SSC MOCK TEST - 243 (SOLUTION)

1. (B) As,
$\mathrm{N} \rightarrow \frac{14}{2}=7 \rightarrow(7)^{2}=49$
$\mathrm{B} \rightarrow \frac{2}{2}=1 \rightarrow(1)^{2}=1$
$P \rightarrow \frac{16}{2}=8 \rightarrow(8)^{2}=64$
$\mathrm{D} \rightarrow \frac{4}{2}=2 \rightarrow(2)^{2}=4$
Similarly,
$\mathrm{R} \rightarrow \frac{18}{2}=9 \rightarrow(9)^{2}=81$
$F \rightarrow \frac{6}{2}=3 \rightarrow(3)^{2}=9$
$\mathrm{T} \rightarrow \frac{20}{2}=10 \rightarrow(10)^{2}=100$
$H \rightarrow \frac{8}{2}=4 \rightarrow(4)^{2}=16$
2. (D) As,

Similarly,

4
$(4)^{2}+(5)^{2}-4 \times 2=41-8=33$
3. (A) The list of food items is called menu. Similarly, the list of books are called catalogue.
4. (C) Except Ladakh, all others are states of India. Ladakh is the union territory of India.
5. (A) Except January, the number of letters in the words February, November and December are eight, while there are seven letters in January.
6. (D) (A) $1 \times 1=1$
$1 \times 1=1$
(B) $3 \times 3=9$
$9 \times 9=81 \Rightarrow 8+1=9$
(C) $5 \times 5=25$
$25 \times 25=625 \Rightarrow 6+2+5=13$
(D) $4 \times 4=16$

$$
16 \times 16=256 \Rightarrow 2+5+6=13 \neq 25
$$

7. (C) 1. Recruitment plan \rightarrow 4. Advertisment \rightarrow 5. Review application \rightarrow 2. Interview \rightarrow 3. Job
8. (B)

9.

(A) $62 \xrightarrow{\times 1.5} 93 \xrightarrow{\times 2} 186$
$56 \xrightarrow{\times 1.5} 84 \xrightarrow{\times 2} 168$
Similarly,
$50 \xrightarrow{\times 1.5} 75 \xrightarrow{\times 2} 150$
10. (C) I(9) $\xrightarrow{\times 2} \mathrm{R}(18) \xrightarrow{-2} \mathrm{P}(16)$
$\mathrm{L}(12) \xrightarrow{\times 2} \mathrm{X}(24) \xrightarrow{-2} \mathrm{~V}(22)$
Similarly,
$\mathrm{M}(13) \xrightarrow{\times 2} \mathrm{Z}(26) \xrightarrow{-2} \mathrm{X}(24)$
11. (D) As,
$(7)^{3} \longrightarrow 343 \xrightarrow{-7} 336 \longrightarrow 3+3+6=12$
$(9)^{3} \longrightarrow 729 \xrightarrow{-1} 720 \longrightarrow 7+2+0=9$
Similarly,
$(11)^{3} \longrightarrow 1331 \xrightarrow{-11} \mathbf{1 3 2 0} \longrightarrow 1+3+2+0=6$
12. (B) $24+5+9=38 ; \quad 30+7+1=38$
$19+18+\mathbf{1}=38$
13. (C) Number 1 will be on the top, if 2 is at the bottom.
14. (D)

In triangle AOE,
$\mathrm{AC}=\mathrm{AO}^{2}+\mathrm{OE}^{2}$
$=\sqrt{10^{2}+11^{2}}=\sqrt{100+121}$
$=\sqrt{221} \mathrm{~km}$
\therefore Required shortest distance
$=\sqrt{221} \mathrm{Km}$

16. (A)

Conclusion:
I. True
II. False

Hence, conclusion I follows.
17. (B) pqrrpq/qrppqr/pqrrpq
18. (B) 1.25 * $18 \& 2.4 @ 4 \% 4.75$
$=1.25-18 \div 2.4 \times 4+4.75$
$=1.25-7.5 \times 4+4.75$
$=-24$
19. (C)

Required number of students who are Judge, but not Advocate $=6$
20. (B) There are 28 triangles in the figure.
21. (A)

