QUANTITATIVE ABILITY - 60 (SOLUTION)

1. (B) $x^{*} y=x^{2}+y^{2}+1$

So, $\frac{4 * 5}{3 * 2}=\frac{4^{2}+5^{2}+1}{3^{2}+2^{2}+1}=\frac{16+25+1}{9+4+1}=3$
2. (A) Depth of ditch $=\frac{48 \times 31.5 \times\left(6.5 \times \frac{1}{10}\right)}{27 \times 18.2}=2 \mathrm{~m}$
3. (D) Volume of cylinder $=\pi r^{2} h=(2 \pi \mathrm{rh}) \frac{r}{2}=220 \times \frac{14}{2 \times 2}=770 \mathrm{~cm}^{3}$
4. (B) Two liner equation concides only when $\frac{\mathrm{a}_{1}}{a_{2}}=\frac{\mathrm{b}_{1}}{b_{2}}=\frac{\mathrm{c}_{1}}{c_{2}}$

So, $\frac{3}{-3}=\frac{k}{-4} \Rightarrow k=4$
5. (D) By Hit and Trial Method,

Put $x=5, y=2$ and $z=0$
$5+2+0=7$
and $5 \times 2+2 \times 0+5 \times 0=10$
So, maximum value of $x=5$
6. (B)

Given $\mathrm{AO}_{1}=2 \mathrm{~cm}, \mathrm{BO}_{2}=8 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$
Draw a line DO_{1} to AB
So, $\mathrm{DO}_{1}=\mathrm{AB}=8 \mathrm{~cm}$
$\mathrm{DO}_{2}=8-2=6 \mathrm{~cm}$
$\angle \mathrm{ABO}_{2}=\angle \mathrm{O}_{1} \mathrm{DO}_{2}=90^{\circ}$
So, $\mathrm{O}_{1} \mathrm{O}_{2}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~cm}$
7. (C)
8. (C) Age of two women $=6(x+2)-(6 x-55-60)=127$ years

Average age of two women $=63.5$ years
9. (A) $\mathrm{a}-\frac{1}{2 a}=3$
squaring both side
$a^{2}+\frac{1}{4 a^{2}}-2 \times a \times \frac{1}{2 a}=9$
$a^{2}+\frac{1}{4 a^{2}}=10$
$a-\frac{1}{2 a}=3$
cubing both side,
$a^{3}-\frac{1}{8 a^{3}}-3 \times a \times \frac{1}{2 a}\left(a-\frac{1}{2 a}\right)=27$
$a^{3}-\frac{1}{8 a^{3}}=27+\frac{3}{2} \times 3=\frac{63}{2}$
So, $\left(a^{2}-\frac{1}{4 a^{2}}\right)\left(a^{3}-\frac{1}{8 a^{3}}\right)=315$
10. (B) Let M.P. $=x$
C.P. $=x \times \frac{90}{100} \times \frac{100}{117}=\frac{10 x}{13}$
C.P : M.P $=\frac{10 x}{13}: x=10: 13$
11.(D)

$\cos \alpha=\frac{5}{13}$
So, $\cot \alpha+\operatorname{cosec} \alpha=\frac{5}{12}+\frac{13}{12}=\frac{18}{12}=1.5$
12. (B) $x=y$

So, $\mathrm{k}^{3}-3 \mathrm{k}^{2}=1-3 \mathrm{k}$
$\mathrm{k}^{3}-3 \mathrm{k}^{2}+3 \mathrm{k}-1=0$
$(\mathrm{k}-1)^{3}=0 \Rightarrow \mathrm{k}=1$
13. (B) A.T.Q,
$\frac{11-x}{15-x}=\frac{2}{3}$
$33-3 x=30-2 x$
$x=3$
14. (D) $\tan ^{2} \theta+3=3 \sec \theta$
$\left(\sec ^{2} \theta-1\right)-3 \sec \theta+3=0$
$\sec ^{2} \theta-3 \sec \theta+2=0$
$(\sec \theta-1)(\sec \theta-2)=0$
$\sec \theta=1$ or $\sec \theta=2$
$\theta=0^{\circ}$ or $\theta=60^{\circ}$
15. (B) $\quad(1+\sin \mathrm{A})(1+\sin \mathrm{B})(1+\sin \mathrm{C})=(1-\sin \mathrm{A})(1-\sin \mathrm{B})(1-\sin \mathrm{C})$

Multiply by $(1+\sin A)(1+\sin B)(1+\sin C)$ on both side
$(1+\sin A)^{2}(1+\sin B)^{2}(1+\sin C)^{2}=\left(1-\sin ^{2} A\right)\left(1-\sin ^{2} B\right)\left(1-\sin ^{2} C\right)(1+\sin A)^{2}(1+\sin B)^{2}(1+\sin C)^{2}$
$=\cos ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B} \cos ^{2} \mathrm{C}$
taking square root on both side
$(1+\sin A)(1+\sin B)(1+\sin C)= \pm \cos A \cos B \cos C$
16. (C) Relative speed of train and man $=(84+6) \times \frac{5}{10}=25 \mathrm{~m} / \mathrm{s}$

