1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

TEST NO.
58

SSC TIER-II : QUANTITATIVE ABILITIES
 (Answer with Explanations)

					we				
1.	(C)	21.	(D)	41.	(A)	61.	(A)	81.	(B)
2.	(A)	22.	(B)	42.	(B)	62.	(A)	82.	(C)
3.	(B)	23.	(D)	43.	(C)	63.	(D)	83.	(A)
4.	(C)	24.	(A)	44.	(C)	64.	(D)	84.	(A)
5.	(A)	25.	(C)	45.	(C)	65.	(C)	85.	(C)
6.	(C)	26.	(B)	46.	(A)	66.	(A)	86.	(D)
7.	(D)	27.	(A)	47.	(B)	67.	(A)	87.	(B)
8.	(C)	28.	(C)	48.	(D)	68.	(A)	88.	(D)
9.	(C)	29.	(C)	49.	(A)	69.	(C)	89.	(B)
10.	(B)	30.	(D)	50.	(B)	70.	(A)	90.	(D)
11.	(B)	31.	(A)	51.	(A)	71.	(B)	91.	(D)
12.	(B)	32.	(D)	52.	(A)	72.	(B)	92.	(B)
13.	(C)	33.	(D)	53.	(A)	73.	(A)	93.	(D)
14.	(D)	34.	(C)	54.	(C)			94.	(C)
15.	(D)	35.	(D)	55.	(C)	75.	(A)	95.	(B)
16.	(C)	36.	(D)	56.	(C)		(A)	96.	(C)
17.	(C)	37.	(C)	57.	(A)	77.	(C)	97.	(D)
18.	(C)	38.	(D)	58.	(C)	78.	(B)	98.	(A)
19.	(C)	39.	(B)	59.	(B)	79.	(C)	99.	(D)
20.	(A)	40.	(C)	60.	(D)		(A)	100.	(C)

Answer key with explanations

1.

(C) $2 \frac{1}{3}+3 \frac{1}{4}+4 \frac{1}{5}+5 \frac{1}{6}$
$\Rightarrow 2+3+4+5+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$
$\Rightarrow 14+\frac{20+18+12+10}{60}$
$\Rightarrow 14+\frac{57}{60} \Rightarrow 14+\frac{19}{20}$
The required number $=1-\frac{19}{20}=\frac{1}{20}$
2. (A) Given that $\mathrm{r}=60$
divisior $(d)=6 \times 60=360$
quotient $(q)=\frac{360}{8}=45$
Dividend $(D)=$ divisior $(d) \times$ quotient (q)

+ reminder (r)
$\Rightarrow \mathrm{D}=360 \times 45+60$
$\Rightarrow D=16200+60=16260$
Hence, Dividend (D) $=16260$

3. (B) Let advertised price $=₹ x$
S.P. $=x \times \frac{85}{100}=\frac{17 x}{20}$
C.P. $=\frac{17 x}{20} \times \frac{100}{120}=\frac{17 x}{24}$

ATQ,
S.P - C.P $=5100$
$\Rightarrow \frac{17 x}{20}-\frac{17 x}{24}=5100$
$\Rightarrow \frac{17 x}{20} \times \frac{4}{20 \times 24}=5100$
$\Rightarrow x=36000$
Hence, advertised price $=₹ 36000$
4. (C) $\mathrm{A}: \mathrm{B}=3: 4$ and $\mathrm{B}: \mathrm{C}=5: 9$

A	$:$	B	$:$	C
3	$:$	4	$:$	$\mathbf{4}$
$\mathbf{5}$	$:$	5	$:$	$\mathbf{9}$
$\mathbf{1 5}$	$:$	20	$:$	$\mathbf{3 6}$

B's share $=\frac{20}{(15+20+36)}=1065$

$$
=\frac{20}{71} \times 1065=₹ 300
$$

5. (A) Quantity of Darjeeling tea $=\frac{9}{17} \times 102=54$

Let $x \mathrm{~kg}$ of Assam tea is to be added to the mixture.
ATQ,
$\frac{48+x}{54}=\frac{7}{6} \Rightarrow 48+x=63 \Rightarrow x=15$
Hence, 15 kg of Assam tea is to be added to the mixutre.
6. (C) The required ratio $=\frac{3 \times \frac{4}{5}+4 \times \frac{3}{4}+5 \times \frac{5}{7}}{3 \times \frac{1}{5}+4 \times \frac{1}{4}+5 \times \frac{2}{7}}$
$=\frac{\frac{12}{5}+3+\frac{25}{7}}{\frac{3}{5}+1+\frac{10}{7}}=\frac{12 \times 7+3 \times 35+25 \times 5}{3 \times 7+1 \times 35+10 \times 5}$
$=\frac{84+105+125}{21+35+50}=\frac{314}{106}=\frac{157}{53}$
Hence, ratio of milk and water in the fouth container = 157:53
7. (D) Let highest score of the players $=x$ largest score of the player $=x-172$ ATQ,
$40 \times 50-x-(x-172)=38 \times 48$
$\Rightarrow 2000-2 x+172=1824$
$\Rightarrow 2 x=2172-1824$
$\Rightarrow 2 x=348 \Rightarrow x=174$
Hence, highest score of the player $=174$
8. (C) Let C.P. $=x$ and S.P. $=y$ ATQ,

$$
\begin{align*}
& \frac{5}{100} \times y=\frac{6}{100} \times x \\
& \Rightarrow 5 y=6 x \tag{i}
\end{align*}
$$

and $\frac{15}{100} \times y=\frac{16}{100} \times x+150$
$\Rightarrow 15 y=16 x+15000$
$\Rightarrow 15 \times \frac{6 x}{5}=16 x=15000$
$\Rightarrow 2 x=15000 \Rightarrow x=7500$
from eq(i)
$5 y=6 \times 7500 \Rightarrow y=9000$
The required ratio $=x: y$
$=7500: 9000=5: 6$
9. (C) Line $=2 x-10 y=7$

Slope $m_{1}=\frac{2}{10}=\frac{1}{5}$
and line $4 x+6 y=5$
Slope $m_{2}=\frac{-4}{6}=\frac{-2}{3}$
Now, $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{1}{5}+\frac{2}{3}}{1+\frac{1}{5}\left(\frac{-2}{3}\right)}\right| \Rightarrow \tan \theta=\left|\frac{\frac{3+10}{15}}{\frac{12}{15}}\right|$
$\Rightarrow \tan \theta=\left|\frac{13}{13}\right| \Rightarrow \tan \theta=-1 \Rightarrow \theta=45^{\circ}$
10. (B) $\mathrm{A}=0.657657 \ldots .=\frac{657}{999}=\frac{73}{111}$
and $\mathrm{B}=0.531531 \ldots .=\frac{531}{999}=\frac{59}{111}$
Now, $\frac{1}{\mathrm{~A}}+\frac{1}{\mathrm{~B}} \Rightarrow \frac{111}{73}+\frac{111}{59}$
$\Rightarrow \frac{111(59+73)}{73 \times 59}=\frac{14652}{4307}$
(B) $A=\frac{0.216+0.008}{0.36+0.08+0.12}$
$A=\frac{(0.6)^{3}+(0.2)^{3}}{(0.6)^{2}+(0.2)^{2}-0.6 \times 0.2}$
$A=\frac{(0.6+0.2)+\left[(0.6)^{2}+(0.2)^{2}-0.6 \times 0.2\right]}{\left[(0.6)^{2}+(0.2)^{2}-0.6 \times 0.2\right]}$
$A=0.6+0.2=0.8$
$B=\frac{0.729-0.027}{0.81+0.09+0.27}$
$B=\frac{(0.9)^{3}-(0.3)^{3}}{\left[(0.9)^{2}+(0.3)^{2}+0.9 \times 0.3\right]}$
$B=\frac{(0.9-0.3)\left[(0.9)^{2}+(0.3)^{2}+0.9+0.3\right]}{\left[(0.9)^{2}+(0.3)^{2}+0.9+0.3\right]}$
$B=0.9-0.3=0.6$
Now, $\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)^{2} \Rightarrow\left[(0.8)^{2}+(0.6)^{2}\right]^{2}$
$\Rightarrow[0.64+0.36]^{2}=1$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
12. (B) $a \times 5^{2}=2020.20$
$\Rightarrow a \times\left(\frac{10}{2}\right)^{2}=2020.20$
$\Rightarrow a \times(10)^{2}=8080.80$
$\Rightarrow a=\frac{8080.80}{100}=80.8080$
Now, $\frac{a \times 10^{-3}}{10^{4}}=\frac{a}{10^{4} \times 10^{3}}=\frac{a}{10^{7}}$
$=\frac{80.8080}{10^{7}}=0.00000808080$
13. (C) $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$
$\Rightarrow \frac{2}{3} \times\left(\frac{20}{20}\right)=\frac{40}{60}$
$\Rightarrow \frac{3}{4} \times\left(\frac{15}{15}\right)=\frac{45}{60}$
$\Rightarrow \frac{4}{5} \times\left(\frac{12}{12}\right)=\frac{48}{60}$
$\Rightarrow \frac{5}{6} \times\left(\frac{10}{10}\right)=\frac{50}{60}$
So, The largest fraction $=\frac{50}{60}=\frac{5}{6}$,
and the smallest fraction $=\frac{40}{60}=\frac{2}{3}$
The required difference $=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}$
14. (D) Let height of aeroplane $(A B)=h \mathrm{~km}$