22. (B)
23.(C)
24. (C) SOUL
25. (A) 00, 55, 22, 11, 96 ($\mathrm{P} \quad \mathrm{E} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{L}$)
26. (A) The Mauryan emperor, Ashoka invaded Kalinga in 261 BC and after a fierce battle Kalinga was conquered. The 13 th rock edict of Ashoka elaborates the Kalinga war.
27. (A) The First battle of Muhammad Ghori against a Hindu ruler was with Raja Bhimdev II of Gujarat who was a member of Solanki Dynasty. This is called "Battle of Gujarat" and it took place at Kayadra near Mount Abu. Raja Bhimdev II was young and real regent was his mother Naikidevi. Naikidevi inflicted such a major defeat to Muhammad Ghori that this invasion became Muhammad's first and last attack on India from the Gujarat side. He never turned to Gujarat again.
28. (A) Mahapadma Nanda (345 BC - 329 BC) was the founder of Nanda dynasty. Mahapadma Nanda was also known as Ekarat and Sarvakshatrantaka.
29. (D)
30. (D)
31. (A)
32. (B) Only 2 and 3 options are correct. The first statement is factually incorrect. Legislative Council is a continuing House and one-third of the members retire in every two years.
33. (D) Fiscal deficit is a shortfall in a government's income compared with its spending.
34. (A)
35. (A)
36. (A)
37. (D) 'Directive Principles' in our constitution are are not enforceable by any court of law.
38. (A) EDSAC is the first generation of computer.
39. (B) Sarkaria Commission was set up in June 1983 by the central government of India.
40. (A)
41. (C)
42. (A)
43. (D)
44. (A)
45. (B) The given principle is one of the postulates of the Dalton's atomic theory given in 1803 by John Dalton. The postulates of Dalton's atomic theory are as follows:

1. Elements consist of indivisible small particles (atoms).
2. All atoms of the same element are identical; different elements have different number of atom.
3. Atoms can neither be created nor destroyed.
4. 'Compound elements' i.e. Compounds are formed when atoms of different elements join in simple ratios to form Molecules.
5. (D) 47. (B)
6. (B) The seven ancient wonders of the world include Great Pyramid at Giza, Egypt; Hanging Gardens of Babylon; Statue of Zeus at Olympia, Greece; Temple of Artemis at Ephesus; Mausoleum at Halicarnassus; Colossus of Rhodes and Lighthouse at Alexandria, Egypt; The Taj Mahal in India.
7. (D)
8. (B)
9. (C) Divisibility rule of 25 :

If a number is divisible by 25 , then the last two digits of number must be 00,25 or 75 .
So, the value of A be 0,2 or 7
Value of B be 0 or 5
Hence from the option value of $\mathrm{B}-\mathrm{A}=5-2=3$
52. (D) Let the length and breadth of rectangle be $\mathrm{x} m$ and $\mathrm{y} m$ respectively.

After $16 \frac{2}{3} \%$ increase, new length of rectangle $=\left(x+16 \frac{2}{3} \%\right.$ of $\left.x\right) m$
$=\left(x+\frac{50}{3 \times 100} \times x\right) m$
$=\left(x+\frac{x}{6}\right) m=\frac{7 x}{6} m$
After $14 \frac{2}{7} \%$ decrease, new breadth of rectangle $==\left(y-14 \frac{2}{7} \%\right.$ of $\left.y\right) \mathrm{m}$
$=\left(y-\frac{100}{7 \times 100} \times y\right) m$
$=\left(y-\frac{y}{7}\right) m=\frac{6 y}{7} m$
Perimeter of rectangle $=2$ (length + breadth $)=2(x+y) m$
New perimeter of rectangle $=2\left(\frac{7 x}{6}+\frac{6 y}{7}\right)$
Increaed/decrease in perimeter $=2\left(\frac{7 x}{6}+\frac{6 y}{7}\right)-2(x+y) m==2\left(\frac{x}{6}-\frac{y}{7}\right) m$

Campus

K D Campus Pvt. Ltd

$\%$ increase/decrease $=\frac{2\left(\frac{x}{6}-\frac{y}{7}\right)}{2(x+y)} \times 100$
We can't determine percentage because coefficient of x and y in increase/decrease of perimeter are different.
53. (C)