Length of train $=25 \times 4=100 \mathrm{~m}$
17. (A) $x+\frac{2}{x}=1 \Rightarrow x^{2}+2=x$
$x^{2}-x=-2 \Rightarrow x-x^{2}=2$
$\frac{x^{2}+x+2}{x^{2}(1-x)}=\frac{x\left(x+1+\frac{2}{x}\right)}{x \times\left(x-x^{2}\right)}=\frac{(1+1)}{(2)}=1$
18. (A) $6^{\text {th }}$ number $=6 \times 60+6 \times 65-11 \times 63=57$
19. (B)
20. (B)
$\frac{\text { Area of } \triangle \mathrm{DEF}}{\text { Area of } \triangle \mathrm{ABC}}=\left(\frac{\text { Length of } \mathrm{DE}}{\text { Length of } \mathrm{AB}}\right)^{2}$
Area of $\Delta D E F=24 \times\left(\frac{1}{2}\right)^{2}=6$ sq. units
21. (A)

Ratio of their wages $(\mathrm{A}: \mathrm{B}: \mathrm{C})=3: 2: 3$
A.T.Q,

So, their respective wages are $=₹ 150$, ₹ 100 and $₹ 150$
22. (C) S.P. = ₹ 1800
M.P. $=1800 \times \frac{100}{90}=₹ 2000$
C.P. $=₹(1800-200)=₹ 1600$

Profit if sold at M.P. $=\frac{2000-1600}{1600} \times 100=25 \%$
23. (D) Area of square base $=\frac{1}{2} \times d^{2}=\frac{1}{2} \times 1152=576$ sq. m.
volume of pyramid $=\frac{1}{3} \times 6 \times 576=1152 \mathrm{~m}^{3}$
24.(A) $\frac{\text { Volume of cone } A}{\text { Volume of cone } B}=\frac{2}{3}$
A.T.Q,
$\frac{\frac{1}{3} \pi(r)^{2} h}{\frac{1}{3} \pi(2 r)^{2} \mathrm{H}}=\frac{2}{3}$
$h: H=8: 3$
25. (D) For a perfect square in quadratic equation
$a x^{2}+b x+c=0$
$b^{2}-4 a c=0$
So, $\left(\frac{1}{4}\right)^{2}-4(1)\left(K^{2}\right)=0$
$4 \mathrm{k}^{2}=\frac{1}{16}$
$k= \pm \frac{1}{8}$
26. (C)
27. (D) $x^{2}-x+\frac{5}{4}=x^{2}-2 \cdot x\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+1=\left(x-\frac{1}{2}\right)^{2}+1$

Function lies between $[-1,1]$
So, $\left(x-\frac{1}{2}\right)^{2}+1 \leq 1$
$\left(x-\frac{1}{2}\right)^{2} \leq 0$ But $\left(x-\frac{1}{2}\right)^{2}<0$ not possible
so, $\left(x-\frac{1}{2}\right)^{2}=0$
$x=\frac{1}{2}$
28. (B) $\quad-1 \leq \sin \frac{\pi x}{2} \leq 1$
$x^{2}-2 x+2=(x-1)^{2}+1$
So, $(x-1)^{2}+1 \leq 1$
$(x-1) \leq 0 \quad\left[(x-1)^{2}<0\right.$, Not possible $]$
So, $(x-1)^{2}=0$
$x-1=0$
$x=1$
29. (B) Decrease in Area $=-50-50+\frac{50 \times 50}{100}=75 \%$ decrease
30. (D) $\frac{b-c}{a}+\frac{a+c}{b}+\frac{a-b}{c}=1$
$\frac{a+c}{b}-1+\frac{a-b}{c}+1=1-\frac{b-c}{a}$
$\frac{a+c-b}{b}+\frac{a-b+c}{c}=\frac{a-b+c}{a}$
$(a-b+c)\left(\frac{1}{b}-\frac{1}{c}\right)$
$=(a-b+c) \frac{1}{a}$
$\frac{1}{b}=\frac{1}{a}-\frac{1}{c}$
31. (C)

Time taken by them finish the work $=\frac{30}{10}=3$ days
Then, sum of their wages for 2 days $=300 \times \frac{2}{3}=₹ 200$
32. (D) $\mathrm{DE}=\frac{1}{4} \mathrm{BC}=\frac{1}{4} \times 12=3 \mathrm{~cm}$
33. (B)
34. (C) C.P. of goods $=₹ 450$
overall profit $=20 \%$
Total S.P. $=450+450 \times \frac{20}{100}=₹ 540$
S.P. of $\frac{1}{3} \mathrm{rd}$ goods $=150-150 \times \frac{10}{100}=₹ 135$
S.P. of $\frac{2}{3}$ rd goods $=540-135=₹ 405$