In $\triangle \mathrm{ABC}$,
$\frac{h}{x}=\tan \alpha \Rightarrow x=\frac{h}{\tan \alpha}$
In $\triangle \mathrm{ABD}$,
$\frac{h}{y}=\tan \beta \Rightarrow y=\frac{h}{\tan \beta}$

Addding eq(i) and (ii)
$x+y=\frac{h}{\tan \alpha}+\frac{h}{\tan \beta}$
$\Rightarrow 1=\frac{h(\tan \beta+\tan \alpha)}{\tan \beta \cdot \tan \alpha}$
$(x+y=1$, since they are consecutive milestones)
$\Rightarrow h=\frac{\tan \beta \cdot \tan \alpha}{\tan \beta+\tan \alpha}$
The required height $=\frac{\tan \beta \cdot \tan \alpha}{\tan \beta+\tan \alpha} \mathrm{km}$
15. (D) Number of diagonals in a regular
polygon of n sides $=\frac{n(n-3)}{2}$
Number of diagonals of a nonagon
$=\frac{9(9-3)}{2}=27$
16. (C) Red balls in bag A $=0.55 \times 160=88$

Red balls in bag $B=0.65 \times 240=156$
Total red balls $=88+156=244$
Percentage of red balls $=\frac{244}{400} \times 100 \%$
$=61 \%$
17. (C) $\left(4^{22}+4^{22}+4^{22}\right)\left(3^{22}+3^{22}+3^{22}\right)$
$\Rightarrow 4^{22}(1+1+1+1) \times 3^{22}(1+1+1)$
$\Rightarrow 4^{22} \times 4 \times 3^{22} \times 3$
$\Rightarrow 2^{2(23)} \times 3^{23} \Rightarrow 2^{46} \times 3^{23}$
\Rightarrow Total number of prime factors
$=46+23=69$
18. (C) The sum of the 24 numbers
$=24 \times 65=1560$
The sum of the first 11 numbers
$=11 \times 67=737$
The sum of last 10 numbers
$=10 \times 70=700$
The sum of 12 th , 13th and 14 th
numbers $=1560-(737+700)=123$
Let the numbers $12^{\text {th }}, 13^{\text {th }}$ and $14^{\text {th }}$ be
a, b, and c
$a+b+c=123$

Given that,

$a=b-13, c=b+1$
On putting in eq(i),
$\Rightarrow b-13+b+b+1=123$
$\Rightarrow 3 b=135$
$\Rightarrow b=45$ (13th number)
$\Rightarrow 12^{\text {th }}$ number $(a)=b-13$
$=45-13=32$
$\Rightarrow 14^{\text {th }}$ number $(c)=b+1=45+1=46$
\Rightarrow Average of a and $c=\frac{(32+46)}{2}=39$
19. (C) The required population
$=20,00,000 \times 1.05 \times 1.1 \times 1.15 \times 1.2 \times 1.1$
$=35,06,580$
20. (A) Divisibility law of $8 \Rightarrow$ A number divisible by 8 if its last three digits are divisible by 8
Divisibility law of $9 \Rightarrow$ A number is divisible by 9 if the sum of its digits is divisible by 9
The nine-digit number is $785 \times 3678 y$ is divisible by 72 , so we can say number also divisble by 8 and 9 . $785 \times 3678 y$ is divisible by 8 if last digit three digit $78 y$ is divisible by 8 .
$78 y$ is divisible by 8 if $\boldsymbol{y}=\mathbf{4}$
785×36784 is divisible by 9 if the sum of its digits is divisible by 9 .
$7+8+5+x+3+6+7+8+4$
$=48+x$
Put $\boldsymbol{x}=\mathbf{6}$
$=48+6=54$
As we know 54 is divisible by 9
Now, $7 x-5 y=7 \times 6-5 \times 4$
$=42-20=22$
21. (D) A : B : C : D
$=[8400 \times 10]:[(9000 \times 4)+\{9000 \times(2 / 3) \times 6\}]$
: [6000 $\times 10$] : $[10000 \times 6]$
$=84000 \times 72000: 60000: 60000$
$=7: 6: 5: 5$
Let the profit shares of A, B, C and D be $7 x, 6 x, 5 x$ and $5 x$ respectively ATQ,
$7 x+8400-6 x=9600$
$\Rightarrow x=1200$
The total profit $=[\{(7+6+5+5) \times 1200\}$ +8400] $=₹ 36,000$
22. (B) Ratio of milk to water in the mixture $=64: 61$
Proporation of milk $=\frac{64}{64+61}=\frac{64}{125}$
$=\left(\frac{4}{5}\right)^{3}=\left(1-\frac{1}{5}\right)^{3}$
$\therefore \frac{1}{5}$ of the inital quantity is taken out in one time.
Initial quantity of milk $=5 \times 16=80 l$
23. (D) No. of males $=\frac{5}{8} \times 240=150$

No. of Females $=\frac{3}{8} \times 240=90$
Let ' a ' males and ' a ' females joined the party.
ATQ,
$\frac{150+a}{90+a}=\frac{35}{23}$

$$
\begin{aligned}
& \Rightarrow 3450+23 a=3150+35 a \\
& \Rightarrow 12 a=300 \Rightarrow a=25
\end{aligned}
$$

Therefore, 50 persons joined the party.
24. (A) Let the sum deposited in each bank $=P$ ATQ,
$\mathrm{P}\left[\left(1+\frac{13}{100}\right)^{2}-1\right]=4153.5$
$\Rightarrow P\left[\left(\frac{113}{100}\right)^{2}-1\right]=4153.5$
$\Rightarrow P\left[\frac{2769}{10000}\right]=4153.5 \Rightarrow P=15000$
Now, $6000=\frac{15000 \times r \times 5}{100} \Rightarrow r=8$
25. (C) Given,
$\left(\frac{y-z-x}{2}\right)^{3}+\left(\frac{x-x-y}{2}\right)^{3}$
$+\left(\frac{x-y-z}{2}\right)^{3}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{y-(z+x)}{2}\right)^{3}+\left(\frac{z-(x+y)}{2}\right)^{3} \\
& +\left(\frac{x-(y+z)}{2}\right)^{3}
\end{aligned}
$$

$$
\Rightarrow\left(\frac{y-(-y)}{2}\right)^{3}+\left(\frac{z-(-z)}{2}\right)^{3}+\left(\frac{x-(-x)}{2}\right)^{3}
$$

$$
(\because x+y+z=0 \Rightarrow x+z=-y \text { etc })
$$

$$
\Rightarrow\left(\frac{2 y}{2}\right)^{3}+\left(\frac{2 z}{2}\right)^{3}+\left(\frac{2 x}{2}\right)^{3}
$$