In $\triangle \mathrm{OPQ}$
$\angle O Q P=65^{\circ}$
$\because \mathrm{OP}=\mathrm{OQ}$ (Radius of circle)
$\therefore \angle \mathrm{OQP}=\angle \mathrm{OPQ}=65^{\circ}$
We know that sum of angles of trinagle is 180°.
$\angle \mathrm{OQP}+\angle \mathrm{OPQ}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=180^{\circ}-65^{\circ}-65^{\circ}$
$\therefore \angle \mathrm{QOP}=50^{\circ}$
$\angle \mathrm{QOP}=\angle \mathrm{ROS}$ (vertically opposite angle)
$\therefore \angle \mathrm{ROS}=50^{\circ}$
54. (D) Let the number of holidays be x and average number of person who visited the Qutub minar in holidays be y .
Total number of person who visited Qutub minar in November $2019=(200 \times 30)=6000$
Average number of visitor when holidays are excluded $=(200+30)=230$
ATQ,
$6000=230(30-x)+x y$
Average number of vistitor when holidays and the day which the maximum number of people visited are excluded $=210$
ATQ,
$6000=210(29-x)+x y+550$
From equation (i) and (ii),
$230(30-x)+x y=210(29-x)+x y+550$
$\Rightarrow 6900-230 \mathrm{x}+\mathrm{xy}=6090-210 \mathrm{x}+\mathrm{xy}+550$
$\Rightarrow 20 \mathrm{x}=260$
$\therefore \mathrm{x}=\frac{260}{20}=13$
55. (C) In 300 litres mixture,

Quantity of petrol $=300 \times \frac{5}{5+1}=250$ litres
Quantity of kerosene $=300 \times \frac{1}{5+1}=50$ litres
Let the x litres of kerosene be added to the new mixture.
ATQ,
$\frac{250}{50+\mathrm{x}}=\frac{3}{1}$
$\Rightarrow 250=150+3 \mathrm{x}$
$\Rightarrow 3 \mathrm{x}=100$
$\Rightarrow \mathrm{x}=\frac{100}{3}$ litres $=33 \frac{1}{3}$ litres
Short trick:
Petrol : Kerosene
$\left.\begin{array}{l}(5 \quad: \quad 1) \times 3=15: 3 \\ (3 \quad: \quad 1) \times 5=15: 5\end{array}\right)+2$
18 units $=300$ litres
2 units $=\frac{300}{18} \times 2$ litres
$=\frac{100}{3}$ litres $=33 \frac{1}{3}$ litres
56. (A) Let the total number of voters in the voter list be x .

Number of voter who cast their votes $=x-25 \%$ of x
$=\frac{75 \mathrm{x}}{100}=\frac{3 \mathrm{x}}{4}$
Invalid votes $=6 \frac{2}{3} \%$ of $\frac{3 x}{4}=\frac{20}{3 \times 100} \times \frac{3 x}{4}=\frac{x}{20}$
Ratio of number of votes of Ashutosh and Sanjur = 140:100=7:5
7 units $=2450$
5 units $=\frac{2450}{7} \times 5=1750$
ATQ,
40% of $x+2450+1750+\frac{x}{20}=\frac{3 x}{4}$
$\Rightarrow \frac{2 \mathrm{x}}{5}+4200+\frac{\mathrm{x}}{20}=\frac{3 \mathrm{x}}{4}$
$\Rightarrow \frac{3 x}{4}-\frac{9 x}{20}=4200$
$\Rightarrow \frac{6 \mathrm{x}}{20}=4200$
$\therefore \mathrm{x}=14000$
Number of votes of Priyesh $=40 \%$ of $14000=5600$
Hence Priyesh is the winner.
57. (A) Let the cost price of goods be ₹ 100 .

Selling price of goods $=100+32 \%$ of $100=₹ 132$
Marked price $=₹ 132 \times \frac{100}{88}=₹ 150$
New selling price after 20\% discount = ₹ $150-20 \%$ of ₹ $150=₹ 120$
New profit $=$ selling price - cost price $=₹ 120-₹ 100=₹ 20$
$\%$ New profit $=\frac{\text { Profit } \times 100}{\mathrm{CP}}=\left(\frac{20 \times 100}{100}\right) \%=20 \%$
58. (B)

Total work Efficiency

Two hours of work $=(5 \times 2+4+3)=17$
Six hours of work $=(17 \times 3)=51$
Remaining work $=(60-51)=9$
9 work is completed by x and y in next hours
Total time to complete the work $=(6+1)$ hours $=7$ hours.
59. (B) Rate $=12 \%$ P. $\mathrm{a}=\frac{12}{100}=\frac{3}{25}$

Amount $=(25+3)=28$ units
After 3 years, principal $=(25)^{3}=15625$ units
Amount in 3 years $=(28)^{3}=21,952$ units
Interest $=(21952-15625)=6327$ units
6327 units $=₹ 37,962$
1 unit $=\frac{37,962}{6327}=₹ 6$
$\therefore \quad P=(15625 \times 6)=₹ 93,750$
60. (B) Cost price of first article $=S . P \times \frac{100}{100+\text { gain } \%}=6000 \times \frac{100}{100+20 \%}=₹ 5000$

