SSC MOCK TEST - 245 (SOLUTION)

1. (C) As,

Similarly,

2. (D) As,

Similarly,

3. (A) Snake lives in Burrows, while Pig lives in sty.
4. (D) Riboflavin, Biotin and Ascorbic acid is chemical name of vitamin B_{2}, B_{7} and vitamin C respectively, while ferrum is chemical name of Iron.
5. (C) (A)

(B)

(C)

(D)

6. (D)

(B) $10 \xrightarrow{+1} 11 \xrightarrow{(11)^{2}} 121$
(C) $12 \xrightarrow{+1} 13 \xrightarrow{(13)^{2}} 169$
(D) $14 \xrightarrow{+1} 15 \xrightarrow{(15)^{2}} 225$
7. (B) 5. Jingle \rightarrow 2. Jingling \rightarrow 1. Journey $\rightarrow 3$. Judge $\rightarrow 4$. Judgement
8. (C) Amrita's position from the left end $\rightarrow 3^{\text {rd }}$

Sumitra's position from the right end $\rightarrow 26^{\text {th }}$
After changing Amrita's position from the left end $\rightarrow 35^{\text {th }}$
\therefore Required Number of girls $=35+26-1=60$
9. (B) $3125,3280,3435,5220,5430,5640,3320,3510,3700$

10. (C)

11. (D) DIMENTION
12. (B)

;

13. (C) Time $\rightarrow 3: 24$

Angle made by hour hand $=3 \times 30=90^{\circ}$
Angle made by minute hand $=24 \times \frac{11}{2}=132^{\circ}$
\therefore Required Angle $=132^{\circ}-90^{\circ}=42^{\circ}$
14. (C)

O 7.5 km

Hence, his face is in north direction.
15. (C) $\mathrm{B}_{2} \mathrm{O}_{15} \mathrm{O}_{15} \mathrm{~K}_{11} \rightarrow 2+15+15+11=43 \rightarrow 4+3=7$ $\mathrm{P}_{16} \mathrm{E}_{5} \mathrm{~N}_{14} \rightarrow 16+5+14=35 \rightarrow 3+5=8$
$\mathrm{C}_{3} \mathrm{O}_{15} \mathrm{P}_{16} \mathrm{Y}_{25} \rightarrow 3+15+16+25=59 \rightarrow 5+9=14$
16. (D)

Conclusion:

I. False
II. False

Hence, neither I nor II follows.
17. (C) bcbabbbbcbabbbcbabb
18. (B) $384 \pi 2.4>6 \mathrm{~V} 20<25.25$
$=\frac{384}{2.4} \times 6-20+25.25$
$=160 \times 6 \times 6-20+25.25$
$=32 \times 30-20+25.25$
$=960-20+25.25$
$=960+5.25=965.25$
19. (D) Number 6 will be the opposite face of 2.
20. (D)

Total number of students $=17+4+5+11=37$
Total number of girl students $=15$
\therefore Required difference $=37-15=22$
21. (A)
22. (A)
24. (D)