Profit $\%=\frac{405-300}{300} \times 100=35 \%$
35. (C) A.T.Q,

Area of floor $\left(a^{2}\right)=48$ sq.m
Length of room $(a)=\sqrt{48} \mathrm{~m}$
Length of largest rod kept in room $=\sqrt{3 \times 48}=\sqrt{144}=12 \mathrm{~m}$
36. (B) Suppose 100 oranges are bought and the SP of 1 orange $=₹ 1$

SP of 40 oranges $=₹ 40=$ CP of 100 oranges
SP of 100 oranges $=₹ 100$
$\%$ Profit $=\frac{100-40}{40} \times 100=150 \%$
Remaining oranges $=100-40=60$
Number of oranges sold at half profit $=80 \%$ of $60=48$
SP of 48 oranges $=\frac{48(100+75)}{100}=48 \times 1.75=84$
$\therefore \%$ profit $=84 \%$
37. (C) Income
₹ 100
Expenditure
₹ 75
₹ 82.5

Saving

₹ 25
₹ 120
$\frac{12.5 \times 100}{25}=50 \%$
38. (B) Let the distance between P and Q be D km and usual speed of the car $=x \mathrm{~km} / \mathrm{hr}$
case $I, \frac{D}{x}-\frac{D}{x+10}=1 \quad \Rightarrow \quad D=\frac{x^{2}+10 x}{10}$
case II, $\frac{D}{x}-\frac{D}{x+2}=1 \frac{3}{4} \quad \Rightarrow \mathrm{D}=\frac{7\left(x^{2}+20 x\right)}{80}$
$\therefore \quad \frac{x^{2}+10 x}{10}=\frac{7 x^{2}+140 x}{80} \Rightarrow x^{2}-60 x=0$
$\therefore \quad x=60 \mathrm{kms} / \mathrm{hr}$
$D=\frac{60^{2}+10 \times 60}{10}=\frac{3600+600}{10} \mathrm{~km}=420 \mathrm{~km}$
39. (D) They will meet at = First's starting time +

Time taken by firs $\quad \times$	$\left(\begin{array}{cc} 2 \text { nd's arrival }- & \text { Ist's starting } \\ \text { time } & \text { time } \end{array}\right)$
	of time taken by both

$=7: 00 \mathrm{am}+\frac{(11: 0-7: 0)(11: 30-7: 0)}{4+\frac{7}{2}}=7: 00 \mathrm{am}+\frac{4 \times \frac{9}{2}}{\frac{15}{2}}$
$=7: 00 \mathrm{am}+\frac{36}{15}=7: 00 \mathrm{am}+2 \mathrm{hrs}+24 \mathrm{~min}=9: 24 \mathrm{am}$
40. (A) Share of wife $=₹ \frac{84100}{2}=₹ 42050$

Share of $A=₹ x$, then share of $B=₹(42050-x)$
Now, $x \times\left(1+\frac{5}{100}\right)^{3}=(42050-x)\left(1+\frac{5}{100}\right)^{5}$
$\Rightarrow \frac{x}{42050-x}=\left(1+\frac{5}{100}\right)^{2}=\left(\frac{21}{20}\right)^{2}=\frac{441}{400}$
$\Rightarrow \quad x=₹ 22050$
Share of B = 42050-22050 = ₹ 20,000
41. (B) When wire is bent to form circle $2 \pi r=44$
$\Rightarrow \frac{2 \times 22 r}{7}=44$
$\Rightarrow r=7 \mathrm{~cm}$
$\therefore \quad$ Area $=\pi r^{2}=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$
when the wire is bent of form a square $4 \times$ side $=44$
side $=11 \mathrm{~cm}$
its area $=11^{2}=121 \mathrm{~cm}^{2}$
Required different $=154-121=33 \mathrm{~cm}^{2}$
42. (C) ABCD is a parallelogram and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are mid points of $\mathrm{AO}, \mathrm{OD}, \mathrm{OC}$ and OB respectively.

$\because \mathrm{EF}\left|\mid \mathrm{AD}\right.$ and $\mathrm{EF}=\frac{1}{2} \mathrm{AD}$ (By mid-point theorem)
Again $\mathrm{FG} \| \mathrm{DC}$ and $\mathrm{FG}=\frac{1}{2} \mathrm{DC}$
Now, $\frac{\text { perimeter of EFGH }}{\text { perimeter of } \mathrm{ABCD}}=\frac{2(E F+F G)}{2(A D+D C)}=\frac{2(E F+F G)}{2(2 E F+2 F G)}=\frac{1}{2}$
Required ratio $=1: 2$
43. (D) Required area $=\frac{1}{2} \times 4 \times 3=6$ sq. unit

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
44.(D) Suppose A, B and C together take x hours to do the job.