Total selling price $=(₹ 6000 \times 2)=₹ 12000$
Cost price of second article =₹ 12000 - ₹ $5000=₹ 7000$
Loss $=\mathrm{CP}-\mathrm{SP}=₹ 7000-₹ 6000=₹ 1000$
$\%$ Loss $=\frac{\text { loss } \times 100}{\mathrm{CP}}=\frac{1000 \times 100}{7000}=\frac{100}{7} \%=14 \frac{2}{7} \%$
61. (D)

$\triangle \mathrm{OXY}$,
$\angle \mathrm{OYX}=180^{\circ}-(\angle \mathrm{YXO}+\angle \mathrm{XOY})=180^{\circ}-\left(90^{\circ}+45^{\circ}\right)=45^{\circ}$
$\because \angle \mathrm{OXY}=\angle \mathrm{OYX}$
$\therefore \mathrm{OX}=\mathrm{OY}$
Area of $\Delta \mathrm{OXY}=\frac{1}{2} \times$ Base \times Height $=\frac{1}{2} \times 14 \times 14=98 \mathrm{~cm}^{2}$
Area of sector OXZO
$=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}=\left(\frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14\right)=\frac{1}{8} \times 22 \times 2 \times 14=77 \mathrm{~cm}^{2}$
Area of shaded portion $=98-77=21 \mathrm{~cm}^{2}$
62. (B) Let the speed of flight A and $\mathrm{B} \mathrm{x} \mathrm{km} / \mathrm{hr}$ and $\mathrm{y} \mathrm{km} / \mathrm{hr}$ respectively, where $\mathrm{y}>\mathrm{x}$.

Time taken by A to complete journey of $7200 \mathrm{~km}=\frac{\text { Distance }}{\text { Speed }}=\frac{7200}{\mathrm{x}}$ hours
Time taken by B to complete journey of $7200 \mathrm{~km}=\frac{7200}{\mathrm{y}}$ hours
ATQ,

$$
\begin{align*}
& \frac{7200}{y}+1=\frac{7200}{x} \tag{i}\\
& \Rightarrow \frac{1}{x}-\frac{1}{y}=\frac{1}{7200}
\end{align*}
$$

Reduced speed of $B=y-y$ of $\frac{1}{6}=\frac{5 y}{6} \mathrm{~km} / \mathrm{hr}$
Time taken by B to complete journey at speed of $\frac{5 y}{6} \mathrm{~km} / \mathrm{hr}$
$=\left(\frac{7200}{5 y} \times 6\right)$ hours $=\frac{8700}{y}$ hours
ATQ,
$\frac{8700}{y}-\frac{36}{60}=\frac{7200}{x}$
From equation (i) and (ii),

$$
\frac{8700}{y}-\frac{36}{60}=\frac{7200}{y}+1
$$

$\Rightarrow \frac{8700}{y}-\frac{7200}{y}=1+\frac{3}{5}$
$\Rightarrow \frac{1500}{y}=\frac{8}{5}$
$\therefore \mathrm{y}=\frac{1500 \times 5}{8}=937.5 \mathrm{~km} / \mathrm{hr}$
63. (B)

In $\triangle P X Y$ and $\triangle P Q R$
$\angle \mathrm{PXY}=\angle \mathrm{PQR}$ (Given)
$\angle \mathrm{XPY}=\angle \mathrm{QPR}$ (Common)
In $\triangle \mathrm{PXY} \sim \triangle \mathrm{PQR} \quad$ (AAA similarities)
$\therefore \frac{\mathrm{PX}}{\mathrm{PQ}}=\frac{\mathrm{PY}}{\mathrm{PR}}=\frac{\mathrm{XY}}{\mathrm{QR}}$
$\frac{P X}{P Q}=\frac{X Y}{Q R}$
$\Rightarrow \frac{5}{P Y+Y Q}=\frac{X Y}{12}$
$\Rightarrow \frac{5}{9+6}=\frac{X Y}{12}$
$\therefore \mathrm{XY}=4 \mathrm{~cm}$
64. (A) Maximum value of $A \cos \theta+B \sin \theta$

$$
\begin{aligned}
& =\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}} \\
& =\sqrt{(10)^{2}+(24)^{2}}=\sqrt{100+576} \\
& =\sqrt{676}=26
\end{aligned}
$$