Rohit's daughter \qquad .Lady

Lady is either daughter or niece of Rohit.
25. (C)
26. (B) The Bakken Formation is one of the largest contiguous deposits of oil and natural gas in the United States. It is an interceded sequence of black shale, siltstone and sandstone that underlies large areas of northwestern North Dakota, north-eastern Montana, southern Saskatchewan and southwestern Manitoba.
29. (A) The Aichi Targets are a set of 20, time bound, measureable targets for the conservation of biodiversity. The targets were agreed by the Parties to the Convention on Biological Diversity in Nagoya, Japan, in October 2010. Achievement of the targets will contribute to reducing, and eventually halting, the loss of biodiversity at a global level by the middle of the twentyfirst century.
30. (D) The Governor is the head of executive power of a state but real executive authority is vested in the Council of Ministers.
31. (C) Guru Gobind Singh was named as the tenth Sikh guru, at the age of 9, after the ninth Guru and his father Guru Teg Bahadur was killed.
32. (A) The State Finance Corporations (SFCs) are the integral part of institutional finance structure in the country. SEC promotes small and medium industries of the states. Besides, SFCs are helpful in ensuring balanced regional development, higher investment, more employment generation and broad ownership of industries.
33. (C) National saving certificate is not considered as a national debt. Government debt is the debt owed by a central government. In the U.S. and other federal states, "government debt" may also refer to the debt of a state or provincial, municipal or local government.
35. (D) Down syndrome is caused due to three copies of the genes on chromosome 21, rather than the usual two. The parents of the affected individual are typically genetically normal. Those who have one child with Down syndrome have about a 1% risk of having a second child with the syndrome, if both parents are found to have normal karyotypes.
36. (A) Rajaraja Chola I, popularly known as Raja. Raja the Great, was one of the greatest emperors of the Tamil Chola Empire of India who ruled between 985 and 1014 AD . By conquering several small kingdoms in South India, he expanded the Chola Empire as far as Sri Lanka in the south, and Kalinga (Orissa) in the northeast. One of the last conquests of Rajaraja was the naval conquest of the 'old islands of the sea numbering 12,000', the Maldives.
37. (C) By the 1960s, the Indian banking industry had become an important tool to facilitate the development of the Indian economy. The Government of India issued an ordinance ('Banking Companies (Acquisition and Transfer of Undertakings) Ordinance, 1969') and nationalised the 14 largest commercial banks with effect from the midnight of 19th July 1969.
39. (B) River Hoover dam is a concrete and gravity dam in black canyon of the Colorado river on the Border between the US states of Arizona and Nevada.
40. (A) The Treaty of Bassein (Now called Vasai) was a pact signed on December 31st, 1802 between the British East India Company and Baji Rao II, the Maratha peshwa of Pune (Poona) in India after the Battle of Poona. The treaty was a decisive step in the dissolution of the Maratha Confederacy, which led to the East India Company's usurpation of the Peshwa's territories in western India in 1818.
41. (D) On the occasion of 150th birth anniversary of Mahatma Gandhi, Cricketer Sachin Tendulkar bagged the 'Most Effective Swachhata Ambassador' award by the President of India. He has been promoting cleanliness drives in India for almost 10 years.
45. (A) The Strait of Dover is the strait at the narrowest part of the English Channel and marks a boundary between the Channel and North Sea, separating Great Britain from continental Europe (United Kingdom and France.
46. (B) Charter Acts of 1813 was an Act of the Parliament of the United Kingdom which renewed the charter issued to the British East India Company, and continued the Company's rule in India. However, the Company's commercial monopoly was ended, except for the tea trade and the trade with China. Reflecting the growth of British power in India.
47. (C) Alaknanda river meets the Dhauliganga river at Vishnuprayag, the Nandakini river at Nandprayag, the Pindar river at Karnaprayag, the Mandakini river at Rudraprayag and finally the Bhagirathi river at Devprayag to form the mainstream, the Ganges.
48. (B) Henri Becquerel was a physicist, Nobel laureate, and the discoverer of radioactivity, for his work in this field he, along with Marie Curie and Pierre Curie, received the 1903 Nobel Prize in Physics.
49. (D) Bargis was the Royal cavalry of the Maratha army system. There were two kinds of cavalry viz. Bargirs and the Shiledars. Bargirs were provided horses from the state and thus, the horses were the property of the royal household and were looked after by state officers. Shiledars used to keep their own horses.
51. (B) One third of $1824=\frac{1}{3} \times 1824=608$

Required percentage $=\frac{608 \times 100}{152}=400 \%$
52. (C)

After increment of 25%, new length of $\mathrm{QR}=5+5 \times \frac{25}{100}$
$=5+\frac{5}{4}=\frac{25}{4}=6.25 \mathrm{~cm}$
New length of $\mathrm{PR}=8-6.25=1.75$
Required \% decrease $=\frac{1.25}{3} \times 100=\frac{125}{3} \%=41.66 \%$
53. (C) According to question,
C.P of watch $=₹ 1000$