$\Rightarrow y^{3}+z^{3}+x^{3}=3 x y z$
$\left(\because\right.$ if $a+b+c=0$, then $\left.a^{3}+b^{3}+c^{3}=3 a b c\right)$
26. (B)

The shaded area in the above figure is the area common to the two circles. Shaded Area = Area of sector ACD Area of triangle ACD + Area of sector $B C D$ - Area of triangle BCD

$$
\begin{aligned}
& =\frac{90}{360} \times \pi \times(2)^{2}-\frac{1}{2} \times 2 \times 2 \\
& \quad+\frac{90}{360} \times \pi \times(2)^{2}-\frac{1}{2} \times 2 \times 2
\end{aligned}
$$

$=2(\pi-2)$ sq. cm

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
27. (A) Amount after first years
$=30,000 \times 1.075=₹ 32250$
Amount after second year
$=32250 \times 1.08=₹ 34830$
28. (C) $(a+b \sqrt{2})=(5+2 \sqrt{2})(6-\sqrt{2})$
$(a+b \sqrt{2})=(30-5 \sqrt{2}+12 \sqrt{2}-4)$
$(a+b \sqrt{2})=(26+7 \sqrt{2})$
On comparing, $a=26, b=7$
Now, $a+b=26+7=33$
29. (C) Let, cost price of both aricles be ₹ ' x '

So, Selling price of article A $=108 \%$ of x
$=1.08 x$
And selling price of article $\mathrm{B}=\frac{340}{3} \%$ of x
$=\frac{17 x}{15}$
Marked price of article $\mathrm{A}=\frac{1.08 x}{0.9}=1.2 x$
Marked price of article $B=\frac{\left(\frac{17 x}{15}\right)}{0.85}=\frac{4 x}{3}$
Required ratio $=1.2 x:\left(\frac{4 x}{3}\right)=9: 10$
30. (D) Given,

$$
\begin{equation*}
\frac{777}{x}=y \tag{i}
\end{equation*}
$$

and $\frac{777}{x-1}=y+\frac{7}{12}$
From eq(i) and (ii)

$\Rightarrow 777\left[\left\{\frac{1}{(x-1)}\right\}-\left\{\frac{1}{x}\right\}\right]=\frac{7}{12}$
$\Rightarrow \frac{111}{x(x-1)}=\frac{1}{12}$
$\Rightarrow x^{2}-x-1332=0$
$\Rightarrow(x-37)(x+36)=0$
$\therefore x=37$
31. (A) Volume of cone $=\frac{1}{3} \times$ base area \times height
\Rightarrow Volume of 1 st small cone
$=\frac{1}{3} \times 16 \pi \times 3=16 \pi \mathrm{~cm}^{3}$
\Rightarrow Volume of 2nd small cone
$=\frac{1}{3} \times 144 \pi \times 5=240 \pi \mathrm{~cm}^{3}$
\Rightarrow Volume of 3rd small cone
$=\frac{1}{3} \times 25 \pi \times 12=100 \pi \mathrm{~cm}^{3}$
\Rightarrow Volume of 4 th small cone
$=\frac{1}{3} \times 64 \pi \times 15=320 \pi \mathrm{~cm}^{3}$
\Rightarrow Volume of large cone $=16 \pi+240 \pi$
$+100 \pi+320 \pi$
$\Rightarrow \frac{1}{3} \times$ base area \times height $=676 \pi \mathrm{~cm}^{3}$
$\Rightarrow \frac{1}{3} \times$ base area $\times 12=676 \pi \mathrm{~cm}^{3}$
\therefore Base area of large cone
$=\frac{3 \times 676 \pi}{12}=169 \pi \mathrm{~cm}^{2}$
32. (D) $(A+B):(B+C):(C+A)=6: 8: 7$

Let $\mathrm{A}+\mathrm{B}=6 x, \mathrm{~B}+\mathrm{C}=8 x$ and $\mathrm{C}+\mathrm{A}=7 x$
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=6 x+8 x+7 x$
Given that, $\mathrm{A}+\mathrm{B}+\mathrm{C}=42$
$\Rightarrow 2 \times 42=21 x \Rightarrow x=4$
So, $\mathrm{A}+\mathrm{B}=6 \times 4=24$
and $B+C=8 \times 4=32$
and $\mathrm{C}+\mathrm{A}=7 \times 4=28$
On solving (i) and (iii), we get
A $=10$
On solving (i) and (iv), we get
B $=14$
On solving (i) and (ii), we get
$\mathrm{C}=18$
So, $(B-A):(C-B):(C-A)$
$=(14-10):(18-14):(18-10)=4: 4: 8$
= $1: 1: 2$
\therefore The required ratio $=1: 1: 2$
33. (D) Let the number of men who gave votes of candidate $\mathrm{X}=x$
and the number of men who gave
votes to candidate $\mathrm{Y}=y$
Given, $y=x \times \frac{64}{100} \Rightarrow y=\frac{16 x}{25}$
Also given, $x-y=9000$
$\Rightarrow x-\frac{16 x}{25}=9000$
[from eq(i)]
So, $x=25000$ and $y=16000$
Now, the total number of women in the
village $=64000-25000-16000$
$=23000$
The required percentage
$=\left(\frac{23000}{64000}\right) \times 100=35.94 \%$ (approx.)
34. (C) Area of right angled triangle
$=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 21 \times 25=262.5 \mathrm{~cm}^{2}$ ATQ,

Area of circular sheet $=\frac{11}{3} \times 262.5$
$\Rightarrow \pi \times$ (radius $^{2}=962.5 \mathrm{~cm}^{2}$
$\Rightarrow \frac{22}{7} \times(\text { radius })^{2}=962.5 \mathrm{~cm}^{2}$
\Rightarrow Radius of circle $=\frac{35}{2} \mathrm{~cm}$
\because Circumference of circular sheet
$=2 \pi \times$ radius $=2 \times \frac{22}{7} \times \frac{35}{2}=110 \mathrm{~cm}$
35. (D) Let the distance between A and B be x km and the speed of current be $y \mathrm{~km} / \mathrm{hr}$ and the speed of the ferry be $s \mathrm{~km} / \mathrm{hr}$, then the distance between A and C is $2 x \mathrm{~km}$.
ATQ,
For the distance of A to B
$\frac{x}{s-y}+\frac{x}{s+y}=15$
For the distance of A to C

$$
\begin{equation*}
\frac{2 x}{s-y}=25 \Rightarrow \frac{x}{s-y}=\frac{25}{2} \tag{ii}
\end{equation*}
$$

