1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
TEST NO.
59

SSC TIER-II : QUANTITATIVE ABILITIES
 (Answer with Explanations)

					we				
1.	(D)	21.	(D)	41.	(C)	61.	(A)	81.	(D)
2.	(B)	22.	(B)	42.	(B)	62.	(C)	82.	(D)
3.	(D)	23.	(B)	43.	(C)	63.	(C)	83.	(B)
4.	(C)	24.	(D)	44.	(B)	64.	(A)	84.	(D)
5.	(A)	25.	(C)	45.	(D)	65.	(A)	85.	(D)
6.	(B)	26.	(B)	46.	(B)	66.	(B)	86.	(C)
7.	(C)	27.	(B)	47.	(C)	67.	(A)	87.	(A)
8.	(D)	28.	(C)	48.	(B)	68.	(B)	88.	(B)
9.	(A)	29.	(C)	49.	(C)	69.	(B)	89.	(A)
10.	(C)	30.	(B)	50.	(D)	70.	(A)	90.	(C)
11.	(B)	31.	(C)	51.	(A)	71.	(A)	91.	(D)
12.	(C)	32.	(C)	52.	(B)	72.	(A)	92.	(D)
13.	(D)	33.	(D)	53.	(B)	73.	(A)	93.	(C)
14.	(B)	34.	(D)	54.	(A)	74.	(C)	94.	(B)
15.	(B)	35.	(B)	55.	(A)	75.	(D)	95.	(C)
16.	(B)	36.	(A)	56.	(A)		(B)	96.	(B)
17.	(C)	37.	(A)	57.	(C)	77.	(C)	97.	(A)
18.	(B)	38.	(C)	58.	(C)	78.	(B)	98.	(B)
19.	(A)	39.	(A)	59.	(C)	79.	(D)	99.	(A)
20.	(D)	40.	(C)	60.	(A)		(B)	100.	(D)

Answer key with explanations

1. (D) The required numbers $=1212,1453$ 1694, 1935, 2176, 2417, 2658, 2899 Hence, Required numbers $=8$
2. (B) No. of successful students $=\frac{7}{11} \times 143$
$=91$
No. of unsuccessful students $=\frac{4}{11} \times 143$
$=52$
The required ratio $=\frac{91+8}{52-8}=\frac{99}{44}=\frac{9}{4}$
Hence ratio of successful to unsuccessful students $=9: 4$
3. (D)

The required ratio $=9: 16$
4. (C) Let C.P. $=₹ x$
(S.P.) ${ }_{1}=₹ 1175$

Profit $=(\text { S.P. })_{1}-$ C.P.

Profit $=1175-x$
(S.P.) $)_{2}=₹ 925$
loss = C.P. $-(\text { S.P. })_{2}$
loss $=x-925$
ATQ,
$1175-x=x-925$
$\Rightarrow 2 x=1175+925$
$\Rightarrow 2 x=2100 \Rightarrow x=1050$
Hence cost price of the article $=₹ 1050$
5. (A) Let original rate per dozen of the bananas $=₹ x$
Due to 15% fall in the rate of bananas, rate per dozen of the bananas $=x \times \frac{85}{100}$
$=\frac{17 x}{20}$
ATQ,
$\frac{612 \times 20}{17 x}-\frac{612}{x}=3 \Rightarrow 612\left(\frac{20-12}{17 x}\right)=3$
$\Rightarrow \frac{612 \times 3}{17 x}=3 \Rightarrow x=36$
Hence original rate per dozen of the bananas = ₹ 36
6. (B) Let sum $=P$, rate $=r \%$

ATQ,
$P\left(1+\frac{r}{100}\right)^{2}=9360$
and $P\left(1+\frac{r}{100}\right)^{3}=11232$
from eq(i) and eq(ii)
$1+\frac{r}{100}=\frac{11232}{9360}$
$\Rightarrow \frac{r}{100}=\frac{11232}{9360}-1$
$\Rightarrow \frac{r}{100}=\frac{1872}{9360} \Rightarrow r=20$
from eq(i)
$P\left(1+\frac{20}{100}\right)^{2}=9360$
$\Rightarrow \mathrm{P} \times \frac{12}{10} \times \frac{12}{10}=9360 \Rightarrow \mathrm{P}=6500$
Hence sum = ₹ 6500
7. (C)
$\left[1+\frac{2 x y}{x^{2}+y^{2}}\right] \div\left[\frac{x^{3}+y^{3}}{x+y}+3 x y\right]$
$\Rightarrow\left[\frac{x^{2}+y^{2}+2 x y}{x^{2}+y^{2}}\right] \div\left[\frac{(x+y)\left(x^{2}+y^{2}-x y\right)}{x+y}+3 x y\right]$
$\Rightarrow\left[\frac{x^{2}+y^{2}+2 x y}{x^{2}+y^{2}}\right] \div\left[x^{2}+y^{2}-x y+3 x y\right]$
$\Rightarrow\left[\frac{x^{2}+y^{2}+2 x y}{x^{2}+y^{2}}\right] \div\left[x^{2}+y^{2}+2 x y\right]$
$\Rightarrow \frac{1}{x^{2}+y^{2}}$
8. (D) $x^{2}+y^{2}+4 x+2 y+5=0$
$\Rightarrow x^{2}+4 x+4+y^{2}+2 y+1=0$
$\Rightarrow(x+2)^{2}+(y+1)^{2}=0$
$x+2=0 \Rightarrow x=-2$
and $y+1=0 \Rightarrow y=-1$
Now, $x^{3}+y^{5}$
$\Rightarrow(-2)^{3}+(-1)^{5}$
$\Rightarrow-8-1=-9$
9. (A) $\left(x+\frac{1}{x}\right)^{2}=5 \Rightarrow x+\frac{1}{x}=\sqrt{5}$

On cubing both sides
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}\left(x+\frac{1}{x}\right)=(\sqrt{5})^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times \sqrt{5}=5 \sqrt{5}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=2 \sqrt{5}$
On squaring both sides
$\Rightarrow x^{6}+\frac{1}{x^{6}}+2 \times x^{3} \times \frac{1}{x^{3}}=(2 \sqrt{5})^{2}$
$\Rightarrow x^{6}+\frac{1}{x^{6}}+2=20 \Rightarrow x^{6}+\frac{1}{x^{6}}=18$
10. (C) $\frac{\tan \theta+\sec \theta+1}{\tan \theta+\sec \theta-1} \times \frac{\tan \theta-\sec \theta-1}{\tan \theta-\sec \theta-1}$

$$
\begin{aligned}
& \Rightarrow \frac{(\tan \theta)^{2}-(\sec \theta+1)^{2}}{(\tan \theta-1)^{2}-(\sec \theta)^{2}} \\
& \Rightarrow \frac{\tan ^{2} \theta-\left(\sec ^{2} \theta+1+2 \sec \theta\right)}{\tan ^{2} \theta+1-2 \tan \theta-\sec ^{2} \theta} \\
& \Rightarrow \frac{\tan ^{2} \theta-\sec ^{2} \theta-1-2 \sec \theta}{\sec ^{2} \theta-2 \tan \theta-\sec ^{2} \theta}
\end{aligned}
$$

$$
\left[\because \tan ^{2} \theta+1=\sec ^{2} \theta\right]
$$

$$
\Rightarrow \frac{-1-1-2 \sec \theta}{-2 \tan \theta} \Rightarrow \frac{-2(1+\sec \theta)}{-2 \tan \theta}
$$

$$
\Rightarrow \frac{1+\sec \theta}{\tan \theta} \Rightarrow \frac{1+\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}}
$$

$$
\Rightarrow \frac{\cos \theta+1}{\sin \theta} \Rightarrow \frac{1+\cos \theta}{\sin \theta}
$$

