20}$ = 3 hours 09555108888, 095

EXAMPLE 1977. COUND FLOW OPPOSITE MUKHEBLEE NAGAR POLICE STATION, OUTRAM LUNES, GTB NAGAR, NEW DELHI-09
85. (C) LCM of
$$\left(2 \text{ and } 5\frac{1}{2}\right)$$
 - LCM of $\left(2 \text{ and } \frac{11}{2}\right)$
Required answer $-\frac{LCM \text{ of } 2 \text{ and } 11}{RCF \text{ of } 1 \text{ and } 2} - \frac{22}{1} - 22 \text{ feet}$
86. (D) Let the number of first class tickets = x
Number of 2^{22} class tickets = 18 - x
ATQ,
10x + 4(18 - x) = 110
x - 8
2²⁶ class tickets = 10
New cost = 10 × 10 + 3 × 38 = ₹ 124
87. (C) Let the fixed charges be ₹ x and charge per km be ₹ y.
Then,
x + 20y - 205
x + 200 × 10 = 205
x + 200 × 10 = 205
x + 200 × 10 = 205
x + 200 - 205
x - 5
. Amount paid for a distance of 50 km + x + 50y - 5 + 50 × 10 - ₹ 505
88. (D) $\frac{5 \sin 75^{9} \sin 77^{-3} \cosh 77^{9}}{\cos 15^{9} \sin 77^{9}} \cos 99^{7}} = (5 + 2) + 7 = 14$
89. (B) tan A + sin A = p
tan' A + sin' A - 2 tan A sin A = p^{2}(i)
Again tan A - sin A = g
tan' A + sin' A - 2 tan A sin A = p^{2}(ii)
Subtracting Eq. (ii) from (ii), we get
p - q' = 4 tan' A sin A
tan A sin A - $\frac{p^{2} - q^{2}}{4}$ (iii)
Also, (tan A - sin'A = pq
 $\frac{\sin^{2}A}{\cos^{2}A} - \sin^{2}A = pq$

Е

Ph: 09555108888, 09555208888

27

Campus K D Campus Pvt. Ltd 1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI – 09

QUANTITATIVE ABILITY - 75 (ANSWER KEY)

1.	(C)	26.	(C)	51.	(C)	76.	(D)
2.	(C)	27.	(B)	52.	(C)	77.	(B)
3.	(B)	28.	(A)	53.	(D)	78.	(A)
4.	(D)	29.	(D)	54.	(B)	79.	(B)
5.	(C)	30.	(A)	55.	(C)	80.	(C)
6.	(C)	31.	(C)	56.	(A)	81.	(B)
7.	(C)	32.	(D)	57.	(D)	82.	(D)
8.	(B)	33.	(B)	58.	(A)	83.	(B)
9.	(B)	34.	(D)	59 .	(C)	84.	(C)
10.	(B)	35.	(B)	60.	(C)	85.	(C)
11.	(C)	36.	(C)	61.	(B)	86.	(D)
12.	(D)	37.	(A)	62.	(D)	87.	(C)
13.	(A)	38.	(B)	63.	(C)	88.	(D)
14.	(D)	39.	(B)	64.	(A)	89.	(B)
15.	(A)	40.	(C)	65.	(B)	90.	(C)
16.	(C)	41.	(C)	66.	(C)	91.	(D)
17.	(A)	42.	(B)	67.	(A)	92.	(A)
18.	(C)	43.	(C)	68.	(A)	93.	(B)
19.	(B)	44.	(B)	69 .	(D)	94.	(B)
20.	(B)	45.	(D)	70.	(B)	95.	(B)
21.	(D)	46.	(B)	71.	(A)	96.	(A)
22.	(B)	47.	(C)	72.	(B)	97.	(A)
23.	(D)	48.	(B)	73.	(A)	98.	(C)
24.	(A)	49.	(C)	74.	(D)	99.	(B)
25.	(B)	50.	(A)	75.	(C)	100	. (C)