From eq(i) and eq(ii)
$\frac{25}{2}+\frac{x}{s+y}=15$
$\Rightarrow \frac{x}{s+y}=15-12.5=2.5$
Hence time taken for C to $\mathrm{A}=\frac{2 x}{s+y}$ $=2 \times 2.5=5 \mathrm{hrs}$
36. (D) Sachin complete $\left(\frac{1}{3}\right)$ part of work in $=6$ days
\Rightarrow Sachin's 1 day work $=\frac{1}{18}$
\Rightarrow Rakesh complete $\left(\frac{3}{5}\right)$ part of work in
$=18$ days
\Rightarrow Rakesh's 1 day work $=\frac{1}{30}$
\Rightarrow Chandan complete $\left(\frac{7}{6}\right)$ part of work in
$=14$ days
\Rightarrow Chandan's 1 day work $=\frac{1}{12}$
\Rightarrow Working together for 1 day $=\left(\frac{1}{18}\right)$
$+\left(\frac{1}{30}\right)+\left(\frac{1}{12}\right)$
\Rightarrow Working together for 1 day
$=\frac{(10+6+5)}{180}$
\therefore Time to complete the work together
$=\frac{180}{31}$ days
37. (C) Let cost price of 1000 grams be ₹ x Suppose he uses y grams instead of 1 kg
\Rightarrow Cost price of y grams $=\frac{x \times y}{1000}$
But selling price of grams $=x$
Profit $\%=\frac{\left(x-\frac{x y}{1000}\right)}{\left(\frac{x y}{1000}\right)} \times 100=\frac{100}{9}$
$\Rightarrow \frac{(1000 x-x y)}{x y} \times 100=\frac{100}{9}$
$\Rightarrow \frac{(1000-y)}{y} \times 100=\frac{100}{9}$
$\Rightarrow 10 y=9000 \Rightarrow y=900$
\therefore The shopkeeper uses 900 gram instead of 1 kg .
38. (D)

Let MN and NO be the height of the building and the tower respectively In $\Delta \mathrm{MNP}$,
$\Rightarrow \tan 30^{\circ}=\frac{\mathrm{MN}}{\mathrm{MP}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{MN}}{180}$
$\Rightarrow \mathrm{MN}=60 \sqrt{3} \mathrm{~m}$

K D Campus Pvt. Ltd

In $\Delta \mathrm{PMO}$,
$\Rightarrow \tan 60^{\circ}=\frac{\mathrm{MO}}{\mathrm{MP}} \Rightarrow \sqrt{3}=\frac{\mathrm{MN}+\mathrm{NO}}{180}$
$\Rightarrow \mathrm{MN}+\mathrm{ON}=180 \sqrt{3}$
$\Rightarrow 60 \sqrt{3}+h=180 \sqrt{3}$
$\Rightarrow h=180 \sqrt{3}-60 \sqrt{3} \Rightarrow h=120 \sqrt{3}$
$\Rightarrow h=120 \times 1.732 \Rightarrow h=207.84 \mathrm{~m}$
\therefore Height of the tower $=208 \mathrm{~m}$ (approx.)
39. (B) Let the marked price of the article be
₹ a
Discount offered on the article
$=14.28 \%=\frac{1}{7}$ th of the marked price
\Rightarrow S. P. $=\frac{6}{7} \times a=\frac{6 a}{7}$
Cost price of the article $=₹ 320$
Profit percentage $=25 \%$
\Rightarrow Selling price of the article
$=\left(1+\frac{25}{100}\right) \times 320=₹ 400$
ATQ, $\frac{6 a}{7}=400 \Rightarrow a=\frac{(400 \times 7)}{6}$
$\Rightarrow a=466.66$
\therefore The marked price of the article
$=₹ 466.66$
40. (C) a. Trapezium doesn't have equal opposite angles.
b. Square does have equal opposite angles but all angles are equal as well.
c. Parallelogram the equal opposite angles.
d. Rectangle have all angles equal.
\therefore Parallelogram is the required answer.
41. (A) $\frac{p}{q}=\frac{1}{4}$
and $\frac{q}{r}=\frac{2}{3}$
Now multiply equation (ii) by 2 on numerator and denominator

We have $\frac{p}{q}=\frac{1}{4}$ and $\frac{q}{r}=\frac{4}{6}$
From above $p: q: r=1: 4: 6$
So, $p=x, q=4 x$ and $r=6 x$

Now, $\frac{12 p^{2}-8 r^{2}}{33 p^{2}+r^{2}}$
By putting the value of p, q and r
$\Rightarrow \frac{\left(12 \times(x)^{2}-\left(8 \times(6 x)^{2}\right)\right.}{\left(33 \times(x)^{2}+(6 x)^{2}\right)}$
$\Rightarrow \frac{(12-8 \times 36)}{(33+36)}=-4$
42. (B) The point $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are colliner if $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{x_{3}-x_{1}}$
ATQ,
$\frac{0+3}{-2-2}=\frac{x+3}{6-2} \Rightarrow 12=-4 x-12$
$\Rightarrow x=-\frac{24}{4} \Rightarrow x=-6$
Note: if three points A, B, C are collinear then their slopes would be equal i.e. $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
43. (C)

$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=\sqrt{41} \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$
$\cos \mathrm{B}=\frac{\left(5^{2}+8^{2}-41\right)}{(2 \times 5 \times 8)}=\frac{3}{5}$
$\mathrm{AB}=5 \mathrm{~cm} \& \cos \mathrm{~B}=\frac{3}{5}$
$\therefore \mathrm{BD}=5 \times \frac{3}{5}=3 \mathrm{~cm}$
$\therefore \mathrm{AD}=4 \mathrm{~cm}$ (Pythagoras theorem)
\therefore Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}^{2}$
44. (C)

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09

In the figure, $\mathrm{AB}=56 \mathrm{~cm}$, then radius of small semicircles $=\mathrm{ML}=\mathrm{LF}=7 \mathrm{~cm}$ and $\mathrm{OF}=\mathrm{PF}-\mathrm{PO}=(28-r)$
In Δ OLF
$\mathrm{OL}^{2}=\mathrm{OF}^{2}+\mathrm{LF}^{2}$
$\Rightarrow(7+r)^{2}=(28-r)^{2}+7^{2}$
$\Rightarrow 49+r^{2}+14 r=784+r^{2}-56 r+49$
$\Rightarrow 70 r=784 \Rightarrow r=11.2 \mathrm{~cm}$
\therefore Area of shaded region
$=\frac{22}{7} \times 11.2 \times 11.2=394.24 \mathrm{~cm}^{2}$
45. (C) Work done by both in x days $=\frac{x}{40}+\frac{x}{45}$

Work done by Aditi in $(x+14)$ days
$=\frac{x+14}{40}$
ATQ,
$\frac{x}{40}+\frac{x}{45}+\frac{x+14}{40}=1 \Rightarrow x=9$
\therefore Celina leave the work after 9 days.
46. (A) Let the efficiency of filling $=x$

Efficiency of discharging $=(x+10)$ ATQ,

$$
\frac{4800}{x}-\frac{4800}{x+10}=16
$$

By option we get, $x=50 \mathrm{~m}^{3} / \mathrm{min}$
47. (B) Let their shares are $4 x, 6 x$ and $9 x$

Sherry's share $=4 x+28$
Berry's share $=6 x+37$
and Cherry's share $=9 x+18$
Now, $(4 x+28)+(6 x+37)+(9 x+18)=5783$
$\Rightarrow 19 x=5783-83$
$\Rightarrow 19 x=5700 \Rightarrow x=300$
Hence, Sherry's shares $=4 \times 300+28$ = ₹ 1228
48. (D) Product of 8 consective integers $=8$!
$8!=1 \times 2 \times 3 \times 4 \times 6 \times 7 \times 8=40320$
$4!=1 \times 2 \times 3 \times 4=24$
$6!=1 \times 2 \times 3 \times 4 \times 5 \times 6=720$
Hence, 8 ! is divisible by all 8 !, 4 ! and 6 !
49. (A) $a b+b c+c a=a b c$ (Given)

Now, $\frac{b+c}{b c(a-1)}+\frac{a+c}{a c(b-1)}+\frac{a+b}{a b(c-1)}$
$\Rightarrow \frac{b+c}{a b c-b c}+\frac{a+c}{a b c-a c}+\frac{a+b}{a b c-a b}$

$$
\begin{aligned}
& \Rightarrow \frac{b+c}{a b+a c}+\frac{a+c}{a b+b c}+\frac{a+b}{b c+a c} \\
& \Rightarrow \frac{b+c}{a(b+c)}+\frac{a+c}{b(a+c)}+\frac{a+b}{c(a+b)} \\
& \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \Rightarrow \frac{a b+b c+c a}{a b c} \\
& \Rightarrow \frac{a b c}{a b c}=1
\end{aligned}
$$

