IBPS PO SPECIAL PHASE -I MOCK TEST - 248 (SOLUTION)

(1-5) :

REASONING

1. (1)
2. (1)
3. (3)
4. (2)
5. (5)
(6-10) :
The machine rearranges one word and one number in each step. As for word, the words are arranged in alphabetical order while for numbers, perfect square and non-perfect square come in each alternate step in ascending order.
Input: ink 17 silent 100 burn 1549 June 25 queen 643 firefox 20 time
Step I: burn 25 ink 17 silent 100.1549 June queen 643 firefox 20 time
Step II: burn 25 firefox 3 ink 17 silent 1001549 June queen 6420 time
Step III: burn 25 firefox 3 ink 4917 silent 10015 June queen 6420 time
StepIV: burn 25 firefox 3 ink 49 June 1517 silent 100 queen 6420 time
Step V: burn 25 firefox 3 ink 49 June 15 queen 6417 silent 10020 time
StepVI: burn 25 firefox 3 ink 49 June 15 queen 64 silent 1710020 time
StepVII: burn 25 firefox 3 ink 49 June 15 queen 64 silent 17 time 10020
6. (2)
7. (2)
8. (2)
9. (1)
10. (2)
(11-15) :

Day	Person	Colours	Games
Monday	Rupali	Grey	Shooter/Table Tennis
Tuesday	Raghav	Voilet	Hockey
Wednesday	Nutan	Pink	Archery
Thursday	Vishan	White	Shooter / Table Tennis
Friday	Vikash	Green	Judo
Saturday	Payal	Red	Cricket
Sunday	Neelam	Blue	Chess

11. (2)
12. (2)
13. (1)
14. (3)
15. (1)
(16-18) :

16. (3)
17. (3)
18. (3)
(19-23) :

Person	Game	T-shirt	Mobile		
D	Carrom	Blue	Vivo		
E	Kho-Kho	Yellow	Samsung		
F	Chess	Violet	Samsung		
G	Hockey	Red	Nokia		
H	Table Tennis	Orange	Vivo		
M	Badminton	Green	Nokia		23. (3)

(24-28) :
24. (4) I. $K \geq M[M \geq J=K] \rightarrow$ False
$\mathrm{M} \geq \mathrm{H}[\mathrm{H}<\mathrm{I}>\mathrm{J} \leq \mathrm{M}] \rightarrow$ False
Neither conclusion I nor II is true.
25. (5) $\mathrm{I} . \mathrm{S}>\mathrm{T}[\mathrm{T} \leq \mathrm{R}<\mathrm{S}] \rightarrow$ True
II. $\mathrm{P} \geq \mathrm{T}[\mathrm{P}=\mathrm{Q} \geq \mathrm{R} \geq \mathrm{T}] \rightarrow$ True

Both conclusion I and II are true.
26. (4) I. $\mathrm{R}>\mathrm{P}[\mathrm{R} \geq \mathrm{O}<\mathrm{P}] \rightarrow$ False
II. $\mathrm{R} \geq \mathrm{N}[\mathrm{R} \geq \mathrm{O} \leq \mathrm{N}] \rightarrow$ False

Neither conclusion I nor II is true.
27. (4) $\mathrm{R}>\mathrm{S} \geq \mathrm{T}<\mathrm{U}, \mathrm{V}>\mathrm{T}>\mathrm{X}$
I. $\mathrm{V}>\mathrm{S}[\mathrm{S} \geq \mathrm{T}<\mathrm{V}] \rightarrow$ False
II. $\mathrm{U}>\mathrm{V}[\mathrm{V}>\mathrm{T}<\mathrm{U}] \rightarrow$ False

Neither conclusion I nor II is true.
28. (4) I. $\mathrm{A} \geq \mathrm{E}[\mathrm{A}=\mathrm{B} \leq \mathrm{C} \geq \mathrm{E}] \rightarrow$ False
II. $\mathrm{E}>\mathrm{D}[\mathrm{E} \leq \mathrm{C}>\mathrm{D}] \rightarrow$ False

Neither conclusion I nor II is true.
(29-33) :

29. (3)
30. (4)
31. (2)
32. (2)
33. (3) J and N, when counted clockwise.

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

(34-35) :

Clearly, the arrangement of boys is as shown.

34. (5) Clearly, Amit is to the left of Keshav and Praveen is to the north-east of Amit.
35. (3) Required distance $=\mathrm{NA}+\mathrm{AK}+\mathrm{KR}+\mathrm{RP}(25+40+60+90) \mathrm{m}=215 \mathrm{~m}$.