Profit $=16 \frac{2}{3} \%$ of $\mathrm{SP}=\frac{50}{300}$
$\mathrm{CP}=\mathrm{SP}-$ Profit $=300-50=250$
250 unit $=1000$
1 unit $=\frac{1000}{250}=4$
300 unit $=300 \times 4=₹ 1200$
$\therefore \quad \mathrm{SP}=₹ 1200$
54. (B) If it increases $1 / 6$ th annually, then after 2 years $=36 \times \frac{7}{6} \times \frac{7}{6}=49 \mathrm{~cm}$
55. (A) $x^{2}-6 x+1=0$
$\Rightarrow \mathrm{x}^{2}+1=6 \mathrm{x}$
$\Rightarrow \mathrm{x}+\frac{1}{\mathrm{x}}=6$
$\because\left(\frac{x^{6}+1}{x^{3}}\right)=x^{3}\left(\frac{\frac{x^{3}+1}{x^{3}}}{x^{3}}\right)=x^{3}+\frac{1}{x^{3}}$
$\Rightarrow \mathrm{x}+\frac{1}{\mathrm{x}}=6$
Cubing both side,

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}+3\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)=216 \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}=216-18 \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}=198
\end{aligned}
$$

56. (D) We have,

$$
\begin{aligned}
& P=3+\sqrt{8} \\
& \frac{1}{P}=\frac{1}{3+\sqrt{8}} \times \frac{3-\sqrt{8}}{3-\sqrt{8}}=\frac{3-\sqrt{8}}{9-8}=3-\sqrt{8} \\
& \left(P-\frac{1}{P}\right)=(3+\sqrt{8}-3+\sqrt{8})=2 \sqrt{8} \\
& \left(P-\frac{1}{P}\right)^{3}=(2 \sqrt{8})^{3}=64 \sqrt{8}=128 \sqrt{2}
\end{aligned}
$$

57. (B) $24^{\sqrt{x}}+32^{\sqrt{x}}=40^{\sqrt{x}}$

We know that,
$(24)^{2}+(32)^{2}=(40)^{2}$
$\because \sqrt{\mathrm{x}}=2$
$(\sqrt{x})^{2}=4$
$\therefore x=4$
58. (A) Let the principal $=100$ unit

According to the question,
5 unit $=2500$
1 unit $=\frac{2500}{5}=₹ 500$
100 unit $=500 \times 100=₹ 50,000$
Hence total principal $=₹ 50,000$
59. (A) According to question,

Interior angle - Exterior angle $=108^{\circ}$
We know that,
Interior angle + Exterior angle $=180^{\circ}$
Solving equation (I) and (II),
2 interior angle $=288$
Interior angle $=144$
Exterior angle $=180^{\circ}-144^{\circ}=36^{\circ}$
\therefore Number of sides $=\frac{360^{\circ}}{\text { Exterior angle }}=\frac{360^{\circ}}{36}=10$
60. (C)

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{ADC}=\angle \mathrm{ABC}$
$\angle \mathrm{DAE}=\angle \mathrm{BAC}$
$\angle \mathrm{AED}=\angle \mathrm{ACB}$
$\therefore \angle \mathrm{ADE} \sim \angle \mathrm{ABC}$
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\frac{6}{18}=\frac{5}{B C}$
$\therefore B C=15 \mathrm{~cm}$
61. (C) We know that,

The angle in same segment are equal.
$\therefore \angle \mathrm{BDC}=\angle \mathrm{BAC}$
Now in $\triangle A B C$,
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+78^{\circ}+42^{\circ}=180^{\circ}$
$\angle \mathrm{A}=180^{\circ}-120^{\circ}$
$\angle \mathrm{A}=60^{\circ}$
$\therefore \angle \mathrm{BAC}=\angle \mathrm{BDC}=60^{\circ}$
62. (B) Average of first four numbers a, b, c and $d=10$

Total of first four numbers $=10 \times 4=40$
Average of last four numbers b, c, d and $e=8$
Total of last four numbers $=8 \times 4=32$