Time taken by A, B, C separately to complete the same job are $x+6, x+1$ and $2 x$ hours respectively

$$
\begin{aligned}
& \therefore \quad \frac{1}{x+6}+\frac{1}{x+1}+\frac{1}{2 x}=\frac{1}{x} \\
& \Rightarrow \quad 3 x^{2}+7 x-6=0 \\
& \Rightarrow \quad(3 x-2)(x+3)=0 \\
& \Rightarrow \quad x=\frac{2}{3} \text { hours }
\end{aligned}
$$

Time taken by A and $B=\frac{1}{\frac{3}{2}-\frac{3}{4}}=\frac{4}{3}$ hours
45. (B) $\tan \theta+\cot \theta=2$
$\tan \theta+\frac{1}{\tan \theta}=2$
$\tan ^{2} \theta-2 \tan \theta+1=0$
$(\tan \theta-1)^{2}=0$
$\Rightarrow \tan \theta=1 \Rightarrow \cot \theta=1$
$\therefore \tan ^{5} \theta+\cot ^{5} \theta=1+1=2$
46. (A)

$\because \quad \angle \mathrm{CBE}=70^{\circ}$
also $\mathrm{BE}=\mathrm{BC}$
$\angle \mathrm{BCE}=\frac{1}{2} \times 110^{\circ}=55^{\circ}$
$\angle \mathrm{DCB}=180-\angle \mathrm{BAD}$

$$
=180^{\circ}-95^{\circ}=85^{\circ}
$$

$\angle \mathrm{DCE}=55^{\circ}+85^{\circ}=140^{\circ}$
47. (C) On solving $3 x+4 y=10 \&-x+2 y=0$

We have $x=2, y=1$

$$
\Rightarrow \quad(a, b)=(2,1)
$$

$$
\therefore a+b=2+1=3
$$

48. (C) $\quad x=\sqrt{5}+2$
$\Rightarrow \frac{1}{x}=\sqrt{5}-2$
$\therefore \quad x-\frac{1}{x}=4$
Now, $=\frac{2 x^{2}-2 x-2}{3 x^{2}-4 x-3}=\frac{2 x^{2}-2-3 x}{3 x^{2}-3-4 x}=\frac{2 x\left(x-\frac{1}{x}\right)-3 x}{3 x\left(x-\frac{1}{x}\right)-4 x}$
$=\frac{x}{x}\left[\frac{2\left(x-\frac{1}{x}\right)-3}{3\left(x-\frac{1}{x}\right)-4}\right]=\frac{2 \times 4-3}{3 \times 4-4}=\frac{5}{8}=0.625$

K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
49. (B) Suppose $2^{\text {nd }}$ pipe takes x hours, then $1^{\text {st }}$ takes $x+5$ hours and $3^{\text {rd }}$ takes $x-4$ hours. According to question,
$\frac{1}{x+5}+\frac{1}{x}=\frac{1}{x-4}$
$\Rightarrow x^{2}-8 x-20=0$
$\Rightarrow(x-10)(x+2)=0$
$\Rightarrow x=10$ hours
Time taken by B and C together $=\frac{10 \times 6}{10+6}$ hours $=3.75$ hours
50. (A) $\sin 21^{\circ}=\frac{x}{y}$
$\Rightarrow \cos 21^{\circ}=\sqrt{1-\frac{x^{2}}{y^{2}}}=\frac{\sqrt{y^{2}-x^{2}}}{y}$
Now, $\sec 21^{\circ}-\sin 69^{\circ}=\frac{1}{\cos 21^{\circ}}-\cos 21^{\circ}$

$$
\frac{1-\cos ^{2} 21^{\circ}}{\cos 21^{\circ}}=\frac{\sin ^{2} 21^{\circ}}{\cos 21^{\circ}}=\frac{x^{2}}{\frac{y^{2}}{\frac{\sqrt{y^{2}-x^{2}}}{y}}}=\frac{x^{2}}{y^{2}} \times \frac{y}{\sqrt{y^{2}-x^{2}}}=\frac{x}{y \sqrt{y^{2}-x^{2}}}
$$

51. (B) Let MN be the tower.