11. (B) 3 years ago, the sum of the age of 5 members $=5 \times 20=100$ years
the sum of the ages of 5 members, today
$=100+3 \times 5=115$ years
the sum of ages with child, today
$=6 \times 19 \frac{1}{2}=117$ years
Therefore, age of the child $=117-115$
$=2$ years
12. (C) Given $x^{4}+x^{3}-4 x^{2}+x+1$

On dividing by x^{2}
$\Rightarrow x^{2}+x-4+\frac{1}{x}+\frac{1}{x^{2}}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+x+\frac{1}{x}-4$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2+x+\frac{1}{x}-6$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-6$
$\Rightarrow y^{2}+y-6\left(\because y=x+\frac{1}{x}\right)$
13. (D) Let total work $=90$ units

Number of units of work done by Arman, Vijay and Ketan together in one day
$=\frac{90}{30}=3$
Number of units of work done by Arman and Ketan together in one day $=\frac{90}{45}=2$
Number of units of work done by Vijay alone in one day $=3-2=1$
Number of units of work done by Arman alone in one day $=1 \times 0.75=0.75$
Number of units of work done by Ketan alone in one day $=2-0.75=1.25$
Now, Number of units of work done by Arman alone with increased efficiency in one day $=2 \times 0.75=1.5$
Number of units of work done by Vijay alone with increased efficiency in one day $=1.5 \times 1=1.5$
Number of units of work done by Ketan alone with increased efficiency in one day $=1.6 \times 1.25=2$
Time taken by Arman, Vijay and Ketan together to complete the work
$=\frac{90}{(1.5+1.5+2)}=18$ days
14. (B) Given that the ratio of selling prices of three article respectively,
S.P1 = 5X, S.P2 = 6X, S.P3 = 9X

And the ratio of their cost prices respectively,
C.P1 $=4 \mathrm{Y}, \mathrm{C} . \mathrm{P} 2=5 \mathrm{Y}, \mathrm{C} . \mathrm{P} 3=8 \mathrm{Y}$

Given that, S.P1 - C.P1 = S.P3 - C.P3
$\Rightarrow 5 \mathrm{X}-4 \mathrm{Y}=9 \mathrm{X}-8 \mathrm{Y} \Rightarrow \mathrm{X}=\mathrm{Y}$
Their profit percentages respectively,
$\mathrm{P} 1=\frac{(5-4)}{4} \times 100=25 \%$
$\mathrm{P} 2=\frac{(6-5)}{5} \times 100=20 \%$,
$\mathrm{P} 3=\frac{(9-8)}{8} \times 100=12 \frac{1}{2} \%$
Ratio of the profit percentages respectively
$=25: 20: 12 \frac{1}{2}=10: 8: 5$
15. (B) L.C.M. of $(2,4,5,6)=2^{2} \times 3 \times 5=60$ Divide 3475 by 60,

$$
\frac{3475}{60}=57 \frac{55}{60}
$$

[Here 55 represent the remainder. Which need to make 0 for that, $60-55$ need to do. Answer of subtraction is required answer which need to add in 3475.]

Hence number need to add $=60-55=5$
16. (B) Cost price of $100 \mathrm{~kg}(20+80)$ mixture of brick powder and chili powder $=20 \times 20$
$+80 \times 100=400+8000=₹ 8400$
Selling price of $100 \mathrm{~kg}(20+80)$ mixture of brick powder and chilli podwer =
$100 \times 105=₹ 10500$
Profit earned $=10500-8400=₹ 2100$
Profit percentage $=\frac{2100}{8400} \times 100=25 \%$
17. (C) The expression $1^{203}+2^{203}+3^{203}+\ldots+10^{203}$ can be written as,
$1^{3}+2^{3}+3^{3}+\ldots+10^{3}[\because$ every number has a maximum cyclicity of 4]

We know that $1^{3}+2^{3}+\ldots+10^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
[where n is the number of digits]
$\Rightarrow 1^{3}+2^{3}+3^{3}+\ldots .+10^{3}=\left[\frac{1}{2} \times 10 \times 11\right]^{2}$
= 3025
Hence unit digit of the expression is 5 .
18. (B) Time $=1+\frac{73}{365}=1+\frac{1}{5}=\frac{6}{5}$ years

Now,S.I. $=\frac{(\text { Principal } \times \text { rate } \times \text { time })}{100}$
$=\frac{\left(12500 \times 8 \times \frac{6}{5}\right)}{100}=₹ 1200$
Hence amount paid to clear debt $=12500+1200=₹ 13700$
19. (A) Total money $=₹ 10000$

Let he invests ₹ x in scheme A
Money invested in scheme B
$=₹(10000-x)$
Interest after 2 years $=₹ 1840$
$\Rightarrow \frac{x \times 8 \times 2}{100}+\frac{(10000-x) \times 10 \times 2}{100}=1840$
$\Rightarrow 0.16 x+2000-0.2 x=1840$
$\Rightarrow x=4000$
\therefore The man invests ₹ 4000 in scheme A.

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
20. (D) Case I :

4 women and 6 men are there in the committee
So the number of ways
$={ }^{7} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{6}=35 \times 28=980$
Case II :
3 women and 7 men are there in the committee
So the number of ways
$={ }^{7} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{7}=35 \times 8=280$

Case III :

2 women and 8 men are there in hte committee
So the number of ways
$={ }^{7} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{8}=21 \times 1=21$
So the number of ways in which the committee can be formed
$=980+280+21=1281$
21. (D) Let the quantity of milk and water in mixture X be $5 x$ litres and $2 x$ litres respectively.
And, let the quantity of milk and milk and water in mixture Y be $3 y$ litres and y litres respectively.
ATQ,
$5 x=3 y \Rightarrow y=\frac{5 x}{3}$
And, $2 x-y=7$
$\Rightarrow 2 x-\frac{5 x}{3}=7$
[using eq.(i)]
$\Rightarrow 6 x-5 x=21 \Rightarrow x=21$
So, the quantity of mixture $\mathrm{X}=5 x+2 x$
$=7 x=7 \times 21=147$ litres
22. (B) Let the speed of $\mathrm{P}=p \mathrm{kmph}$