Minimum value of $\mathrm{A} \cos \theta+\mathrm{B} \sin \theta$
$-\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$
$=-\sqrt{(10)^{2}+(24)^{2}}=-26$
65. (A) $\frac{1}{2}\left[\frac{(1-\sec \theta)^{2}+(1+\sec \theta)^{2}}{1+\sec ^{2} \theta}\right]$
$=\frac{1}{2}\left[\frac{1+\sec ^{2} \theta-2 \sec \theta+1+\sec ^{2} \theta+2 \sec \theta}{\left(1+\sec ^{2} \theta\right)}\right]$
$=\frac{1}{2}\left[\frac{2\left(1+\sec ^{2} \theta\right)}{1+\sec ^{2} \theta}\right]=\frac{1}{2} \times 2=1$
66. (C) $x^{2}-8 x+16=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{2}-2 \times \mathrm{x} \times 4+(4)^{2}=0 \\
& \Rightarrow(\mathrm{x}-4)^{2}=0 \\
& \Rightarrow \mathrm{x}=4 \\
& \Rightarrow \mathrm{x}^{4}-\frac{1}{\mathrm{x}^{4}}=4^{4}-\frac{1}{4^{4}}=256-\frac{1}{256}=\frac{65535}{256}
\end{aligned}
$$

67. (C) We know that,

$$
\begin{aligned}
& (a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a) \\
& \Rightarrow(6)^{2}=a^{2}+b^{2}+c^{2}+2 \times 8 \\
& \Rightarrow 36-16=a^{2}+b^{2}+c^{2} \\
& \therefore a^{2}+b^{2}+c^{2}=20 \\
& a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
& =6(20-8)=6 \times 12=72
\end{aligned}
$$

68. (C) $12 \sin \theta=5 \cos \theta$

$$
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}=\frac{5}{12} \\
& \tan \theta=\frac{5}{12} \Rightarrow \cot \theta=\frac{12}{5}
\end{aligned}
$$

$$
\mathrm{p}=5 \text { units } ; \mathrm{b}=12 \text { units }
$$

$$
\therefore \quad \mathrm{h}=\sqrt{\mathrm{p}^{2}+\mathrm{b}^{2}}
$$

$$
\sqrt{(5)^{2}+(12)^{2}}=13 \text { units }
$$

$$
\sin \theta+\cos \theta-\cot \theta=\frac{5}{13}+\frac{12}{13}-\frac{12}{5}
$$

$$
=\frac{25+60-156}{65}=\frac{85-156}{65}=-\frac{71}{65}
$$

69. (D)

We know that,
$\mathrm{PX} \times \mathrm{QX}=\mathrm{RX} \times \mathrm{SX}$
$\Rightarrow(\mathrm{PQ}+\mathrm{QX}) \mathrm{QX}=(\mathrm{RS}+\mathrm{SX}) \mathrm{SX}$
$\Rightarrow(12+4) \times 4=(\mathrm{RS}+3) \times 3$
$\Rightarrow 64=3 R S+9$
$\Rightarrow 3 R S=55$
$\therefore \mathrm{RS}=\frac{55}{3} \mathrm{~cm}$
70. (C) $\mathrm{b}+\mathrm{c}=\mathrm{ax} \Rightarrow \mathrm{x}=\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}$
$c+a=b y \Rightarrow y=\frac{c+a}{b}$
$\mathrm{a}+\mathrm{b}=\mathrm{cz} \Rightarrow \mathrm{z}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$

$$
=\frac{1}{5}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]
$$

$$
=\frac{1}{5}\left[\frac{1}{\frac{b+c}{a}+1}+\frac{1}{\frac{c+a}{b}+1}+\frac{1}{\frac{a+b}{c}+1}\right]
$$

$$
=\frac{1}{5}\left[\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right]
$$

$$
=\frac{1}{5}\left[\frac{a+b+c}{a+b+c}\right]=\frac{1}{5}
$$

71. (C)

B C
$\mathrm{AC}=100 \mathrm{~m}$ (Given)
$\operatorname{In} \triangle A B C$,
$\Rightarrow \sin \theta=\frac{\mathrm{P}}{\mathrm{h}}$
$\Rightarrow \sin 30^{\circ}=\frac{P}{100}$
$\Rightarrow \frac{1}{2}=\frac{\mathrm{P}}{100}$
$\therefore \mathrm{P}=50 \mathrm{~m}$
Hence, height of kite $=50 \mathrm{~m}$
72. (A) Expenditure on rent $=25 \%$ of $₹ 25000=\frac{25}{100} \times 25000$