Maths

(36-40) :
36. (1) ? $\approx 395+187=582$
37. (2) $?=\sqrt[3]{3380}+\sqrt{1300} \approx \sqrt[3]{3375}+\sqrt{1296}=5+36=51$
38. $(3) ? \approx(5)^{2}+(21)^{3}+\sqrt{1089}=25+9261+33=9319$
39. (4) ? $\approx \frac{7020}{3} \times \frac{13}{29}=1048.96 \approx 1050$
40. (5) $? \approx \frac{5000 \times 25}{100}-\frac{3000 \times 65}{100}=1250-1950=-700$
(41-45):
41. (5) Required number of appeared candidates who qualified from state P in 2008

$$
=\frac{126}{7} \times(11+7)=324
$$

\therefore Total number of appeared candidate from state P in $2008=\left(\frac{324}{60} \times 100\right)=540$
42. (3) Let the number of appeared candidate from state Q in $2006=100$

Number of appeared candidate in 2007 from state Q in $2007=200$
\therefore Required number of appeared candidate from Q in $2006=\frac{408}{(30+90)} \times 100=340$
43. (1) Required difference $=450 \times \frac{60}{100}-600 \times \frac{43}{100}=270-258=12$
44. (4) Required number of qualified candidate from state Q in 2010
$=(3 \times 210)-\left(280 \times \frac{60}{100}+550 \times \frac{50}{100}\right)=630-(168+275)$
$=630-443=187$
45. (3) Number of qualified candidate from state P in $2009=480 \times \frac{70}{100}=336$
\therefore Required number of qualified candidate from state P in $2010=\frac{336}{14} \times 9=216$

(46-50):

46. (4) The series is based on the following pattern.
$11=2 \times 3+5$
$38=11 \times 4-6$
$197=38 \times 5+7$
$1172 \neq 197 \times 6-8$
$\therefore \quad 1172$ is wrong and it should be replaced by $197 \times 6-8=1174$
47. (1) The series is based on the following pattern :
$107-71=36=6^{2}$
$71-46=25=5^{2}$
$46-30=16=4^{2}$
$30-21=9=3^{2}$
$21-19=2 \neq 2^{2}$
$\therefore \quad 19$ should be replaced by 17 for which $21-17=2^{2}$
48. (4) The series is based on the following pattern :
$16=9+7$
$25=16+9$
$41=16+25$
$68 \neq 25+41$
49. (3) The series is based on the following pattern :

Obviously, 3.5 is the wrong number which should be replaced by 3.
50. (2) The series is based on the following pattern :

Obviously, 1.75 is the wrong number which should be replaced by 1.5 .
51. (4) Suppose the initial weight of the stone $=6 x \mathrm{~kg}$.

Thus, its price would be $\mathrm{k}(6 x)^{2}$ rupees.
The total price of those three stone -pieces $=\mathrm{k}\left[(1 \mathrm{x})^{2}+(2 \mathrm{x})^{2}+(3 x)^{2}\right]=14 \mathrm{k} x^{2}$ rupees
Now, loss occured after being cut $=36 \mathrm{k} x^{2}-14 \mathrm{k} x^{2}=22 \mathrm{k} x^{2}$
Now, acording to question,
₹ $5184=36 \mathrm{kx}{ }^{2}$
$1 \mathrm{k} x^{2}=\frac{5184}{36}=₹ 144$
$22 \mathrm{k} x^{2}=144 \times 22=₹ 3168$
52. (4) Suppose capacity of the tank $=24$ litre.

Thus, Efficiency of $\mathrm{A}=3$ litre/hour and $\mathrm{B}=4$ litre/hour
After 2 hour, amount of water in tank $=2 \times(4+3)=14$ litre.
Now, Amount of water to be filled $=24-14=10$ litre.
Thus, Total time required by B to fill the $\operatorname{tank}=\frac{10}{4}=2.5$ hours.
53. (2) The rate interest accrued on the $\operatorname{sum}=\frac{700}{5000} \times 100=14 \%$

Thus, required simple interest $=7000 \times \frac{170}{100}=₹ 11,900$
54. (4) Required ratio $=\frac{6.4}{21.6}$
$\frac{v_{1}}{v_{2}}=\frac{6.4}{21.6}$
$\frac{\frac{2}{3} \pi\left(r_{1}\right)^{3}}{\frac{2}{3} \pi\left(r_{2}\right)^{3}}=\frac{8}{27}$
$\left(\frac{r_{1}}{r_{2}}\right)^{3}=\left(\frac{2}{3}\right)^{3}$
$\mathrm{r}_{1}: \mathrm{r}_{2}=2: 3$

Campus

KD Campus

55. (4) Total age of all 4 boys $=4 \times 9=36 \mathrm{yrs}$.