In $\triangle \mathrm{PQN}$,

$\frac{P Q}{P N}=\tan 30^{\circ}$
$\mathrm{PN}=\mathrm{PQ} \cot 30^{\circ}=10 \times \sqrt{3}=10 \sqrt{3} \mathrm{~m}$
In $\triangle \mathrm{PMN}$,
$\tan 60^{\circ}=\frac{M N}{P N}$
$\sqrt{3}=\frac{M N}{10 \sqrt{3}}$
$\Rightarrow \mathrm{MN}=30 \mathrm{~m}$
\therefore Height of the tower $=30 \mathrm{~m}$
52. (B) $\mathrm{MP}=\frac{3402 \times 100 \times 100}{90 \times 108}=₹ 3500$
53. (A) $\sqrt[3]{4}=\sqrt[3 \times 4]{4^{4}}=\sqrt[12]{256}$
$\sqrt{2}=\sqrt[2 \times 6]{2^{6}}=\sqrt[12]{64}$
$\sqrt[4]{5}=\sqrt[4 \times 3]{5^{3}}=\sqrt[12]{125}$
$\sqrt[6]{3}=\sqrt[6 \times 2]{3^{2}}=\sqrt[12]{9}$
\therefore In descending order they are $\sqrt[3]{4}>\sqrt[4]{5}>\sqrt{2}>\sqrt[6]{3}$
54. (A) By alligation method,

Required ratio $=14: 10=7: 5$
55. (A)

$$
1-\frac{a}{1-\frac{1}{1+\frac{a}{1-a}}}=1-\frac{a}{1-\frac{1}{\frac{1-a+a}{1-a}}}=1-\frac{a}{1-\frac{1-a}{1}}=1-\frac{a}{a}=0
$$

56. (A) Salary of all workers $=60 \times$ no. of workers
$12 \times 400+($ all workers -12$) \times 56=60 \times$ no of workers
$\Rightarrow 12 \times 400+(n-12) \times 56=60 \times n$
(where $\mathrm{n} \rightarrow$ no. of all workers)
$\Rightarrow 4800-672=60 n-56 n$
$n=\frac{4128}{4}=1032$
57. (A)
$\mathrm{CP}=₹ 210$
$\mathrm{SP}=120 \%$ of $210=₹ 252$
$\mathrm{MP}=\frac{252 \times 100}{100-12.5}=₹ 288$
58. (B) $A: B: C$ (Actual ratio) $=\frac{1}{4}: \frac{1}{5}: \frac{1}{6}=15: 12: 10$

Share of C (Actual) $=\frac{10}{37} \times 555=₹ 150$
Share of C (when wrongly distributed) $=\frac{6}{15} \times 555=₹ 222$
Amount in excess received by $C=(222-150)=₹ 72$
59. (B) Let T be the required time
then,
$\frac{8000 \times 3 \times T}{100}=\frac{6000 \times 5 \times 4}{100}$
$\Rightarrow \mathrm{T}=5$ years
60. (C) $\angle \mathrm{AOB}=90^{\circ} ; \angle \mathrm{AOC}=110^{\circ}$

When O lies in the interior of $\angle \mathrm{BAC}$
$\angle \mathrm{AOB}=90^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & \angle \mathrm{BAO}=\angle \mathrm{ABO}=\frac{1}{2} \times 90^{\circ}=45^{\circ} \\
& \angle \mathrm{CAO}=\angle \mathrm{ACO}=\frac{1}{2} \times 70^{\circ}=35^{\circ} \\
\therefore & \angle \mathrm{BAC}=\angle \mathrm{BAO}+\angle \mathrm{CAO}=45^{\circ}+35^{\circ}=80^{\circ}
\end{array}
$$

61. (B) $\because \mathrm{M}$ is the mid point of BC and $\mathrm{MN} \| \mathrm{AB}$

$\Rightarrow \mathrm{N}$ is the mid point of AC
[By the converse of mid point theorem]
\therefore area(trapezium ABMN)

$$
\begin{aligned}
& =\operatorname{area}(\Delta \mathrm{ACB})-\operatorname{area}(\Delta \mathrm{NCM}) \\
& =\frac{1}{2} \times 6 \times 8-\frac{1}{2} \times 3 \times 4=24-6=18 \mathrm{~cm}^{2}
\end{aligned}
$$

62. (B) Length of the wire $=\pi d=\frac{22}{7} \times 112=22 \times 16 \mathrm{~cm}=352 \mathrm{~cm}$

Semi-perimeter of the rectangle $=176 \mathrm{~cm}$
Smaller side $=\frac{7}{16} \times 176=77 \mathrm{~cm}$
63. (A) $7 \sin \alpha=24 \cos \alpha$

$$
\begin{aligned}
\tan \alpha & =\frac{24}{7} \\
\Rightarrow \cos \alpha & =\frac{7}{25}, \sec \alpha=\frac{25}{7}
\end{aligned}
$$

Now, $14 \tan \alpha-75 \cos \alpha-7 \sec \alpha$

$$
=14 \times \frac{24}{7}-75 \times \frac{7}{25}-7 \times \frac{25}{7}=48-21-25=2
$$

64. (C) $a(2+\sqrt{3})=1$

$$
\begin{aligned}
& \Rightarrow a=\frac{1}{2+\sqrt{3}}=2-\sqrt{3} \\
& \Rightarrow a^{2}=4+3-4 \sqrt{3}
\end{aligned}
$$

$$
\text { also, } b=\frac{1}{2-\sqrt{3}}=2+\sqrt{3}
$$

$$
\Rightarrow b^{2}=4+3+4 \sqrt{3}
$$

$$
\text { Now, } \frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}=\frac{1}{7-4 \sqrt{3}+1}+\frac{1}{7+4 \sqrt{3}+1}
$$

$$
=\frac{8+4 \sqrt{3}+8-4 \sqrt{3}}{(8-4 \sqrt{3})(8+4 \sqrt{3})}=\frac{16}{64-48}=\frac{16}{16}=1
$$