From equation (1) and (2),
$a+b+c+d-(b+c+d+e)=40-32$
$a-e=8$
$\mathrm{e}=10$
$a=8+e$
$a=8+10=18$
63. (A) Let number 'A' and 'B' be Kx and Ky .
$A+B=K x+K y=K(x+y)$
$\frac{A^{3}-B^{3}}{A^{2}+B^{2}+A B}=\frac{(A-B)\left(A^{2}+B^{2}+A B\right)}{\left(A^{2}+B^{2}+A B\right)}$
$=A-B=K x-K y=K(x-y)$
HCF of $(A+B)$ and $\frac{A^{3}-B^{3}}{A^{2}+B^{2}+A B}$ is K.
64. (B) Final quantity $=$ Initial quantity $\left(1-\frac{x}{c}\right)^{t}$
$=405\left(1-\frac{45}{405}\right)^{2}=405\left(\frac{8}{9}\right)^{2}$
$=\left(405 \times \frac{64}{81}\right)$
$=5 \times 64=320$ litres
65. (C) A can do $\frac{1}{3}$ of a piece of work in 5 days.

A can do 1 unit of work in $\frac{5 \times 3}{1}=15$ days
B can do $\frac{3}{4}$ of a piece of work in 9 days.
B can do 1 unit of work in $\frac{9 \times 4}{3}=12$ days

C can do $\frac{1}{2}$ of a piece of work in 5 days.
C can do 1 unit of work in $\frac{5 \times 2}{1}=10$ days
$\mathrm{A}=15$
$\mathrm{~B}=12$

$\mathrm{C}=10$$\quad 60 \quad$| 4 |
| :--- |
| 5 |
| 6 |

$T(A+B+C)=15$
$(A+B+C)=\frac{60}{15}=4$ days
66. (D) $\mathrm{A}=\frac{\pi}{2}-\mathrm{B}$
taking \tan both sides,
$\tan \mathrm{A}=\tan \left(\frac{\pi}{2}-\mathrm{B}\right)$
$\tan \mathrm{A}=\cot \mathrm{B}$
$\tan A=\frac{1}{\tan B}$
$\mathrm{B}+\mathrm{C}=\mathrm{A}$
taking \tan both sides, $\tan (\mathrm{B}+\mathrm{C})=\tan \mathrm{A}$
$\frac{\tan B+\tan C}{1-\tan B \tan C}=\tan A$
$\Rightarrow \frac{\tan B+\tan C}{1-\tan B \tan C}=\frac{1}{\tan B}$
$\Rightarrow \tan ^{2} \mathrm{~B}+\tan \mathrm{B} \tan \mathrm{C}=1-\tan \mathrm{B} \tan \mathrm{C}$
$\Rightarrow \tan ^{2} \mathrm{~B}+2 \tan \mathrm{~B} \tan \mathrm{C}=1$
$\Rightarrow \tan \mathrm{B}(\tan \mathrm{B}+2 \tan \mathrm{C})=1$
$\Rightarrow \tan \mathrm{B}+2 \tan \mathrm{C}=\frac{1}{\tan \mathrm{~B}}$
$\therefore \tan A=\tan B+2 \tan C$
67. (B)

$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=20$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC} \times \sin \mathrm{A}$
$10 \sqrt{3}=\frac{1}{2} \times \mathrm{c} \times \mathrm{b} \times \sin 60^{\circ}$
$10 \sqrt{3}=\frac{1}{2} \times c \times b \times \frac{\sqrt{3}}{2}$
$\mathrm{bc}=40$
$\cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$
$\cos 60^{\circ}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\frac{1}{2}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}=\mathrm{bc}$
$\Rightarrow(\mathrm{b}+\mathrm{c})^{2}-2 \mathrm{bc}-\mathrm{bc}-\mathrm{a}^{2}=0$
$\Rightarrow(20-a)^{2}-3 \times 40-a^{2}=0$
$\Rightarrow 400+\mathrm{a}^{2}-40 \mathrm{a}-120-\mathrm{a}^{2}=0$
$\Rightarrow 40 \mathrm{a}=280$
$\therefore \mathrm{a}=\frac{280}{40}=7$
$\mathrm{b}+\mathrm{c}=20-\mathrm{a}=20-7=13$
bc $=40$
$(b-c)^{2}=(b+c)^{2}-4 a c$
$b-c=\sqrt{(13)^{2}-4 \times 40}$
b-c = 3
Addidng equation (i) and (ii),
b $+\mathrm{c}=13$