Speed of $\mathrm{Q}=q \mathrm{kmph}$
ATQ, $p+q=\frac{450}{5}=90$
And $\frac{450}{q}-\frac{450}{p}=\frac{135}{60}$
On solving
$p=50, q=40$
Hence speed of $\mathrm{P}=50 \mathrm{kmph}$
23. (B) Let the quantities of milk and water added be $4 k$ litres and k litres respectively.
Given,
After selling 50 litres of milk solution, the remaining quantity $=150-50$
$=100$ litres
ATQ,
$\Rightarrow \frac{\frac{17}{25} \times 100+4 k}{\frac{8}{25} \times 100+k}=\frac{14}{5} \Rightarrow k=18$
\therefore The required quantity of milk added
$=4 k=4 \times 18=72$ litres
24. (D) Let the cost price of Anil $=₹ a$

Then his marked price $=₹ 1.5 a$
and his selling price $=₹ 1.5 a(0.8)=1.2 a$
Raman's cost price $=₹ 1.2 a$
Raman's selling price
$(1.2 a+20)=1.3 a \Rightarrow a=200$
\therefore Raman's cost price $=1.2 a$
$=1.2(200)=₹ 240$
\therefore Raman's profit $\%=\left(\frac{20}{240}\right) \times 100 \%$
= 8.33\%
25. (C) Let, total work be LCM of 6 and $8=24$ units
Units of work done by Sumit in a day
$=\frac{24}{6}=4$ units
Units of work done by Ravish in a day
$=\frac{24}{8}=3$ units
Units of work done by Sumit in 2 days
$=4 \times 2=8$ untis
Remaining work $=24-8=16$ units
So, 16 units of work will be done in $\frac{16}{7}$ days

Units of work done by Sumit in $\frac{16}{7}$ days
$=4 \times \frac{16}{7}=\frac{64}{7}$ units
Total units of work done by sumit
$=\frac{64}{7}+8=\frac{(64+56)}{7}=\frac{120}{7}$ units
Required percentage
$=\left\{\frac{120}{(24 \times 7)}\right\} \times 100=71.43 \%$
26. (B) Let, number of friends who attended picnic $=x$
ATQ,
$\Rightarrow \frac{10800}{x}-\frac{10800}{x+20}=18$
$\Rightarrow x=100$
Hence the number of friends who attended picnic $=100$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
27. (B)

ATQ,
Time taken by car to cover 2 units distance $=20 \mathrm{~min}$
Time taken by car cover 3 units distance
$=\frac{20}{2} \times 3=30 \mathrm{~min}$
\therefore Required time $=\frac{30}{60}=\frac{1}{2}$ hours
28. (C) Pipe $_{1}$

Required time $=\frac{18}{(3-2)} \times \frac{5}{6}=15$ hours
29. (C) ATQ,
$3 \mathrm{~A}=7 \mathrm{~B}$ and $5 \mathrm{~B}=9 \mathrm{C}$
$15 A=35 B=63 C$
Required time $=\frac{63}{15} \times 25=105$ days
30. (B) Let, they meet after time ' T ' minutes
$\mathrm{T}=\sqrt{63} \times \sqrt{28}$
$=2 \times 3 \times 7=42$ minutes
Required time $=42+28=70$ minutes
31. (C) Let required rate $=\mathrm{R} \%$

ATQ,
$16000 \times \frac{11}{200}+48000 \times \frac{6}{100}+36000$
$\times \frac{\mathrm{R}}{100}=7360$
$\Rightarrow 880+2880+360 \mathrm{R}=7360$
$\Rightarrow 360 \mathrm{R}=3600 \Rightarrow \mathrm{R}=10 \%$
32. (C) Total number of males in Haryana
$=3276000 \times \frac{15}{100} \times \frac{3}{5}=294840$

Total number of males in Punjab
$=3276000 \times \frac{20}{100} \times \frac{3}{4}=491400$
Total number of males in Himachal
$=3276000 \times \frac{12}{100} \times \frac{3}{8}=147420$
Required percentage
$=\frac{294840+491400+147420}{3276000} \times 100$
$=\frac{933660}{3276000} \times 100=28.5 \%$
33. (D) The required number

$$
\begin{aligned}
& =3276000 \times \frac{25}{100} \times \frac{7}{9}+3276000 \times \frac{20}{100} \times \frac{4}{5} \\
& =637000+524160=1161160 \\
& \text { (D) Required number }=\frac{3276000 \times \frac{9}{100} \times \frac{4}{7}}{3276000 \times \frac{8}{100} \times \frac{3}{5}}
\end{aligned}
$$

$=\frac{9 \times 4 \times 5}{7 \times 8 \times 3}=\frac{15}{14}$
Hence the required ratio $=15: 14$
35. (B) Required number $=3276000 \times \frac{15}{100} \times \frac{3}{5}$ $=294840$
36. (A) Required Ratio $=\frac{3276000 \times \frac{15}{100} \times \frac{100}{110}}{3276000 \times \frac{20}{100} \times \frac{100}{112}}$
$=\frac{15 \times 112}{20 \times 110}=\frac{42}{55}$
Hence the required ratio $=42: 55$
37. (A) ATQ,

8 8	6561 64
161	161 $\times 1$
	161
	0

Hence, 0 is subtracted from 6561 to make it a perfect square.
38. (C) ATQ,

Required marks $=\frac{550}{68.75} \times \frac{100}{2}=400$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
39. (A) Let C.P of Ist article $=x$
and C.P of IInd article $=x$
Profit on Ist article $=16 \frac{2}{3} \%=\frac{1}{6}$
S.P of Ist article $=x \times \frac{7}{6}=\frac{7 x}{6}$

Profit on both articles $=25 \%=\frac{1}{4}$
S.P of both articles $=2 x \times \frac{5}{4}=\frac{5 x}{2}$

ATQ,
$\frac{7 x}{6}+\frac{7 x}{6}+2400=\frac{5 x}{2}$
$\Rightarrow \frac{7 x}{3}+2400=\frac{5 x}{2}$
$\Rightarrow \frac{5 x}{2}-\frac{7 x}{3}=2400$
$\Rightarrow \frac{15 x-14 x}{6}=2400$
$\Rightarrow \frac{x}{6}=2400 \Rightarrow x=14400$
Hence the required cost price $=₹ 14400$
40. (C)