65. (A) Number of girls taking fewer than two servings per day $=10+15=25$
66. (D) Number of girls taking more than two but less than six servings per day $=10+8+5=23$
67. (B) Percentage of girls taking six or more servings per day

$$
=\frac{9}{72} \times 100=12.5 \%
$$

68. (A) 15% of total income $=₹ 3000$ total income
$=\frac{3000 \times 100}{15}=₹ 20,000$
highest percentage of expense is on food i.e. 25%
Expense on food $=25 \% 20000=₹ 5,000$
69. (B) Central angle for savings $=360^{\circ}-\left(90^{\circ}+108^{\circ}+72^{\circ}+36^{\circ}\right)=360^{\circ}-306^{\circ}=54^{\circ}$
70.(C) Required number of arrangements $=9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3$

$$
=9 \times \frac{9!}{2}=\frac{9}{2} \times 9!
$$

71.(B) $P=₹ 8500, r=15 \%, n=2$ years

$$
A=8500\left(1+\frac{15}{100}\right)^{2}=8500 \times \frac{115}{100} \times \frac{115}{100}=₹ 11241.25
$$

72.(C) Let the capacity of the tank $=x$ litre

Quantity of water emptied by the leak in $1 \mathrm{hr} .=\frac{x}{25} l$
Quantity of water filled by the tap in 1 hour $=180$ litre
$\therefore \quad \frac{x}{25}-\frac{x}{40}=180$
$\frac{8 x-5 x}{200}=180$
$\frac{3 x}{200}=180$
$x=12000$
\therefore Capacity of tank $=12000 l$
73.(B) \quad Cost price of article $=₹ x$

Selling price of article $=₹ y$
$y \times \frac{9}{100}=x \times \frac{11}{100}$
$y=\frac{11 x}{9}$
$y \times \frac{13}{100}-\frac{x \times 15}{100}=2$
Put the value of y in eq.(ii)
$\frac{11 \times 13 x}{900}-\frac{15 x}{100}=2$
$\frac{143 x-135 x}{900}=2$
$8 x=₹ 1800$
$x=₹ 225$
$\therefore \quad$ Cost price $=$ ₹ 225
74.(A) Total quantity of milk $=4 \times 0.8+7 \times 0.7+10 \times 0.06=3.2+4.9+6.0=14.1$

Total quantity of water $=21-14.1=6.9$
Milk : water $=\frac{14.1}{6.9}=\frac{141}{69}=\frac{47}{23}$
75.(C) Speed of flowing water $=4 \mathrm{~km} / \mathrm{hr}$.
$=\frac{4 \times 1000}{60}=\frac{200}{3} \mathrm{~m} / \mathrm{min}$
Length of the water stored in one min in the river $=\frac{200}{3} \mathrm{~m}$
Volume of the water $=l b h=\frac{200}{3} \times 6 \times 34$
$=200 \times 68=13600 \mathrm{~m}^{3}$
76.(B)
$R_{1}=6 \%, R_{2}=8 \%, \quad R_{3}=10 \%, R_{4}=12 \%$
$\mathrm{A}=4800\left(1+\frac{6}{100}\right)\left(1+\frac{8}{100}\right) \times\left(1+\frac{10}{100}\right)\left(1+\frac{12}{100}\right)$
$=4800 \times \frac{53}{50} \times \frac{27}{25} \times \frac{11}{10} \times \frac{28}{25}=6769.88$
Compound interest $=6769.88-4800=₹ 1969.88$
77. (B) AD is an external bisector.

$\frac{B D}{C D}=\frac{A B}{A C}$
Let $C D=x$
$\frac{16+x}{x}=\frac{12}{8}$
$\frac{16+x}{x}=\frac{3}{2}$
$32+2 x=3 x$
$x=32 \mathrm{~cm}$
78.(B)

$\mathrm{OR}=\sqrt{(15)^{2}-(12)^{2}}=9 \mathrm{~cm}$
As we know,

$$
\begin{aligned}
& \Delta \mathrm{OAT} \sim \Delta \mathrm{ORA} \quad \text { (By AAA Similarity) } \\
& \frac{\mathrm{AT}}{\mathrm{OA}}=\frac{\mathrm{RA}}{\mathrm{OR}} \Rightarrow \mathrm{AT}=\frac{12}{9} \Rightarrow \mathrm{AT}=20 \mathrm{~cm}
\end{aligned}
$$

79.(D) $\quad r=6 \mathrm{~cm}$
length of the circular wire $=2 \pi \mathrm{r}=2 \pi \times 6=12 \pi \mathrm{~cm}$
Radius of the loop $=144 \mathrm{~cm}$
$\theta=\frac{\text { arc }}{\text { radius }} \Rightarrow \theta=\left(\frac{12 \pi}{144}\right)=\left(\frac{\pi}{12}\right)=\left(\frac{180^{\circ}}{12}\right)=15^{\circ}$
80.(C) Let the no. of sides be x.