$\mathrm{b}-\mathrm{c}=3$
$2 \mathrm{~b}=16$

$\therefore \mathrm{b}=8$
$\mathrm{c}=13-8=5$
Hence, sides of triangle are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 5 cm .
68. (B) Diameter of pipe $=14 \mathrm{~cm}$

Radius of pipe $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
Volume of cylindrical pipe $=\pi r^{2} h$
Volume of water pumped out in 2 hours
$=\frac{22}{7} \times 7 \times 7 \times 15 \times 2 \times 3600=16632000 \mathrm{~cm}^{3}$
$1000 \mathrm{~cm}^{3}=1$ litre
$16632000=\frac{1}{1000} \times 16632000=16632$ litres
69. (C) $a(a+b+c)=45$

$$
\begin{aligned}
& \Rightarrow a=\frac{45}{a+b+c} \\
& b(a+b+c)=64 \\
& \Rightarrow b=\frac{64}{a+b+c} \\
& c(a+b+c)=64 \\
& \Rightarrow c=\frac{60}{a+b+c}
\end{aligned}
$$

ATQ,
$a+b+c=\frac{45}{a+b+c}+\frac{64}{a+b+c}+\frac{60}{a+b+c}$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{169}{(\mathrm{a}+\mathrm{b}+\mathrm{c})}$

$$
\begin{aligned}
& \Rightarrow(a+b+c)^{2}=169 \\
& \therefore a+b+c=\sqrt{169}=13 \\
& a(a+b+c)=45 \\
& a=\frac{45}{13} \\
& b(a+b+c)=64 \\
& b=\frac{64}{13} \\
& c(a+b+c)=60 \\
& c=\frac{60}{13} \\
& 13(a+2 b+3 c)=13\left(\frac{45}{13}+\frac{2 \times 64}{13}+3 \times \frac{60}{13}\right) \\
& =13\left(\frac{45+128+180}{13}\right) \\
& =13 \times \frac{353}{13}=353
\end{aligned}
$$

70. (D) $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
$=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}$
$=\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}$
$=\frac{2 \times\left[\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20\right]^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}$
$=\frac{2 \times 2\left[\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}\right]}{2 \times \sin 20^{\circ} \cos 20^{\circ}}$
$\frac{4 \sin \left(60^{\circ}-20^{\circ}\right)}{\sin 40^{\circ}}$
$(\because \sin (a-b)=\sin a \cos b-\cos a \sin b)$
$\frac{4 \sin 40^{\circ}}{\sin 40^{\circ}}=4$
71. (D) Let the total number of employees be 100 .

Number of male employees $=40$
Number of female employees $=100-40=60$
Number of male employees, who earn more than ₹ 25,000
$=75 \%$ of $40=\frac{75}{100} \times 40=30$
Total number of employees, who earn more than ₹ 25,000
$=45 \%$ of $100=\frac{45}{100} \times 100=45$
Number of female employees, who earn more than ₹ $25,000=45-30=15$
Number of female employees, who earn less than ₹ $25,000=60-15=45$
Required fraction $=\frac{45}{60}=\frac{3}{4}$
72. (A) Required $\%$ decrease $=\left(\frac{900-800}{900} \times 100\right) \%$
$=\left(\frac{100}{900} \times 100\right) \%=\frac{100}{9} \%=11 \frac{1}{9} \%$
73. (C) Required $\%$ increase $=\left(\frac{1200-600}{600} \times 100\right) \%$

$$
=\left(\frac{600}{600} \times 100\right) \%=100 \%
$$

74. (D) In 2003-04, $\%$ increase $=\left(\frac{200}{400} \times 100\right) \%=50 \%$