Alcohol	Wat
4	$:$
5	$:$

I. Mixture
$5: 7$

Ratio $=\frac{1}{12}: \frac{1}{14}=14: 12=7: 6$

Required quantity of mixture $=30$ lit.
41. (C) $x+y+z=4$

On squaring
$\Rightarrow x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=16$
$\Rightarrow x^{2}+y^{2}+z^{2}+2 \times(-19)=16$

$$
[\because x y+y z+z x=-19]
$$

$\Rightarrow x^{2}+y^{2}+z^{2}=16+38$
$\Rightarrow x^{2}+y^{2}+z^{2}=54$
Now, $\sqrt{x^{3}+y^{3}+z^{3}-(x+y+z)}$
$\Rightarrow \sqrt{(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z-(x+y+z)}$
$\Rightarrow \sqrt{4(54-(-19)]+3 \times(-21)-4}$
$\Rightarrow \sqrt{4 \times 73-63-4} \Rightarrow \sqrt{292-63-4}$
$\Rightarrow \sqrt{225}=15$
42. (B) 75% of $\mathrm{A}=30 \%$ of B
$\Rightarrow \frac{75}{100} \times \mathrm{A}=\frac{30}{100} \times \mathrm{B} \Rightarrow 5 \mathrm{~A}=2 \mathrm{~B}$
and 20% of $\mathrm{B}=50 \%$ of C
$\Rightarrow \frac{20}{100} \times \mathrm{B}=\frac{50}{100} \times \mathrm{C} \Rightarrow 2 \mathrm{~B}=5 \mathrm{C}$
Hence $5 \mathrm{~A}=2 \mathrm{~B}=5 \mathrm{C}$
Now, 10% of $\mathrm{C}=x \%$ of A
$\Rightarrow \frac{10}{100} \times \mathrm{C}=\frac{x}{100} \times \mathrm{A} \Rightarrow 10 \mathrm{C}=x \times \mathrm{A}$
$\Rightarrow 10 \mathrm{~A}=x \times \mathrm{A} \Rightarrow x=10$
43. (C) $(117)^{213} \times(323)^{217} \times(129)^{277} \times(434)^{279} \times$ (66) ${ }^{29}$
$\Rightarrow(117)^{4 \times 53+1} \times(323)^{4 \times 54+1} \times(129)^{4 \times 69+1} \times$
$(434)^{4 \times 69+3} \times(66)^{4 \times 7+1}$
\Rightarrow Unit digit $=7^{1} \times 3^{1} \times 9^{1} \times 4^{3} \times 6^{1}$
\Rightarrow Unit digit $=1 \times 9 \times 4 \times 6$
\Rightarrow Unit digit $=9 \times 4=6$
44. (B) Let number of sides of the polygon $=n$ ATQ,

$$
\begin{aligned}
& \frac{180 \times(n-2)}{n}-\frac{360}{n}=135 \\
& \Rightarrow \frac{180 n-360-360}{n}=135 \\
& \Rightarrow 180 n-720=135 n \\
& \Rightarrow 180 n-135 n=720 \\
& \Rightarrow 45 n=720 \Rightarrow n=16
\end{aligned}
$$

Hence number of sides of the polygon $=16$
45. (D) $x^{2}-11 x+27=0$
$\Rightarrow x^{2}-4 x-7 x+28-1=0$
$\Rightarrow x(x-4)-7(x-4)-1=0$
On dividing by $(x-4)$
$\Rightarrow x-7-\frac{1}{x-4}=0$
$\Rightarrow x-4-\frac{1}{x-4}=3$
On cubing both sides

$$
\begin{aligned}
& \Rightarrow(x-4)^{3}-\frac{1}{(x-4)^{3}}-3 \times(x-4) \times \frac{1}{x-4} \\
& \qquad\left[x-4-\frac{1}{x-4}\right]=3^{3} \\
& \Rightarrow(x-4)^{3}-\frac{1}{(x-4)^{3}}-3 \times 3=27 \\
& \Rightarrow(x-4)^{3}-\frac{1}{(x-4)^{3}}=36
\end{aligned}
$$

$K D$
 Campus
 K D Campus Pvt. Ltd

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
46. (B) Let number $=10 x+y$

ATQ,
$y=2 x$
and $x+y-2=(10 x+y) \times \frac{1}{6}$
from eq(i)
$x+2 x-2=(10 x+2 x) \times \frac{1}{6}$
$\Rightarrow 3 x-2=12 x \times \frac{1}{6} \Rightarrow 3 x-2=2 x$
$\Rightarrow x=2$ and $y=4$
\therefore The required number $=10 \times 2+4$
$=20+4=24$
47. (C) $\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}}{\sqrt{7+4 \sqrt{3}}-\sqrt{4+2 \sqrt{3}}}$
$\Rightarrow \frac{1+4+9+16+25}{\sqrt{(2+\sqrt{3})^{2}}-\sqrt{(\sqrt{3}+1)^{2}}}$
$\Rightarrow \frac{55}{2+\sqrt{3}-\sqrt{3}-1}=\frac{55}{1}=55$
48. (B) $2^{50}=\left(2^{5}\right)^{10}=(32)^{10}$
$3^{40}=\left(3^{4}\right)^{10}=(81)^{10}$
$4^{30}=\left(4^{3}\right)^{10}=(64)^{10}$
$5^{70}=\left(5^{2}\right)^{10}=(25)^{10}$
Hence greatest number $=(81)^{10}=3^{40}$
49. (C) Given that
$x^{2}+y^{2}+z^{2}=x y+y z+z x$
$\Rightarrow 2\left(x^{2}+y^{2}+z^{2}\right)=2(x y+y z+z x)$
$\Rightarrow 2\left(x^{2}+y^{2}+z^{2}\right)-2(x y+y z+z x)=0$
$\Rightarrow(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=0$
Here $x=y=z$
Now, $\frac{7 x^{4}+9 y^{4}+11 z^{4}}{36 x^{2} y^{2}+12 y^{2} z^{2}+6 z^{2} x^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{7 x^{4}+9 x^{4}}{36 x^{4}+12 x} \\
& \Rightarrow \frac{27 x^{4}}{54 x^{4}}=\frac{1}{2}
\end{aligned}
$$

50. (D) $\frac{4}{3} \tan ^{2}\left(\frac{\pi}{3}\right)+3 \sin ^{2}\left(\frac{2 \pi}{3}\right)-4 \sec ^{2}\left(\frac{\pi}{4}\right)+$

$$
8 \sin \left(\frac{\pi}{2}\right)=?
$$

$\Rightarrow \frac{4}{3} \times(\sqrt{3})^{2}+3 \times\left(\frac{\sqrt{3}}{2}\right)^{2}-4 \times(\sqrt{2})^{2}+8 \times 1$

$$
\begin{aligned}
& \Rightarrow \frac{4}{3} \times 3+3 \times \frac{3}{4}-4 \times 2+8 \\
& \Rightarrow 4+\frac{9}{4}-8+8 \Rightarrow \frac{25}{4}
\end{aligned}
$$

51. (A)

$B D \| O D$
Area of $\triangle B C D=\triangle B O C$'s Area
Area of $\triangle B C D=\triangle B C D$'s Area + Area of $\overline{B C}$
$=\triangle \mathrm{BOC}+\overline{\mathrm{BC}}=\overline{\mathrm{BOC}}$
$=\frac{45^{\circ}}{360^{\circ}} \times \pi \times(6)^{2}=\frac{9 \pi}{2}$
52. (B)