50. (B) Let their saving are $4 x, 5 x$ and $6 x$ respectively.
Then, 30% of A's salary $=4 x$
A's salary $=4 x \times \frac{100}{30}=\frac{40 x}{3}$
25% of B's salary $=5 x$
B's salary $=5 x \times \frac{100}{25}=20 x$
20% of C's salary $=6 x$
C's salary $=6 x \times \frac{100}{20}=30 x$
\therefore Ratio of their salaries $=\frac{40}{3}: 20: 30$
$=4: 6: 9$
51. (A) Let x be added to each of 14,12 and 34 and 30 so, the numbers become in proportion.
$\Rightarrow \frac{(14+x)}{(12+x)}=\frac{(34+x)}{(30+x)}$
Using dividendo and componedo

$$
\begin{aligned}
& \Rightarrow \frac{(14+x+12+x)}{(14+x-12-x)}=\frac{(34+x+30+x)}{(34+x-30-x)} \\
& \Rightarrow \frac{(26+2 x)}{2}=\frac{(64+2 x)}{4} \\
& \Rightarrow 26+2 x=32+x \\
& \Rightarrow 2 x-x=32-26 \\
& \Rightarrow x=6
\end{aligned}
$$

Now, put the value of x in $\sqrt{(12 x+9)}$
$=\sqrt{(12 \times 6+9)}$
$=\sqrt{(72+9)}$
$=\sqrt{81}$
$=\sqrt{9 \times 9}$
$=9$
52. (A) The 1 st AP is $(1+6+11+\ldots)$ and the 2 rd AP is $(4+5+6+\ldots .$.
$\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$
$=(1+6+11+$ \qquad to 100 terms)
$+(4+5+6+\ldots .+$ to 100 terms $)$
$=\frac{100[2 \times 1+(100-1) \times 5]}{2}$
$+\frac{100[2 \times 4+(100-1) \times 1]}{2}$
$=50(2+99 \times 5)+50(8+99)$
$=24,850+5,350$
$=30,200$
53. (A) ATQ,

Area of quadrilateral (ABCD)
= Area of right angle triangle

+ Area of equilateral triangle In DABC
$x=\sqrt{20^{2}-12^{2}}=16$
Area of quadrilateral
$=\frac{1}{2} \times 16 \times 12+\frac{\sqrt{3}}{4} \times 20 \times 20$
$=269.2 \mathrm{~cm}^{2}$

54. (C) ATQ,

ABCD is a cyclic quadrilateral
$\angle \mathrm{DCB}=180^{\circ}-\angle \mathrm{A}=180^{\circ}-60^{\circ}$
$=120^{\circ}$
$\angle \mathrm{ABC}=80^{\circ}$, therefore $\angle \mathrm{BCQ}=180^{\circ}$ -
$120^{\circ}=60^{\circ}$ and $\angle \mathrm{CBQ}=180^{\circ}-80^{\circ}=100^{\circ}$
Then, In $\triangle \mathrm{BCQ}, \angle \mathrm{Q}=180^{\circ}-100^{\circ}-60^{\circ}$
$=20^{\circ}$
55. (C) ATQ,

Diameter of the circle $=$ diagonal of rectangle $=\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}$

Radius $=\frac{10}{2}=5 \mathrm{~cm}$
Area of shaded portion $=\pi r^{2}-1 b$

$$
=3.14 \times 5^{2}-8 \times 6
$$

$=30.57 \mathrm{~cm}^{2}$
56. (C) ATQ,

AB and DC are the $\|$ sides
Height $=\mathrm{AM}=\mathrm{BN}$
$A B=M N=4$ units
$\triangle B N C$ and $\triangle A M D$ are right angle triangles In $\triangle \mathrm{BNC}$
$\Rightarrow \sin 30^{\circ}=\frac{\mathrm{BN}}{10} \Rightarrow \mathrm{BN}=5$ units
Using pythagoras theorem
$\mathrm{NC}=\sqrt{10^{2}-5^{2}}=5 \sqrt{3}$ untis
Now, In $\triangle \mathrm{ADM}$,
$\mathrm{AM}=5$ units
$\tan 45^{\circ}=\frac{\mathrm{AM}}{\mathrm{DM}} \Rightarrow \mathrm{DM}=5$ units
Area of trapezium $=\frac{1}{2}$ (sum of $\|$ sides $)$
\times height
$=\frac{1}{2}(4+4+5+5 \sqrt{3}) \times 5$
$=\frac{5(13+5 \sqrt{3})}{2}$ units 2
57. (A) ATQ,

Let the bigger circle radius $=\mathrm{R}$
Let the radius of smaller circle $=r$
Now,
$\pi R^{2}+\pi r^{2}=116 \pi$
$\mathrm{R}^{2}+\mathrm{r}^{2}=116$
And $\mathrm{R}-\mathrm{r}=6$
Squaring both sides
$(R-r)^{2}=R^{2}+r^{2}-2 R r$
$\Rightarrow 36=116-2 \mathrm{Rr}$
$\mathrm{Rr}=40$
From eq(i) and (ii)
$\mathrm{R}=10 \mathrm{~cm}$
$\mathrm{r}=4 \mathrm{~cm}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
58. (C) ATQ,

$\mathrm{QP}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
As RM is a \perp drawn to the hypotenuse
So, $\mathrm{RM}=\frac{2 \times \text { Area }}{\text { Hypotenuse }}=\frac{2 \times 30}{13}=\frac{60}{13} \mathrm{~cm}$
59. (B) ATQ,
$x \times y \times z=1 \mathrm{~b} \times \mathrm{bh} \times \mathrm{lh}=(\mathrm{lbh})$
Volume of cuboid $=1 \mathrm{bh}$
So, $\mathrm{V}^{2}=(\mathrm{lbh})^{2}=(x y z)$
60. (D) ADBC is a cyclic quadrilateral $\angle \mathrm{ADB}=180^{\circ}-48^{\circ}=132^{\circ}$
61. (A) Let distance after 4 hours is $c(\mathrm{~km})$

$a=3 \times 4=12 \mathrm{~km}, b=2 \times 4=8 \mathrm{~km}$
$s=\frac{a+b+c}{2}=\frac{12+8+c}{2}=10+\frac{c}{2}$
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
Area $=\frac{1}{2} a b \sin 120^{\circ}=\frac{1}{2} \times 12 \times 8 \sin 120^{\circ}$
$=24 \sqrt{3} \mathrm{~km}^{2}$
Now,
$24 \sqrt{3}=\sqrt{\left(10+\frac{c}{2}\right)\left(\frac{c}{2}-2\right)\left(2+\frac{c}{2}\right)\left(10-\frac{c}{2}\right)}$
After solving,
We get
$c=4 \sqrt{19} \mathrm{~km}$
62. (A) ATQ,

Number of zeros $=\left[\frac{137}{5}\right]+\left[\frac{137}{5^{2}}\right]$
$+\left[\frac{137}{5^{3}}\right]+\ldots$.
$=27+5+1=33$ zeros
63. (D) ATQ,
$=\frac{2851 \times(2862)^{2} \times(2873)^{3}}{23}$
$=\frac{22 \times 10 \times 10 \times 21 \times 21 \times 21}{23}$
$=\frac{22 \times 8 \times 441 \times 21}{23}$
$=\frac{22 \times 21 \times 8 \times 4}{23}$
$=\frac{462 \times 32}{23}$
$=\frac{2 \times 9}{23}$
Hence, remainder is 18
64. (D) ATQ,

$$
\begin{aligned}
& \frac{n(n-3)}{2}=65 \\
& \Rightarrow n^{2}-3 n=130 \\
& \Rightarrow n^{2}-3 n-130=0 \\
& \Rightarrow n^{2}-13 n+10 n-130=0 \\
& (n-13)(n+10)=0 \\
& n=13
\end{aligned}
$$