Expenditure on food $==\frac{80^{\circ}}{360} \times 25000$
Required ratio $=\left(\frac{25}{100} \times 25000: \frac{80^{\circ}}{360} \times 25000\right)=\frac{25}{100}: \frac{80}{360}=9: 8$
73. (D) Central angle of sector corresponding to expenditure on cloth
$=\left(\frac{125}{6 \times 100} \times 360\right)=75^{\circ}$
74. (D) Expenditure on miscellaneous $=12.5 \%$

Expenditure on education $=\left(\frac{45^{\circ}}{360^{\circ}} \times 100\right) \%=\frac{25}{2} \%=12.5 \%$
Required $\%=\left(\frac{12.5}{12.5} \times 100\right) \%=100 \%$
75. (D) Expenditure on education $=\frac{45}{360} \times 25000=₹ 3125$

Expenditure on rent $=\frac{25}{100} \times 25000=₹ 6250$
Total expenditure $=3125+6250=₹ 9375$

MEANINGS IN ALPHABETICAL ORDER

Obsolete	No longer produced or used; out of date; Archaic	अप्र चलित, पु रा ना
Liberate	to free	मु क त करना
Fallacy	a mistaken belief, especially one based on unsound arguments	LTi ति
Replica	an exact copy or model of something	-
Daunt	make (someone) feel intimidated or apprehensive	ता' $\stackrel{\text { ¢ स ह करना , ड रा }}{ }$
Ornate	elaborately or highly decorated	T त
Anonymous	(of a person) not identified by name; of unknown name	मना म
Biography	an account of someone's life written by someone else	वनी
Demagogue	a leader who makes false claims and promises in order to gain power	जा' $\overline{\text { ¢ ते ज }}$ ज ने
Tyrant	a cruel and oppressive ruler	निरं कु प पारक
Obituary	a notice of a death, especially in a newspaper typically including a brief biography of the deceased person	$\mathrm{T}^{\text {' }}$ क स्सा चा र
Plagiarism	the practice of taking someone else's work or ideas and passing them off as one's own	हिरि यकचा` री
Conspicuous	attracting notice or attention	विशि ष्ट
Conjuror	a performer of clever tricks that seem magic	करतब दिए T ने वा ला
Voluntary	done, given, or acting of one's own free will	स्वै चिछक
Homage	special honour or respect shown publicly	श्रद्धां जल

SSC MOCK TEST - 243 (ANSWER KEY)

(B)	6. (A)	(C)	76. (A)
(D)	7. (A)	(D)	77. (C)
(A)	28. (A)	(C)	78. (B)
(C)	9. (D)	(D)	79. (C)
(A)	30. (D)	(C)	80
(D)	31. (A)	56. (A)	81
(C)	32. (B)	57. (A)	82. (B)
(B)	33. (D)	58. (B)	83.
(A)	34. (A)	59. (B)	84. (C)
(C)	35. (A)	60. (B)	85. (C)
(D)	36. (A)	61. (D)	86. (A)
(B)	37. (D)	62. (B)	87. (B)
(C)	38. (A)	63. (B)	88. (B)
(D)	39. (B)	64. (A)	89. (D)
(B)	40. (A)	65. (A)	90. (B)
(A)	41. (C)	66. (C)	91. (C)
(B)	42. (A)	67. (C)	2. (C)
(B)	43. (D)	68. (C)	3. (C)
(C)	4. (A)	69. (D)	.
(B)	5. (B)	70. (C)	95. (D)
(A)	6. (D)	71. (C)	(B)
22. (B)	47. (B)	72. (A)	97. (C)
(C)	48. (B)	73. (D)	98. (D)
(C)	49. (D)	74. (D)	99. (D)
(A)	50. (B)	75. (D)	100.

76. (A) If two articles are used before two ordinals, the noun following must be singular. Change 'episodes' into 'episode'.
77. (C) Change 'some ' into 'somewhat' before 'angry'.
78. (C) 'Get away' means ' to escape'. 'Get away' is followed by 'with'.
79. (C) 'A big draw' means 'a big source of attraction'.
80. (A) Verb 'avoid' takes Gerund after it. Use 'avoid going to....'
81. (B) 'Break into' means ' to enter by force.'
82. (B) The correct spelling of 'Demogogue' is Demagogue, 'Homege' is 'Homage' and 'Obitury' is 'Obituary'.
83. (C) The correct spelling of 'Plegiarism' is 'Plagiarism', 'Conspicous' is 'Conspicuous' and 'Voluntery' is 'Voluntary'.