$\mathrm{EO}=\mathrm{SO}=\mathrm{OR}=7 \mathrm{~cm}$
In $\triangle \mathrm{OQR},(\mathrm{QR})^{2}+(\mathrm{OR})^{2}=(\mathrm{OQ})^{2}$
$\mathrm{QO}=7 \sqrt{2}$
r is a radius of small circle
$\mathrm{OQ}=\mathrm{OP}+\mathrm{r}+\sqrt{2} \mathrm{r} \Rightarrow 7 \sqrt{2}=7+\mathrm{r}(\sqrt{2}+1)$
$r=\frac{7(\sqrt{2}-1)}{\sqrt{2}+1}=21-14 \sqrt{2}$
53. (B)

Length of string
$=140+2 \pi \times \frac{40}{360} \times 270+\frac{2 \pi}{360} \times 30 \times 270$
$=140+105 \pi$
54. (A)

Now,
$(20-r)^{2}+(10)^{2}=r^{2}$
$400-40 r+r^{2}+100=r^{2}$
$r=\frac{50}{4}=\frac{25}{2}$
Area of circle $=\pi r^{2}$
$=3.14\left(\frac{25}{2}\right)^{2}$
$=\frac{22}{7} \times \frac{625}{4}$
$=490.625$
55. (A) ATQ,

The unit's digit will be $1 \times 5=5$ (no carry over)
The tens digits will be $(4 \times 1+5 \times 2)=4$ (carry over)
The hundreds digit will be $=(3 \times 1+4 \times 2$
$+5 \times 1$) $=6+1$ (carried over) $=7$
Hence, Answer is 745
56. (A) ATQ,

Last digit $=1^{2}+2^{2}+3^{2}+4^{2}+$ $+99^{2}$
$=\frac{n(n+1)(2 n+1)}{6}$
$=\frac{99 \times 100 \times 199}{6}$
$=33 \times 50 \times 99$
$=328,350$
Last digit is zero.
57. (C)

$\mathrm{KJ}=$ radius of semicircles $=10 \mathrm{~cm}$
4 Quadrants of equal radius $=1$ circle of that radius
Area of shaded portion $=$ Area of
rectangle - Area of circle
$=28 \times 26-3.14 \times 10^{2}$
$=414 \mathrm{~cm}^{2}$
$\mathrm{BC}=28-(10+10)=8 \mathrm{~cm}$ and $\mathrm{EF}=26-$
$(10+10)=6 \mathrm{~cm}$
Perimeter of shaded portion
$=28 \mathrm{~cm}+2 \pi \mathrm{r}$
$=28+2 \times 3.14 \times 10$
$=90.8 \mathrm{~cm}$
Hence, Area $=414 \mathrm{~cm}^{2}$
Perimeter $=90.8 \mathrm{~cm}$
58. (C) $x=\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
$\Rightarrow \frac{x}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
Applying componendo-dividendo

$$
\begin{equation*}
\Rightarrow \frac{x+\sqrt{3}}{x-\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{2}}{\sqrt{2}-\sqrt{3}-\sqrt{2}}=\frac{2 \sqrt{2}+\sqrt{3}}{-\sqrt{3}} \tag{i}
\end{equation*}
$$

$x=\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
Using componendo-dividendo Rule
$\Rightarrow \frac{x}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$
$\frac{x+\sqrt{2}}{x-\sqrt{2}}=\frac{\sqrt{3}+\sqrt{3}+\sqrt{3}}{\sqrt{3}-\sqrt{3}-\sqrt{2}}=\frac{2 \sqrt{3}+\sqrt{2}}{-\sqrt{2}}$
Now,
$\frac{x+\sqrt{3}}{x-\sqrt{3}}-\frac{x+\sqrt{2}}{x-\sqrt{2}}$
$=\frac{2 \sqrt{2}+\sqrt{3}}{-\sqrt{3}}+\frac{2 \sqrt{3}+\sqrt{2}}{-\sqrt{2}}$
$=\frac{-4-\sqrt{6}+6+\sqrt{6}}{\sqrt{6}}$
$=\frac{2}{\sqrt{6}}=\sqrt{\frac{2}{3}}$
59. (C) Put $\mathrm{q}=2$
$2 p+1=2$ and $2 r+1=r$
$\mathrm{p}=\frac{1}{2} \quad \mathrm{r}=1$
Now,
$3 r+\frac{3}{p}+5 \mathrm{pqr}$
$=-3+3 \times 2+5 \times \frac{1}{2} \times 2 \times(-1)$
$=-2$
60. (A) Put $b=c=0$
$x=a, y=3 a$ and $z=-4 a$
Now,
$\frac{x^{2}+y^{2}-z^{2}}{x y}=\frac{a^{2}+9 a^{2}-16 a^{2}}{3 a^{2}}$
$=-2$
61. (A) Let
$x=.9$
$y=.2$
and $z=.3$
then the given expression
$=\frac{x \times x \times x+y \times y \times y+z \times z \times z-3 x y z}{x \times x+y \times y+z \times z-x \times y-y \times z-z \times x}$
$=\frac{x^{3}+y^{3}+2^{3}-3 x y z}{\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}$
$=(x+y+z)$
$=.9+.2+.3$
$=1.4$
62. (C) $\frac{\cot ^{2} 15^{\circ}-1}{\cot ^{2} 15^{\circ}+1}=\frac{\cos ^{2} 15-\sin ^{2} 15^{\circ}}{\cos ^{2} 15^{\circ}+\sin ^{2} 15}$
$=\frac{\cos 30^{\circ}}{1}=\frac{\sqrt{3}}{2}$
63. (C) Let $\alpha=\beta=45^{\circ}$
$\frac{\sec ^{4} 45^{\circ}}{\sec ^{2} 45^{\circ}}-\frac{\tan ^{2} 45^{\circ}}{\tan ^{2} 45^{\circ}}=0$
64. (A) $2 \sin \alpha+15 \cos ^{2} \alpha=7$
$\Rightarrow 2 \sin \alpha+15\left(1-\sin ^{2} \alpha\right)=7$
$\Rightarrow 15 \sin ^{2} \alpha-2 \sin \alpha-8=0$
$\Rightarrow 15 \sin ^{2} \alpha-12 \sin \alpha+10 \sin \alpha-8=0$
$\Rightarrow(5 \sin \alpha-4)(3 \sin \alpha+2)=0$
Here $\sin \alpha=\frac{4}{5}, \frac{-2}{3}$ but, α is acute angle,
So, $\sin \alpha=\frac{4}{5}$
then $\cot \alpha=\frac{3}{4}$
65. (A)

PQRS is a cyclic quadrilateral $\angle \mathrm{S}+\angle \mathrm{Q}=180^{\circ}$
$\angle \mathrm{Q}=180^{\circ}-95^{\circ}$
$\angle \mathrm{PQR}=85^{\circ}$
66. (B) ATQ,

$\because P A=P Q$
$\therefore \triangle \mathrm{APQ}$ becomes an isosceles triangle
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{A}=180^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{P}+48^{\circ}=180^{\circ}$
$\angle \mathrm{P}=66^{\circ}$
Hence, $\angle \mathrm{APQ}=66^{\circ}$
67. (A)