Hence, The number of sides are 13.
65. (C) ATQ,
$26-15 \sqrt{3}=\frac{52-30 \sqrt{3}}{2}$
$=\frac{25+27-2 \times 5 \times 3 \sqrt{3}}{2}$
$=\frac{(3 \sqrt{3}-5)^{2}}{2}$
Now,
$38+5 \sqrt{3}=\frac{76+2 \times 5 \sqrt{3}}{2}$
$=\frac{75+1+2 \times 1 \times 5 \sqrt{3}}{2}$
$=\frac{(5 \sqrt{3}+1)^{2}}{2}$
$=\frac{\sqrt{\frac{(3 \sqrt{3}-5)^{2}}{2}}}{5 \sqrt{2}-\sqrt{\frac{(5 \sqrt{3}-1)^{2}}{2}}}$
$=\frac{\frac{3 \sqrt{3}-5}{\sqrt{2}}}{5 \sqrt{2}-\frac{(5 \sqrt{3}+1)}{\sqrt{2}}}$

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
$=\frac{3 \sqrt{3}-5}{5 \times \sqrt{2} \times \sqrt{2}-(5 \sqrt{3}+1)}$
$=\frac{3 \sqrt{3}-5}{9-5 \sqrt{3}}$
$=\frac{1}{\sqrt{3}}\left(\frac{3 \sqrt{3}-5}{3 \sqrt{3}-5}\right)$
$=\frac{1}{\sqrt{3}}$
66. (A) $(x-5)=(y+6)=(z-8)=\mathrm{k}($ let $)$
$\mathrm{k} \times \mathrm{k} \times \mathrm{k}=1331$
$\mathrm{k}^{3}=11^{3} \Rightarrow \mathrm{k}=11$
$x-5=11 \Rightarrow x=16$
$(y+6)=11 \Rightarrow y=5$
$(z-8)=11 \Rightarrow z=19$
Minimum value of $(x+y+z)=(16+5+19)$ $=40$
67. (A) ATQ,
$(b c+c a+a b)^{3}-b^{3} c^{3}-c^{3} a^{3}-a^{3} b^{3}$
$=b^{3} c^{3}+c^{3} a^{3}+a^{3} b^{3}+3(b c+c a)(c a+a b)$
$(a b+b c)-b^{3} c^{3}-c^{3} a^{3}-a^{3} b^{3}$
$=3(b c+c a)(c a+a b)(a b+b c)$
$=3 a b c(a+b)(b+c)(a+c)$
68. (A) ATQ,
$x+\frac{1}{x}=5 \Rightarrow x^{2}+\frac{1}{x^{2}}=5^{2}-2=23$
$\left(x+\frac{1}{x}\right)=5 \Rightarrow x^{3}+\frac{1}{x^{3}}=5^{3}-3 \times 5=110$
...(ii)
Adding equation (i) and (ii)
$x^{2}+\frac{1}{x^{2}}+x^{3}+\frac{1}{x^{3}}=23+110$
$\Rightarrow x^{2}+\frac{1}{x^{3}}+x^{3}+\frac{1}{x^{2}}=133$
$\Rightarrow 8+x^{3}+\frac{1}{x^{2}}=133$
$\Rightarrow x^{3}+\frac{1}{x^{2}}=133-8$
$=125$
69. (C) ATQ,
$\left(x^{2}+2 x+1\right)\left(x^{2}-2 x+1\right)$
$=x^{4}+4 x^{2}+1$
Coefficient of $x^{2}=4$
70. (A) ATQ, $x^{2}-5 x+6=0$
sum of roots $=\alpha+\beta=-\frac{B}{A}=\frac{-(-5)}{1}=5$

Product of roots $=\alpha \beta=\frac{C}{A}=\frac{6}{1}=6$
Now,
If roots are $\frac{1}{\alpha}, \frac{1}{\beta}$
then,
sum of roots $=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$
By putting the value of $(\alpha+\beta)$ are o β $\frac{\alpha+\beta}{\alpha \beta}=\frac{5}{6}$

Product of roots $=\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{6}$
Required quadratic equation
$x^{2}-$ (sum of roots) $x+$ (Product of roots) $=0$
$x^{2}-\frac{5}{6} x+\frac{1}{6}=0$
$6 x^{2}-5 x+1=0$
71. (B) ATQ,
$8 \sec \theta+6 \operatorname{cosec} \theta=20$

$$
\begin{aligned}
& \Rightarrow \frac{8}{20} \sec \theta+\frac{6}{20} \operatorname{cosec} \theta=1 \\
& \Rightarrow \frac{2}{5} \sec \theta+\frac{3}{10} \operatorname{cosec} \theta=1
\end{aligned}
$$

If we consider
$\frac{2}{5} \sec \theta=\frac{3}{10} \operatorname{cosec} \theta=\frac{1}{2}$
then, $\sec \theta=\frac{5}{4}$ and $\operatorname{cosec} \theta=\frac{5}{3}$

In $\triangle \mathrm{ABC}$
$\cot \theta=\frac{4}{3}$
72. (B) When $\alpha=60^{\circ}$ or 120° or 240° or 340° then $\cos ^{2} \theta+\cos ^{2}(\alpha-\theta)+\cos ^{2}(\alpha+\theta)=\frac{3}{2}$

Hence, $\cos ^{2} 10+\cos ^{2} 50^{\circ}+\cos ^{2} 70=\frac{3}{2}$
73. (A) $\frac{\cos \left(90^{\circ}-\theta\right) \cdot \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \cdot \sin \left(90^{\circ}-\theta\right) \cdot \cot \left(90^{\circ}-\theta\right)}$
$=\frac{\sin \theta \operatorname{cosec} \theta \tan \theta}{\sec \theta \cos \theta \tan \theta}$
$=1$
74. (A) $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$4 \sin ^{2} \theta+3 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$4 \sin ^{2} \theta+3=4$
$\sin ^{2} \theta=\frac{1}{4} \Rightarrow \sin \theta=\frac{1}{2}$
$\theta=30^{\circ}$
$\tan \theta=\tan 30=\frac{1}{\sqrt{3}}$
75. (A) $\tan \theta=\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}$

$$
\frac{\sin \theta}{\cos \theta}=\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}
$$

let $\sin \alpha-\cos \alpha=\mathrm{k} \sin \theta$
$\sin \alpha+\cos \alpha=\mathrm{k} \cos \theta$
Adding after squaring
$\sin ^{2} \alpha+\cos ^{2} \alpha-2 \sin \alpha \cos \alpha+\sin ^{2} \alpha+\cos ^{2} \alpha$
$+2 \sin \alpha \cos \alpha=\mathrm{k}^{2}\left(\sin ^{2} \theta+\cos ^{2} \alpha\right)$
$\Rightarrow 2=\mathrm{k}^{2}$
$\Rightarrow \mathrm{k}=\sqrt{2}$
Hence $\sin \alpha-\cos \alpha=\sqrt{2} \sin \theta$ $\sin \alpha+\cos \alpha=\sqrt{2} \cos \theta$
76. (A) ATQ,

$\triangle \mathrm{BCE}$ becomes an isosceles triangle and $\triangle \mathrm{CDE}$ is an equilateral triangle.
$\because \mathrm{BC}=\mathrm{CE}$
$\therefore \angle \mathrm{EBC}=\angle \mathrm{CEB}=\theta$
$\theta+\theta+150^{\circ}=180^{\circ}$
$\theta=15^{\circ}$
77. (C)