Each exterior angle $=\frac{360}{x}$
Each Interior angle $=\frac{(x-2) 180}{x}$

$$
\therefore \quad \frac{360}{x}=\frac{1}{5} \frac{(x-2)}{x} \times 180
$$

$10=x-2$
$x=12$
Number of sides $=12$
81.(C)

Height of upper part of the cone $=\frac{1}{3} \times 36=12 \mathrm{~cm}$
$\mathrm{OA}=12 \mathrm{~cm}$
$\Delta \mathrm{OAB} \sim \Delta \mathrm{OCD}$
$\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{AB}}{\mathrm{CD}}$
$\frac{12}{36}=\frac{\mathrm{AB}}{9}$
$\mathrm{AB}=3 \mathrm{~cm}$
Volume of the upper part $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 12$
$=\frac{22 \times 36}{7}=113.14 \mathrm{~cm}^{3}$
82.(D) Let $B C=h$
$\mathrm{DC}=\mathrm{a}$
$\mathrm{AD}=1 \mathrm{~km}$

In $\triangle \mathrm{ABC}$
$\tan 30^{\circ}=\frac{\mathrm{h}}{1+\mathrm{a}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{1+\mathrm{a}}$

$$
a=\sqrt{3} \mathrm{~h}-1
$$

In $\triangle \mathrm{BDC}$
$\frac{\mathrm{h}}{\mathrm{a}}=1 \Rightarrow h=a$
$h=\sqrt{3} h-1$
$1=h(\sqrt{3}-1)$
$\frac{1}{\sqrt{3}-1}=h \Rightarrow h=\frac{\sqrt{3}+1}{2}$
$h=\frac{2.73}{2}$
Height of aeroplane $=1.365 \mathrm{~km}$
83.(C) $\frac{3 p}{p^{2}-6 p+8}=\frac{1}{8}$
$24 \mathrm{p}=p^{2}-6 p+8$
$24=\frac{p^{2}-6 p+8}{p}$
$24=p-6+\frac{8}{p}$
$p+\frac{8}{p}=30$
Squaring both sides,

$$
\begin{aligned}
& \left(p+\frac{8}{p}\right)^{2}=(30)^{2} \\
\Rightarrow & p^{2}+\frac{64}{p^{2}}+2 p \times \frac{8}{p}=900 \\
\Rightarrow & p^{2}+\frac{64}{p^{2}}=884
\end{aligned}
$$

84.(D)

C is mid point of $A B$
\therefore Co-ordinates of
$\mathrm{C}=\frac{2+x}{2}, \frac{3+y}{2}$
$\frac{2+x}{2}=1$ and $\frac{3+y}{2}=+2$
$x=0$ and $y=1$
$\therefore \quad$ Coordinates of other end $=(0,1)$
85. (B) $14-\left[11-\left\{x-\frac{19}{8}\right\}\right]=25$
$14-\left[\frac{88-8 x+19}{8}\right]=25$
$112-88+8 x-19=200$
$8 x=195$
$x=\frac{195}{8}$
86. (D) For no Solution condition $\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

$$
\begin{aligned}
& =\frac{4}{k-1}=\frac{3}{k+7} \neq \frac{8}{3 k+9} \\
& 4 \mathrm{k}+28=3 k-3 \\
& 4 \mathrm{k}-3 k=-31 \\
& k=-31
\end{aligned}
$$

87. (C)

Let they meet after t second and they cover distance $x \mathrm{~km}$ and (403-x) km respectivelyAccording to question,
$\frac{x}{60}=\frac{403-x}{64}$
$\Rightarrow \frac{x}{15}=\frac{403-x}{16}$
$\Rightarrow 16 x=403 \times 15-15 x$
$\therefore x=\frac{403 \times 15}{31}=195 \mathrm{~km}$ from Delhi
88. (B) Using formula,

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}\left(1+\frac{R_{1}}{100}\right)\left(1+\frac{R_{2}}{100}\right)\left(1+\frac{R_{3}}{100}\right) \\
\therefore & 12,243=\mathrm{P}\left(\frac{105}{100}\right)\left(\frac{106}{100}\right)\left(\frac{110}{100}\right) \\
\therefore & \mathrm{P}=\frac{12,243 \times 100 \times 100 \times 100}{105 \times 106 \times 110} \\
& \mathrm{P}=₹ 10,000
\end{aligned}
$$