$a \times b=100$

From (i) and (ii)
$2 b+\frac{100}{b}=30$
$b^{2}-15 b+50=0$
b $=5,10$
b $=5$; $\mathrm{a}=20$
So, dimension are 20, 5
68. (B)

In $\triangle \mathrm{ABD}$
$2 \mathrm{a}=90^{\circ} \Rightarrow \mathrm{a}=45^{\circ}$
In $\triangle \mathrm{ADG}$
$\mathrm{AD}=\mathrm{AG}$ and $\mathrm{DF}=\mathrm{FG}$
F is mid point
$\Rightarrow \mathrm{AF} \perp \mathrm{DG}$
$\mathrm{b}=90^{\circ}$
In $\triangle \mathrm{ADC}$
$\operatorname{Sin} C=\frac{A D}{A C}$
$=\frac{x}{2 x}=\frac{1}{2}$
$\mathrm{C}=30^{\circ}$
Now, $a+b+c$
$=45^{\circ}+90^{\circ}+30^{\circ}$
$=165^{\circ}$
69. (B)

$\because \angle \mathrm{FGC}=80^{\circ} \quad(\mathrm{AB}| | \mathrm{GH}| | \mathrm{DE}$ and GF
||BD||HI)
$\therefore \angle \mathrm{CHI}=80^{\circ}$
70. (A)

In the smaller circle
$\mathrm{PC} \times \mathrm{PB}=\mathrm{PF} \times \mathrm{PE}$
$\Rightarrow \mathrm{PE}=\frac{9 \times 12}{8}=\frac{27}{2} \mathrm{~cm}$
In the larger circle,
$\mathrm{PB} \times \mathrm{PA}=\mathrm{PE} \times \mathrm{PD}$
$\Rightarrow 12 \times 18=\mathrm{PD} \times \frac{27}{2}$
$\Rightarrow \mathrm{PD}=16$
Therefore, $\mathrm{DE}=\mathrm{PD}-\mathrm{PE}=16-13.5$
$=2.5 \mathrm{~cm}$
71. (A) $\frac{\sin ^{8} \theta-\cos ^{8} \theta}{\cos 2 \theta\left(1+\cos ^{2} 2 \theta\right)}$
$=\frac{\left(\sin ^{4} \theta+\cos ^{4} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left[\left(1+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{2}\right]\right.}$
$=\frac{-\left(\cos ^{4} \theta+\cos ^{4} \theta\right)}{1+\cos ^{4} \theta+\sin ^{4} \theta-2 \sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{-\left(1-2 \sin ^{2} \theta \cdot \cos ^{2} \theta\right)}{1+1-2 \sin ^{2} \theta \cos ^{2} \theta-2 \sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{-1}{2}$
72. (A) $\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)\left(\mathrm{b}_{4} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)=\left(\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{~b}_{1}\right)^{2}$
$(1 \times 3-1 \times 2)[-2 \times(-\mathrm{m})-3 \times(-3)]=[(-3) \times 1-$
$(-\mathrm{m}) \times 1]^{2}$
$\Rightarrow-2 m+9=9+m^{2}-6 m$
$\Rightarrow \mathrm{m}^{2}-4 \mathrm{~m}=0$
$\Rightarrow \mathrm{m}(\mathrm{m}-4)=0$
$\mathrm{m}=4$

$$
(\because m \neq 0)
$$

73. (A) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$ $\Rightarrow 36=16+2(a b+b c+c a)$
$a b+b c+c a=10$
74. (C) $\frac{x^{2}-1}{x}=\sqrt{5}$
$\Rightarrow x-\frac{1}{x}=\sqrt{5}$
Squaring both sides eq(i)
$x^{2}+\frac{1}{x^{2}}=7$
Taking cube eq(i) both sides
$\left(x-\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}-3\left(x-\frac{1}{x}\right)$
$5 \sqrt{5}=x^{3}+\frac{1}{x^{3}}-3 \times \sqrt{5}$
$x^{3}+\frac{1}{x^{3}}=8 \sqrt{5}$
Multiplying eq(ii) and (iii)
$\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{3}+\frac{1}{x^{3}}\right)$
$=7 \times 8 \sqrt{5}$
$=56 \sqrt{5}$
75. (D) ATQ,

Let $y=(9-x)(2-x)$
$y=x^{2}-11 x+18$
$\frac{d y}{d x}=2 x-11$
for maximum or minimum value
Put $\left(\frac{d y}{d x}\right)=0$
$2 x-11=0$
$x=\frac{11}{2}$
\min value $=\left(9-\frac{11}{2}\right)\left(2-\frac{11}{2}\right)$
$=\frac{7}{2} \times\left(\frac{-7}{2}\right)$
$=\frac{-49}{4}$
76. (B) $x=\sqrt[3]{5}+2$
$(x-2)=\sqrt[3]{5}$
Taking cube both sides
$(x-2)^{3}=(\sqrt[3]{5})^{3}$
$x^{3}-8-6 x(x-2)=5$
$x^{3}-6 x^{2}+12 x-13=0$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
77. (C) $(a-b)=2, a b=15$
$(a+b)=\sqrt{(a-b)^{2}+4 a b}=\sqrt{4+4 \times 15}=8$
Now, $\left(a^{2}-b^{2}\right)\left(a^{3}-b^{3}\right)=(a+b)(a-b)(a-b)$
$\left(a^{2}+b^{2}+a b\right)$
$=4 \times 8 \times\left[(a+b)^{2}-a b\right]$
$=4 \times 8\left[8^{2}-15\right]$
$=32 \times[64-15]$
$=1568$
78. (B)

$\cot \alpha=\frac{15}{8}$
$\frac{(2+2 \sin \alpha)(1-\sin \alpha)}{(1+\cos \alpha)(2-2 \cos \alpha)}$
$=\frac{\left(2+2 \times \frac{8}{17}\right)\left(1-\frac{8}{17}\right)}{\left(1+\frac{15}{17}\right)\left(2-2 \times \frac{15}{17}\right)}$
$=\frac{\frac{50}{17} \times \frac{9}{17}}{\frac{32}{17} \times \frac{4}{17}}=\frac{50 \times 9}{32 \times 4}=\frac{225}{64}$
79. (D) $\sin \theta+\sin ^{2} \theta+\sin ^{3} \theta=1$
$\Rightarrow \sin \theta+\sin ^{3} \theta=1-\sin ^{2} \theta$
$\Rightarrow \sin \theta+\sin ^{3} \theta=\cos ^{2} \theta$
$\Rightarrow \sin \theta\left(1+\sin ^{2} \theta\right)=\cos ^{2} \theta$
$\Rightarrow \sin \theta\left(2-\cos ^{2} \theta\right)=\cos ^{2} \theta$
Squaring both sides
$\sin ^{2} \theta\left(2-\cos ^{2} \theta\right)^{2}=\cos ^{4} \theta$
$\left(1-\cos ^{2} \theta\right)\left(4+\cos ^{4} \theta-4 \cos ^{2} \theta\right)=\cos ^{4} \theta$
On solving
$\cos ^{6} \theta-4 \cos ^{4} \theta+8 \cos ^{2} \theta=4$
80. (B) ATQ,