$\because \mathrm{AD}$ is the angle bisector of $\angle \mathrm{CAB}$
$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}} \Rightarrow \frac{8}{\mathrm{AC}}=\frac{6}{3}$
$\mathrm{AC}=\frac{3 \times 8}{6}$
$A C=4 \mathrm{~cm}$
78. (B)

then $\mathrm{AQ}=\mathrm{AP}=\frac{a}{2} \mathrm{~cm}$

$$
P Q=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}} \mathrm{~cm}
$$

Diameter of circle $=\frac{a}{\sqrt{2}} \mathrm{~cm}$
Radius $=\frac{a}{2 \sqrt{2}} \mathrm{~cm}$
O is the centre of the circle
Then $\angle \mathrm{EOF}=120^{\circ}$
The area of $\mathrm{EOF}=\frac{1}{2} \mathrm{EO} \times \mathrm{OF} \sin 120^{\circ}$
$=\frac{1}{2} \times \frac{a^{2}}{8} \times \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3} a^{2}}{32} \mathrm{~cm}^{2}$
The area of $\triangle \mathrm{EFG}=\frac{3 \sqrt{3} a^{2}}{32}$
Put $a=16 \mathrm{~cm}$
Hence, The area of $\triangle \mathrm{EFG}=\frac{3 \sqrt{3} \times 16^{2}}{32}$
$=24 \sqrt{3} \mathrm{~cm}^{2}$
79. (C) ATQ,

Length of median
$=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}$
$\mathrm{AM}=\frac{1}{2} \sqrt{2 \times 22^{2}+2 \times 14^{2}-28^{2}}$
$=\frac{1}{2} \sqrt{968+392-784}$
$=12 \mathrm{~cm}$
$\mathrm{GM}=\frac{1}{3} \times \mathrm{AM}$
$=\frac{1}{3} \times 12=4 \mathrm{~cm}$
80. (A) ATQ,

Original cost price
$=₹ \frac{100}{115} \times 5750$
= ₹ 5000
New cost price $=₹ 1.3 \times 5000=₹ 6500$
Price paid by the students
$=1.2 \times 5750$
= ₹ 6900
Profit
$=\frac{400}{6500} \times 100$
$=6 \frac{2}{13} \%$
81. (B) ATQ,

So, $\triangle \mathrm{AOB}$ is an equilateral triangle
So, $\angle \mathrm{APB}+\angle \mathrm{AOB}=180^{\circ}$
$\angle \mathrm{APB}=120^{\circ}$
$\angle \mathrm{APB}=\angle \mathrm{COD}$
$\therefore \angle \mathrm{COD}=120^{\circ}$
82. (C) ATQ,

$\angle \mathrm{ABC}=\angle \mathrm{ACX}$
So, $\angle \mathrm{ACB}=90^{\circ}$
Because AB is diameter
So, $\angle \mathrm{BAC}=90^{\circ}-35^{\circ}=55^{\circ}$
83. (A)

$A B$ and $C D$ extended to P to make an equilateral $\triangle B P C$.
$\angle \mathrm{DAP}=180^{\circ}-150^{\circ}=30^{\circ}$
In $\triangle \mathrm{ADP}$
$\mathrm{AD}=18 \mathrm{~cm}$ (given)
$\tan 30^{\circ}=\frac{\mathrm{PD}}{\mathrm{AD}}$
$\Rightarrow \mathrm{PD}=\frac{18}{\sqrt{3}}=6 \sqrt{3} \mathrm{~cm}$
Area of quadrilateral ABCD
$=$ Area of equilateral $\triangle \mathrm{PBC}-$ Area of $\triangle \mathrm{PAD}$
$=\frac{\sqrt{3}}{4} \times 36^{2}-\frac{1}{2} \times 18 \times 6 \sqrt{3}$
$=324 \sqrt{3}-54 \sqrt{3}$
$=270 \sqrt{3} \mathrm{~cm}^{2}$
84. (A) Case I

Let principal is 100
for K.D. Live at SI
$\mathrm{SI}=\frac{100 \times 20 \times 2}{100}$
$=40$
Amount $=140$
Case II
for K.D. construction at CI
100
1st year 20
2nd year 204
Amount = 144
Percentage earning of the K.D. Live at the end of two years on the entire amount
$=\frac{144-140}{100} \times 100$
$=4 \%$
85. (C) $20-[2.8 \times 5+6-3 \div 0.9 \times 1.5+2]$
$=20-\left[14+6-3 \times\left(\frac{1}{0.9}\right) \times 1.5+2\right]$
$=20-\left[20-\left(\frac{1}{0.3}\right) \times 1.5+2\right]$
$=20-[20-5+2]$
$=20-17=3$
86. (D)

$\Rightarrow \angle \mathrm{HDE}=\angle \mathrm{CDB}(\because$ vertical opposite angles are equal)
$\Rightarrow \angle \mathrm{CDB}=123^{\circ}$
$\Rightarrow \angle \mathrm{CDB}+\angle \mathrm{ABD}=180^{\circ}$ (adjacent angle)
$\Rightarrow 123^{\circ}+\angle \mathrm{ABD}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABD}=57^{\circ}$
$\Rightarrow \angle \mathrm{HDE}+\angle \mathrm{DEF}=180^{\circ}$ (adjacent angle)
$\Rightarrow 123^{\circ}+\angle \mathrm{DEF}=180^{\circ}$
$\Rightarrow \angle \mathrm{DEF}=57^{\circ}$
$\Rightarrow \angle \mathrm{DEF}=\angle \mathrm{EFG}(\because$ alternate angles are equal)
$\Rightarrow \angle \mathrm{EFG}=57^{\circ}$
\therefore Required answer are $\angle \mathrm{EFG}=57^{\circ}$ and $\angle \mathrm{ABD}=57^{\circ}$
87. (B) $x^{4}+\frac{1}{x^{4}}=527$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=23$
$\Rightarrow x+\frac{1}{x}=5$
$\Rightarrow x^{2}+1=5 x$
$\Rightarrow x^{2}-5 x=-1$
$\Rightarrow(x-1)(x-4) \times(x-2)(x-3)$
$\Rightarrow\left(x^{2}-5 x+4\right) \times\left(x^{2}-5 x+6\right)$
From (i)
$\Rightarrow(-1+4) \times(-1+6)$
$=15$
88. (D)

In $\triangle \mathrm{ADC}$,
$\Rightarrow \mathrm{DC}^{2}=\mathrm{AC}^{2}-\mathrm{AD}^{2} \Rightarrow \mathrm{DC}^{2}=29^{2}-20^{2}$
$\Rightarrow \mathrm{DC}^{2}=9 \times 49 \Rightarrow \mathrm{DC}=21 \mathrm{~cm}$
$\Rightarrow \mathrm{OC}=\mathrm{NC}$ (length of a tangent draw from external point to the circle are equal)
$\Rightarrow \mathrm{DO}=\mathrm{DC}-\mathrm{OC}=21-11=10 \mathrm{~cm}$
$\Rightarrow \mathrm{DO}=\mathrm{DP}$ (length of a tangent draw from external point to the circle are equal)
$\Rightarrow \mathrm{DP}=10 \mathrm{~cm}$
$\Rightarrow \mathrm{AP}=\mathrm{AD}-\mathrm{DP}=20-10=10 \mathrm{~cm}$
$\Rightarrow \mathrm{AP}=\mathrm{AM}$ (length of a tangent draw from external point to the circle are equal)
$\Rightarrow A M=10 \mathrm{~cm} \quad . .(\mathrm{i})$
$\Rightarrow \mathrm{BN}=\mathrm{BC}-\mathrm{NC}=20-11=9 \mathrm{~cm}$
$\Rightarrow \mathrm{BN}=\mathrm{BM}$ (length of a tangent draw from external point to the circle are equal)
$\Rightarrow \mathrm{BM}=9 \mathrm{~cm}$
From (i) and (ii)
$\Rightarrow A M-B M=10-9=1 \mathrm{~cm}$
\therefore Required answer is 1 cm
89. (B) ATQ,
$\mathrm{R}-\mathrm{r}=7$
And $2 \pi \mathrm{rh}=150 \pi$
$\Rightarrow 2 \times \pi \times \mathrm{r} \times 15=150 \pi$
So, $r=5 \mathrm{~cm}$
Now, from (i)
$\mathrm{R}=7+5=12$
So, the volume of metal used to make the roller $=\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \times \mathrm{h}$
$\Rightarrow \frac{22}{7} \times\left(12^{2}-5^{2}\right) \times 15$
$\therefore 5610 \mathrm{~cm}^{3}$
90. (D) Let the ratio be x