Now, at present would be $(36+5 \times 4)$ yrs.
Again,
Total age of all five boys at present $=15 \times 5=75 \mathrm{yrs}$.
Thus, age of new boy $=75-56=19$ yrs.
(56-60):
56. (4) Required average $=\frac{8500}{100} \times \frac{1}{3} \times(24+20=15)=1671.66 \approx 1671$
57. (1) Number of males in Train $-R=8500 \times \frac{9}{100} \times \frac{40}{100}=306$
58. (5) Required $\%=\left(\frac{19}{13+9} \times 100\right) \%=\left(\frac{19}{22} \times 100\right) \%$
$=86.36 \% \approx 86 \%$
59. (3)
60. (4) Required $\%=\left[\frac{(20-15)}{15} \times 100\right] \%=33.33 \% \approx 33 \%$

(61-65):

61. (4) The given data are inadequate.
62. (5) From statement II,

If the age of Rani $=x$ years, then Surekha's age $=2 x$ years
$x+2 x=72$
$3 x=72$ years
$x=\frac{72}{3}=24$ years
Rani's age $=24$ years
As per the given information in statement I, Nidhi's age can be determined.
63. (2)
64. (5) Let Mr. Mehta's present income be ₹ x.

From statement I and II, 10% of $x=2500$
$x \times \frac{10}{100}=2500$
$x=2500 \times 10=₹ 25000$
65. (3) From statement I, Speed of the bus $=\frac{\text { Distance coverd }}{\text { Time Taken }}$
$=\frac{80}{5}=16 \mathrm{kmph}$
As per the information in statement II, the speed of the bus can also be determined.
(66-70):
66. (5) I. $4 x^{2}+17 x+15=0$

$$
x=-\frac{5}{4}
$$

$x=-3$
II. $3 y^{2}+19 y+28=0$

$$
y-\frac{7}{3}
$$

$y=-4$
Hence, relationship between x and y can't be established.

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
67. (5) I. $3 x^{2}-17 x+22=0$
$x=\frac{11}{3}$
$x=2$
II. $5 y 2-21 y+22=0$
$y=\frac{11}{5}$
$y=2$
Hence, relationship between x and y can't be established.
68. (3) I. $3 x^{2}+11 x+10=0$
$x=-\frac{5}{3}$
$x=2$
II. $2 y^{2}+13 y+21=0$
$y=-\frac{7}{2}$
$y=-3$
Hence, $x>y$
69. (4) I. $3 x^{2}+13 x+14=0$
$x=-\frac{7}{3}$
$x=-2$
II. $8 y^{2}+26 y+21=0$
$x=-\frac{7}{4}$
$y=-\frac{3}{2}$
Hence, $y>x \Rightarrow x<y$
70. (1) $3 x^{2}-14 x+15=0$
$x=\frac{5}{3}$
$x=3$
II. $15 y^{2}-34 y+15=0$
$y=\frac{3}{5}$
$y=\frac{5}{3}$
Hence, $x \geq y$

ENGLISH LANGUAGE

91. (2) Add 'that' before 'the work'.
92. (4) Change 'indicates' into 'indicate'.
93. (3) Change 'to be' into 'being'.
94. (3) Remove 'the' before 'earth'.
95. (1) Change 'life' into 'lives'.
96. (1) Change 'have' into 'has'.
97. (2) Change 'linkage to into' 'linked to'.
98. (1) Change 'easy through' into 'eased through'.
99. (5) No error.
100. (1) Remove 'the' before 'Anglo - saxon'.

Campus
 KD Campus

IBPS PO SPECIAL PHASE -I MOCK TEST - 248 (ANSWER KEY)

1. (1)
2. (1)
3. (3)
4. (2)
5. (5)
6. (2)
7. (2)
8. (2)
9. (1)
10. (2)
11. (2)
12. (2)
13. (1)
14. (3)
15. (1)
16. (3)
17. (3)
18. (3)
19. (2)
20. (1)
21. (5)
22. (2)
23. (3)
24. (4)
25. (5)
26. (4)
27. (4)
28. (4)
29. (3)
30. (4)
31. (2)
32. (2)
33. (3)
34. (5)
35. (3)
36. (1)
37. (2)
38. (3)
39. (4)
40. (5)
41. (5)
42. (3)
43. (1)
44. (4)
45. (3)
46. (4)
47. (1)
48. (4)
49. (3)
50. (2)
51. (4)
52. (4)
53. (2)
54. (4)
55. (4)
56. (4)
57. (1)
58. (5)
59. (3)
60. (4)
61. (4)
62. (5)
63. (2)
64. (5)
65. (3)
66. (5)
67. (5)
68. (3)
69. (4)
70. (1)
71. (4)
72. (4)
73. (1)
74. (5)
75. (1)
76. (4)
77. (2)
78. (2)
79. (4)
80. (3)
81. (4)
82. (1)
83. (1)
84. (2)
85. (3)
86. (2)
87. (3)
88. (1)
89. (2)
90. (3)
91. (2)
92. (4)
93. (4)
94. (3)
95. (1)
96. (1)
97. (2)
98. (1)
99. (5)
100.(1)