Surface area of sphere $=4 \pi \times(\text { radius })^{2}$
$\Rightarrow 4 \times \frac{22}{7} \times(\text { radius })^{2}=1386$
$\Rightarrow(\text { radius })^{2}=\frac{441}{4}$
\Rightarrow Radius of spherical ball $=\sqrt{\left(\frac{441}{4}\right)}$
$=\frac{21}{2}=10.5$
\because Volume of sphere $=\left(\frac{4}{3}\right) \pi \times(\text { radius })^{3}$
\Rightarrow Volume of spherical ball $=\frac{4}{3} \times \frac{22}{7} \times$
$\left(\frac{21}{2}\right)^{3}=4851 \mathrm{~cm}^{3}$
Now,
Volume of a cube $=(\text { side })^{3}=(3)^{3}=27 \mathrm{~cm}^{3}$
\Rightarrow No. of cuboid that be formed
$=\frac{\text { volume of spherical ball }}{\text { volume of cuboid }}=\frac{4851}{27}$
$=179.67$
$\therefore 179$ cubes can be formed
81. (D) $\angle \mathrm{ABC}=120^{\circ}$
$\Rightarrow \angle \mathrm{ABM}=180^{\circ}-120^{\circ}=60^{\circ}$
In $\triangle \mathrm{AMB}, \angle \mathrm{AMB}=90^{\circ}, \angle \mathrm{ABM}=60^{\circ}$
$\therefore \angle \mathrm{MAB}=180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$
$\Rightarrow \mathrm{AM}=\mathrm{AB} \times \cos 30^{\circ}=12 \times \sqrt{\frac{3}{2}}=6 \sqrt{3}$
$\Rightarrow \mathrm{MB}=\mathrm{AB} \times \sin 30^{\circ}=12 \times \frac{1}{2}=6$
$\Rightarrow \mathrm{MC}=\mathrm{MB}+\mathrm{BC}=6+10=16$
$\Rightarrow A C^{2}=M C^{2}+A M^{2}=(6 \sqrt{3})^{2}+16^{2}=364$
$\Rightarrow A C=19.07$
82. (D) Approximate dimensions of a cuboid $=$ $10 \mathrm{~cm} \times 12 \mathrm{~cm} \times 16 \mathrm{~cm}$
\Rightarrow Approx. volume of a cuboid $=10$ $\times 12 \times 16=1920 \mathrm{~cm}^{3}$
\Rightarrow Approx. volume of 5 cuboids $=5 \times 1920$
$=9600 \mathrm{~cm}^{3}$
\therefore Neither $8000 \mathrm{~cm}^{3}$ nor $9000 \mathrm{~cm}^{3}$ would be enough to make 5 solid cuboids of given dimensions
83. (B) A hollow hemisphere can be made by removing a small hemisphere from a bigger hemisphere
\Rightarrow Volume of material required $=$ volume of hollow hemisphere - Volume of smaller hemisphere
Also, Volume of smaller hemisphere =
Volume of liquid the vessel can contain
$=1152 \pi \mathrm{~cm}^{3}$
\because Volume of hemisphere $=\left(\frac{2}{3}\right) \pi \times$ (radius) 3
$\Rightarrow 1152 \pi=\left(\frac{2}{3}\right) \pi \times(\text { radius })^{3}$
\Rightarrow Internal radius of vessel $=\mathrm{r}=$
$\sqrt[3]{\left(\frac{3}{2} \times 1152\right)}=\sqrt[3]{1728}=12 \mathrm{~cm}$
\because Thickness of vessel $=3 \mathrm{~cm}$
\Rightarrow External radius of vessel $=12+3=$ 15 cm
\Rightarrow Volume of bigger hemisphere $=\left(\frac{2}{3}\right) \pi$
$\times(15)^{3}=2250 \pi \mathrm{~cm}^{3}$
\therefore Volume of material required
$=2250 \pi-1152 \pi=1098 \mathrm{~cm}^{3}$
84. (D) Let the radii of the two cylinder be 'R' cm and ' r ' cm, while their heights be ' H ' cm and ' h ' cm respectively
\because Curved surface area of cylinder $=2 \pi \times$ radius \times height
\Rightarrow Ratio of curved surface area of two cylinders $=\frac{\mathrm{RH}}{\mathrm{rh}}=\frac{10}{9}$
Also, ratio of heights $=\frac{H}{h}=\frac{5}{6}$
\Rightarrow Ratio of radii of cylinders $=\frac{R}{r}=$ $\frac{10}{9} \times \frac{6}{5}=\frac{4}{3}$
Now,
\therefore Volume of cylinder $=\pi \times(\text { radius })^{2} \times$ height
\therefore Ratio of volume of two cylinders $=$ $\frac{\mathrm{R}^{2} \mathrm{H}}{\mathrm{r}^{2} \mathrm{~h}}=\frac{16}{9} \times \frac{5}{6}=\frac{40}{27}=40: 27$
85. (D)

Given :
$\mathrm{EB}=25 \mathrm{~cm}$ and $\mathrm{FC}=16 \mathrm{~cm}$
Since CF and CP are tangents to the circle from the same point $\mathrm{C}, \mathrm{CP}=\mathrm{CF}=$ 16 cm
Similarly, $\mathrm{BP}=\mathrm{BE}=25 \mathrm{~cm}$
$B C=16+25=41 \mathrm{~cm}$
CQ is perpendicular to BA :
$\mathrm{QB}=25-16=9 \mathrm{~cm}$
In $\triangle \mathrm{BCQ}$:
$C Q=\sqrt{\left(41^{2}-9^{2}\right)}=40 \mathrm{~cm}$
Hence, diameter of the circle $=40 \mathrm{~cm}$
86. (C) Area of right-angled triangle $=\frac{1}{2} \times$ base
\times height $=\frac{1}{2} \times 21 \times 25=262.5 \mathrm{~cm}^{2}$
\Rightarrow Area of circular sheet $=\frac{11}{3} \times 262.5=$
$962.6 \mathrm{~cm}^{2}$
\because Area of circle $=\pi \times(\text { radius })^{2}$
\Rightarrow Radius of circle $=\sqrt{\left(\frac{7}{22} \times 962.5\right)}$
$=\sqrt{\left(\frac{1225}{4}\right)}=\frac{35}{2} \mathrm{~cm}$
\because Circumference of circle $=2 \pi \times$ radius
\therefore Circumference of circular sheet
$=2 \times \frac{22}{7} \times \frac{35}{2}=110 \mathrm{~cm}$
87. (A) ATQ, area of triangle $=A=60 \mathrm{~cm}^{2}$