So, length $=15 x$
Breadth $=12 x$
And height $=8 x$
According to question,
Lateral surface area $=432 \mathrm{~cm}^{2}$
$2(1+b) \times h=432$
$2(15 x+12 x) \times 8 x=432$
$432 x^{2}=432$
So, $x=1$
So, the volume of cuboid $=15 x \times 12 x \times 8 x$
$=1440 x^{3}=1440 \mathrm{~cm}^{3}$
Now, area of cube $=16 \mathrm{~cm}^{2}$
$4 a^{2}=16$
$a=2$
Volume of cube $=2^{3}=8 \mathrm{~cm}^{3}$
So, the number of small cubes $=\frac{1440}{8}$ Hence, 180

1997, GROUND FLOOR OPPOSITE MUKHERJEE NAGAR POLICE STATION, OUTRAM LINES, GTB NAGAR, NEW DELHI - 09
91. (D)

Given, $\frac{\mathrm{AC}}{\mathrm{BC}}=2.4=\frac{12}{5}$
The ratio of the corresponding sides of two similar triangles are equal,
$\because \angle \mathrm{ABC}=\angle \mathrm{PQR}$
\Rightarrow Ratio of corresponding sides $=\frac{\mathrm{AB}}{\mathrm{PQ}}=$
$\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
Hence, we can write,
$\Rightarrow \mathrm{QR}=\left(\frac{\mathrm{BC}}{\mathrm{AC}}\right) \times \mathrm{PR}$
Substituting values,
\therefore Length of sides QR $=\frac{5}{12} \times 6=2.5 \mathrm{~cm}$
92. (B)

In a triangle ABD ,
$\Rightarrow \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}=\frac{333}{\mathrm{BD}}$
$\Rightarrow \sqrt{3}=\frac{333}{\mathrm{BD}}$
$\Rightarrow \mathrm{BD}=111 \sqrt{3} \mathrm{~m}$
In a triangle ABC ,
$\Rightarrow \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{333}{\mathrm{BC}}$
$\Rightarrow\left(\frac{1}{\sqrt{3}}\right)=\frac{333}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}=333 \sqrt{3}$
$\Rightarrow \mathrm{DC}=\mathrm{BC}-\mathrm{BD}=333 \sqrt{3}-111 \sqrt{3}$
$\Rightarrow \mathrm{DC}=222 \sqrt{3} \mathrm{~m}$
\therefore The length of the bridge is $222 \sqrt{3} \mathrm{~m}$
93. (D) ATQ,
$\mathrm{AE} \perp \mathrm{DC}, \mathrm{AE}=28 \mathrm{~m}, \mathrm{AB}=60 \mathrm{~m}, \mathrm{AD}=40$ m and $\mathrm{AF} \perp \mathrm{BC}$

$\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AB}=\mathrm{DC}$
$(\because A B C D$ is a parallelogram)
$\Rightarrow A D=B C$
$\Rightarrow \mathrm{BC}=40 \mathrm{~m}$
$\Rightarrow \mathrm{AB}=\mathrm{DC}$
$\Rightarrow \mathrm{DC}=60 \mathrm{~m}$
$\Rightarrow \mathrm{AE}=\mathrm{h}_{1}=28 \mathrm{~m}$
$\Rightarrow \mathrm{AF}=\mathrm{h}_{2}$
$\Rightarrow \mathrm{DC} \times \mathrm{h}_{1}=\mathrm{BC} \times \mathrm{h}_{2}$
$\Rightarrow 60 \times 28=40 \times h_{2}$
$\Rightarrow h_{2}=\frac{(60 \times 28)}{40}=42 \mathrm{~m}$
\therefore Required answer AF is 42 m .
94. (C)

Now, $y+z=\frac{1}{2} \times 14 \times 7=49$
$x+z=(7)^{2}-\frac{\pi \times 49}{4}$
eq(i) - eq(ii)
$y-x=\frac{22}{7} \times \frac{49}{4}$
$=\frac{77}{2} \mathrm{~cm}^{2}$
95. (B)

Let $\operatorname{ar}(\mathrm{DOE})=\mathrm{S}_{1}$ and $\operatorname{ar}(\mathrm{AOB})=\mathrm{S}_{2}$
Since CD||AB
We have,
area of parallelogram
$2 \times \operatorname{ar}(\mathrm{AOB})+2 \sqrt{\operatorname{Ar}(\mathrm{AOB}) \times \operatorname{Ar}(\mathrm{DOE})}$
$\Rightarrow 2 \mathrm{~S}_{2}+\sqrt[2]{\mathrm{S}_{1} \mathrm{~S}_{2}}$
$\Rightarrow 2 \times 63+\sqrt[2]{7 \times 63}$
$\Rightarrow 168 \mathrm{~cm}^{2}$
96. (C) In quadrilateral P and Q are mid points
$\operatorname{Ar}(\triangle \mathrm{AEQ})+\operatorname{Ar}(\Delta \mathrm{QFB})$
$\operatorname{Ar}(\triangle \mathrm{PCF})+\operatorname{Ar}(\Delta \mathrm{DEP})$
$17+16=18+\operatorname{Ar}(\Delta \mathrm{DEP})$
$\operatorname{Ar}(\triangle \mathrm{DEP})=33-18$
$=15 \mathrm{~m}^{2}$
97. (D)

Each angle of pentagon $=108^{\circ}$
In $\triangle \mathrm{PQT}, \mathrm{PQT}=36^{\circ}$
So, $\angle \mathrm{RQX}=72^{\circ}$
So, exterior angle of $\triangle \mathrm{RXQ}$
$\angle \mathrm{TXR}=108^{\circ}$
98. (A) Smallest side $=20 \mathrm{~cm}$

Largest side $=40 \mathrm{~cm}$
Assume middle side $=21 \mathrm{~cm}$
Volume $=20 \times 40 \times 21$
= 16800
if Assume middle side $=39 \mathrm{~cm}$ volume $=31200$

So, volume between
16800 < V < 31200
option A is right
99.
$\frac{\text { new volume }}{\text { original volume }}=\left(\frac{240}{100}\right)^{3}=\left(\frac{2.4}{1}\right)^{3}$
$=\frac{13.824}{1}$
$\%$ increase $=\frac{(13.824-1)}{1} \times 100$
$=\frac{12.824}{1} \times 100$
$=1282.4 \%$
100. (C) ATQ,

Let the total distance between Lucknow to Mukherjinagar is $d \mathrm{~km}$ and speed s
$\mathrm{km} / \mathrm{hr}$
$\frac{d}{s}-\frac{d}{s+6}=4$
$d=\frac{2 s(s+6)}{3}$
$\frac{d}{s-6}-\frac{d}{s-6}=10$
$d=\frac{5\left(s^{2}-36\right)}{6}$
from eq(i) and (ii)
$\frac{5\left(s^{2}-36\right)}{6}=\frac{2 s(s+6)}{3}$
$5 s^{2}-180=4 s^{2}+24 s$
$s^{2}-24 s-180=0$
$(s-30)(s+6)=0$
$s=30 \mathrm{~km} / \mathrm{hr}$
Putting the value of s in eq(i)
$d=\frac{2 \times 30 \times 36}{3}=720 \mathrm{~km}$