In 2004-05, $\%$ increase $=\left(\frac{300}{600} \times 100\right) \%=50 \%$
In $2006-07, \%$ increase $=\left(\frac{200}{800} \times 100\right) \%=25 \%$
In 2007-08, \% increase $=\left(\frac{200}{1000} \times 100\right) \%=20 \%$
75. (A) Required $\%$ increase $=\left(\frac{1000-400}{400} \times 100\right) \%$

$$
=\left(\frac{600}{400} \times 100\right) \%=150 \%
$$

MEANINGS IN ALPHABETICAL ORDER

Abstain from

Admonish
Affluent
Allowance
Confront
Destitute
Ethnomania
Exonerate
Fallacy
Grievance
Idolomania
Inception
Islomania
Laud
Legitimacy
Nuisance
Plump
Profane
Puppet
Quagmire
Reproach
Resemblance
Splendour
Supremacy
to shy away from something acceptable reason
to scold or criticize
having an abundance of goods or riches the fact of allowing something to face especially in challenge a poor
a passion for ethnic or racial autonomy to relieve
a false belief
a complaint
an excessive adoration of idols
a beginning of something
a fascination with islands to praise
the quality of being based on a fair or anything that annoys or is unpleasant a sudden plunge or fall showing a lack of respect for god or religion
a person or thing controlled by something else a difficult, complicated or unpleasant situation to blame or criticize the fact/state of being or looking similar grand and impressive beauty
the state or condition of being superior to all others in authority, power, or status to something behaviour or attitudes showing high moral standards

पहे जकरना

ड T° ट ना, स वध न करना
धी
आ ज्ञ
स मना करना
निर्ध न
ज ती यय नस ली यर वा यह $T I$ का जु
मु क त करना
${ }^{-1} \mathrm{~T}$, T ति
शि का या
मू. fितकी प्र तिअ यध्किधु न
अरं ${ }^{T}$
द्वी प` \({ }^{\text {• }}\) के प्रतिअ यध्काआ कण \({ }^{`}\)
प्र पं सा
वै था
विषन, ख लल
प्तन
अर्पवि T , ना प क
क्ठ पु तली
एक कठ न, जंट लय अप्रि यसि थT ति दा' ठा लगा ना, निं दा करना

समा नता
पान, वै $\boldsymbol{q}^{\boldsymbol{T}} \mathrm{व}$
समा'` ${ }^{\prime}$ चता

गु प

SSC MOCK TEST - 245 (ANSWER KEY)

1.	(C)	26.	(B)
2.	(D)	27.	(D)
3.	(A)	28.	(A)
4.	(D)	29.	(A)
5.	(C)	30.	(D)
6.	(D)	31.	(C)
7.	(B)	32.	(A)
8.	(C)	33.	(C)
9.	(B)	34.	(A)
10.	(C)	35.	(D)
11.	(D)	36.	(A)
12.	(B)	37.	(C)
13.	(C)	38.	(D)
14.	(C)	39.	(B)
15.	(C)	40.	(A)
16.	(D)	41.	(D)
17.	(C)	42.	(C)
18.	(B)	43.	(C)
19.	(D)	44.	(A)
20.	(D)	45.	(A)
21.	(A)	46.	(B)
22.	(A)	47.	(C)
23.	(B)	48.	(B)
24.	(D)	49.	(D)
25.	(C)	50.	(C)

76. (C) Change 'were' into 'was'. When 'amount of is used with uncountable nouns, it is followed by a singular verb.
77. (B) Change 'their' into 'his'. 'Each' takes singular pronoun.
89. (D) The correct spelling of 'Legitemacy' is 'Legitimacy', 'Suprimacy' is 'Supremacy' and 'Idiosy is 'Idiocy'.
90. (A) The correct spelling of 'Grivence' is 'Grievance', 'Resemblence' is 'Resemblance' and 'Allowence is 'Allowance'.