Semi-perimeter $=s=\frac{40}{2}=20 \mathrm{~cm}$
\because Length of in radius $=\frac{\text { Area of triangle }}{\text { Semi- perimeter }}$
\Rightarrow Length of in radius $=\frac{60}{20}=3 \mathrm{~cm}$
\Rightarrow Length of circum radius $=11.5-3$
$=8.5 \mathrm{~cm}$
Now,
Length of circum radius
$=\frac{\text { Product of sides }}{(4 \times \text { Area of triangle })}$
\Rightarrow Product of sides of triangle $=4 \times$ length of cricum radius \times Area of triangle \therefore Product of sides of triangle $=4 \times 8.5 \times$ $60=2040 \mathrm{~cm}^{3}$
88. (B) ATQ,

$\mathrm{BE}=6 \mathrm{~cm}, \mathrm{AI}=10 \mathrm{~cm}$
We know that,
$\mathrm{IE}=\mathrm{BE}=\mathrm{CE}$
So, $\mathrm{IE}=\mathrm{BE}=6 \mathrm{~cm}$
$\triangle \mathrm{BDE} \sim \triangle \mathrm{ABE}$
$\frac{\mathrm{DE}}{\mathrm{BE}}=\frac{\mathrm{BE}}{\mathrm{AE}}$
$\frac{\mathrm{DE}}{6}=\frac{6}{16}$
$\mathrm{DE}=\frac{36}{16}=2.25 \mathrm{~cm}$
Hence, $\mathrm{DE}=2.25 \mathrm{~cm}$
89. (A)

$\frac{\mathrm{ST}}{\mathrm{TR}}=\frac{4}{5}, \mathrm{PQ}=10.5 \mathrm{~cm}$
Hence $P Q=9$ units
$\Delta \mathrm{SOT} \sim \Delta \mathrm{QOP}$
$\frac{\mathrm{ST}}{\mathrm{PQ}}=\frac{\mathrm{SO}}{\mathrm{QO}}=\frac{4}{9}$
In $\Delta \mathrm{SPQ}$
$\mathrm{SP}^{2}=\mathrm{SO} \times \mathrm{SQ}$
$\mathrm{PQ}^{2}=\mathrm{QO} \times \mathrm{SQ}$
$\frac{\mathrm{SP}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{SO}}{\mathrm{QO}}=\frac{4}{9}$
$\frac{\mathrm{SP}}{\mathrm{PQ}}=\frac{2}{3}$
3 units $\rightarrow 10.5 \mathrm{~cm}$
2 units $\rightarrow \frac{10.5}{3} \times 2 \mathrm{~cm}$
Hence, $\mathrm{SP}=7 \mathrm{~cm}$
90. (C) ATQ,

$\because \mathrm{AD}$ is angle bisector
$\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{DC}}{\mathrm{BD}}=\frac{8}{17}$
$15 \mathrm{k}=25$
$\mathrm{k}=\frac{5}{3}$
then, $\mathrm{AC}=8 \times \frac{5}{3} \mathrm{~cm}$
In $\triangle A C D$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{DC}^{2}$
$=\left(8 \times \frac{5}{3}\right)^{2}+8^{2}$
$=8 \sqrt{\frac{25}{9}+1}$
$=\frac{8 \sqrt{34}}{3} \mathrm{~cm}$
91. (D)

In \triangle QPR
$\mathrm{QR}^{2}=\mathrm{QP}^{2}+\mathrm{PR}^{2}$
$=24^{2}+32^{2}$
= 1600
$\mathrm{QR}=40 \mathrm{~cm}$
$A Q=A R=20 \mathrm{~cm}$
\because QT is Angle bisector
$\therefore \frac{\mathrm{QP}}{\mathrm{QA}}=\frac{24}{20}=\frac{\mathrm{PT}}{\mathrm{TA}}$
$\frac{\mathrm{PT}}{\mathrm{TA}}=\frac{6}{5}$
$\because \mathrm{PA}$ is also circum radius
$\therefore \mathrm{PA}=20 \mathrm{~cm}$
11 units $\rightarrow 20 \mathrm{~cm}$
6 units $\rightarrow \frac{120}{11} \mathrm{~cm}$
Hence, PT $=\frac{120}{11} \mathrm{~cm}$
92. (D) ATQ,
$\begin{aligned} & \frac{3.6 \times 1.62+0.48 \times 3.6}{1.8 \times 0.8+10.8 \times 0.3-2.16} \\ = & \frac{(1.8)^{3}+(1.2)^{3}}{(1.2)^{2}+(1.8)^{2}-1.2 \times 1.8} \\ = & \frac{(1.8+1.2)\left(1.8^{2}+1.2^{2}-1.2 \times 1.8\right)}{\left(1.2^{2}+1.8^{2}-1.2 \times 1.8\right)}=3\end{aligned}$
93. (C) ATQ,
$x+y+z=38$
Put $z=2$
$y=5$
$x+5+2=38$
$x=31$
94. (B) $\sqrt{261}$
$\sqrt{45109}$
\downarrow
16
213
Natural numbers $=213-16=196$
95. (C) $x+\frac{1}{x}=\frac{\sqrt{3}+1}{2}$

Squaring both sides
$x^{2}+\frac{1}{x^{2}}+2=\frac{3+1+2 \sqrt{3}}{4}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\frac{2 \sqrt{3}-4}{4}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

Again squaring both sides
$x^{4}+\frac{1}{x^{4}}+2=\frac{12+16-16 \sqrt{3}}{16}$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=\frac{28-16 \sqrt{3}}{16}-2$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=\frac{-16 \sqrt{3}-4}{16}$
$\Rightarrow x^{4}+\frac{1}{x^{4}}=\frac{-4 \sqrt{3}-1}{4}$
Hence, $x^{4}+\frac{1}{x^{4}}=\frac{-4 \sqrt{3}-1}{4}$
96. (B)

In $\triangle \mathrm{POB}$
$\mathrm{O}_{1} \mathrm{P}^{2}=\mathrm{OB}^{2}+\mathrm{PB}^{2}$
$=15^{2}+20^{2}$
$\mathrm{O}_{1} \mathrm{P}=25 \mathrm{~cm}$
$\mathrm{O}_{2} \mathrm{P}=25-15-\mathrm{r}$
$=10-r$
$\Delta \mathrm{PO}_{1} \mathrm{~B} \sim \Delta \mathrm{PO}_{2} \mathrm{M}$
$\frac{\mathrm{O}_{2} \mathrm{M}}{\mathrm{O}_{1} \mathrm{~B}}=\frac{\mathrm{O}_{2} \mathrm{P}}{\mathrm{O}_{1} \mathrm{P}} \Rightarrow \frac{\mathrm{r}}{15}=\frac{10-\mathrm{r}}{25}$
$5 r=30-3 r$
$8 \mathrm{r}=30$
$\mathrm{r}=3.75 \mathrm{~cm}$
97. (A) ATQ,

43. (B) Explanation is correct. The correct answer should be opiton (B) in place of (C).
44. (D) Explanation is correct. The correct answer should be option (D) in place of (C).