89. (B) Given that,
$x=1.75, y=0.5$,
then, $4 x^{2}+4 x y+y^{2}=(2 x+y)^{2}=(2 \times 1.75+0.5)^{2}=(4)^{2}=16$
90. (D) -2 , is root of $2 x^{2}-x+k=0$
\therefore It will satisfy the given equation:-
$2(-2)^{2}-(-2)+k=0$
$\Rightarrow 8+2+k=0$
$\therefore k=-10$
91. (A) $x+\frac{1}{x}=\sqrt{3}$
cubing both sides,

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{3}=(\sqrt{3})^{3} \\
\Rightarrow & x^{3}+\frac{1}{x^{3}}+3 \cdot x \cdot \frac{1}{x}\left[x+\frac{1}{x}\right]=3 \sqrt{3} \\
\Rightarrow & x^{3}+\frac{1}{x^{3}}+3[\sqrt{3}]=3 \sqrt{3} \quad \Rightarrow x^{3}+\frac{1}{x^{3}}=0
\end{aligned}
$$

$$
\left[x^{6}+1\right]=0
$$

\qquad (A)

Now,

$$
\begin{aligned}
& x^{24}+x^{18}=x^{18}\left[x^{6}+1\right] \\
& =x^{18}[0][\text { From equation }(\mathrm{A})] \\
& =0
\end{aligned}
$$

92. (A) $P=102$
$P\left(P^{2}-6 P+12\right)$
$=\mathrm{P}^{3}-6 \mathrm{P}^{2}+12 \mathrm{P}-8+8$
$=(\mathrm{P}-2)^{2}+8$
$=1000000+8=1000008$
93.(D) $3\left(a^{2}+b^{2}+c^{2}\right)=(a+b+c)^{2}$
$\Rightarrow 3 a^{2}+3 b^{2}+3 c^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
$\Rightarrow 2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a=0$
$\Rightarrow 2\left[a^{2}+b^{2}+c^{2}-a b-b c-c a\right]=0$
$2 \times \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0$
$\therefore \quad \mathrm{a}=\mathrm{b}=\mathrm{c}$
93. (D) $2 r=h+\sqrt{r^{2}+h^{2}}$
$\Rightarrow 2 r-h=\sqrt{r^{2}+h^{2}}$
Squaring equation (i), we get:-
$\Rightarrow 4 r^{2}+h^{2}-4 r h=r^{2}+h^{2}$
$\Rightarrow 3 r^{2}-4 r h=0$

$$
r^{2}\left[3-\frac{4 h}{r}\right]=0
$$

$\therefore 3=\frac{4 h}{r}$
$\frac{h}{r}=\frac{3}{4}$
$\frac{r}{h}=\frac{4}{3}=4: 3$
95. (B)

Given that,
$\mathrm{OA}=\frac{10}{2}=5 \mathrm{~cm}$
$\mathrm{BC}=\frac{20}{2}=10 \mathrm{~cm}$
Height, $O B=24 \mathrm{~cm}$
$\therefore \quad$ Volume of bucket $=\frac{\pi h}{3}\left[r^{2}+R^{2}+r R\right]$
$=\frac{22}{7} \times \frac{24}{3}\left[5^{2}+10^{2}+5 \times 10\right]=\frac{22}{7} \times 8\left[5^{2}+10^{2}+5 \times 10\right]$
$=\frac{22}{7} \times 8 \times 175=4400 \mathrm{~cm}^{3}$
96.(A) Increment $=38-14=24$ crore

Percentage increment $=\frac{24}{14} \times 100=171.4 \%$
97.(A) Total distribution of loan by all the banks in the year $2003=15+30+38+20=103$ crore

Total distribution in $2004=23+29+22+31=105$ crore
$\%$ increment $=\frac{2}{103} \times 100=1.9 \%=2 \%$ (approx.)
98.(B) Average distribution of loan:

By bank $\mathbf{A}=\frac{32+27+34+15+23}{5}=\frac{131}{5}=26.2$ crore
By bank B $=\frac{22+34+36+30+29}{5}=\frac{151}{5}=30.2$ crore
By bank C $=\frac{24+26+14+38+22}{5}=\frac{124}{5}=24.80$ crore
By bank $\mathbf{D}=\frac{18+29+17+20+31}{5}=\frac{115}{5}=23$ crore
Bank B distributed highest loan.
99.(B) Total distribution of loan in the year 2001 $=34+26+27+29=116$ crore

Total distribution of loan in the year $2000=32+22+24+18=96$ crore
Required difference $=116-96=20$ crore
100.(B) Total loan distributed by bank $\mathrm{A}=131$ crore

Total loan distributed by bank B $=151$ crore
Required ratio $=151: 131$

QUANTITATIVE ABILITY - 60 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (B) } & 26 . & \text { (C) } & 51 . & \text { (B) } & \text { 76. }\end{array}$ (B) $)$

