1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

UP SI MOCK TEST - 57 (SOLUTION)

81. (D) Let the third number is 100
A.T.Q.,

$\mathrm{I}^{\text {st }}$	$\mathrm{II}^{\text {nd }}$	$\mathrm{III}^{\text {rd }}$
75	80	100

Required $\%=\frac{75}{100} \times 100=93 \frac{3}{4} \%$
82. (D) $50 \%=\frac{1}{2}$

Let Z has 2 units of money
According to the question,
X : Y : Z
6:3:2
$\frac{(6+3+2)}{3}$ units $=₹ 110$
$\Rightarrow 11$ units $=₹ 110$
1 unit = ₹330
6 units $=30 \times 6=₹ 180$
Hence, X has ₹180.
83. (A) $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$(8)^{3}-3 \times \frac{32}{3}(8)$
512-3×8
$512-256=256$
84. (C) A.T.Q.,

Amount = ₹3144
Rate = 8\%
Let, Principal = ₹ x
Time
$=\frac{30+29+31+30+31+30+7}{366}=\frac{219}{366}$
$\therefore \quad \mathrm{SI}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$3144-x=\frac{x \times 8 \times 219}{100 \times 366}=₹ 3000$
85. (C) A.T.Q.,
C.P
M.P.
(100 - Discount) : (100 + Profit)
$(100-10): \quad(100+20)$
90 120

3
4
$\therefore 3$ units $=1200$
1 unit $=400$
4 units $=400 \times 4=1600$
$\therefore \quad$ Market Price $=₹ 1600$
86. (C) A.T.Q.,

CP of 1 cycle $=₹ 500$
CP of 10 cycles $=500 \times 10$
= ₹5000

SP of 5 cycles $=5 \times 750=₹ 3750$
SP of remaining 5 cycle $=5 \times 550$
= ₹2750

Total SP of 10 cycles $=3750+2750$
= ₹ 6500
Profit $=\mathrm{SP}-\mathrm{CP}=6500-5000$
$=₹ 1500$
Profit $\%=\frac{1500}{5000} \times 100=30 \%$
87. (C) After three successive Discount, S.P. of an Article
$=5000 \times \frac{100-x}{x} \times \frac{100-y}{100} \times \frac{100-z}{100}$
$=\frac{(100-x)(100-y)(100-z)}{200}$
88. (D) Second train covers the 120 kms more distance only because of its exceed speed of (60-50) km $=10 \mathrm{kmph}$
\Rightarrow Time, taken by trains to meet each other $=\frac{90 \mathrm{kms}}{10 \mathrm{~km} / \mathrm{h}} \Rightarrow 9$ hours
\Rightarrow Distance covered by first train $=9 \times 50$ $=450 \mathrm{~km}$
\Rightarrow Distance covered by the second train $=9$ hours $\times 60 \mathrm{kmph} \Rightarrow 540 \mathrm{~km}$.
\Rightarrow Total distance between A and B
$=540+450=990 \mathrm{~km}$
89. (B) A.T.Q.,
\Rightarrow Distance between his house to school
$\Rightarrow \frac{\mathrm{S}_{1} \times \mathrm{S}_{2}}{\mathrm{~S}_{1}-\mathrm{S}_{2}} \times \frac{\text { diff. of time }}{60}$
$=\frac{4 \times 3}{(4-3)} \times \frac{(10 \mathrm{~min} \text { early }+10 \mathrm{~min} \text { late })}{60}$
$\Rightarrow 12 \times \frac{20}{60} \Rightarrow$ Distance $=4 \mathrm{~km}$.
90. (A) Given, $\sqrt[3]{79507}=43$
$\Rightarrow \sqrt[3]{79.507}+\sqrt[3]{0.079507}+\sqrt[3]{0.000079507}$
$\Rightarrow 4.3+0.43+0.048=4.773$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009
91. (C) A.T.Q.,

5	E	9
2	F	8
3	G	7
11	1	4

\Rightarrow Sum of 2, E, F and G must be 11. For maximum F we will have to take E and G zero.
$\therefore \quad \mathrm{F}=9$
92. (D)

Numbers of cows
$=\frac{3}{3+15} \times 180=\frac{3}{18} \times 180=30$
93. (B)

$\angle \mathrm{AOC}=2 \times \angle \mathrm{ADC}$
(center angle is double the major angle)

$$
\begin{aligned}
& \angle \mathrm{ADC}=\frac{140}{2}=70^{\circ} \\
& \angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ} \\
& \angle \mathrm{ABC}+70^{\circ}=180^{\circ} \\
& \angle \mathrm{ABC}=110^{\circ}
\end{aligned}
$$

94. (D)

$$
\mathrm{QC}^{2}=\mathrm{OQ}^{2}+\mathrm{OC}^{2}
$$

(By pt)
$\mathrm{OC}=15 \mathrm{~cm}$
In right $\Delta \mathrm{COP}$
$\mathrm{CP}^{2}=\mathrm{OP}^{2}+\mathrm{CO}^{2}, 25^{2}=\mathrm{OP}^{2}+15^{2}$
$\mathrm{OP}=20 \mathrm{~cm}, \mathrm{PS}=2 \times \mathrm{OP}$
$=2 \times 20=40 \mathrm{~cm}$
95. (C) In right $\triangle A B C$,

$a^{2}+b^{2}=10^{2}$
(by pt)...(i)
area $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{ab}=20$
$a b=40$
$(a+b)^{2}=a^{2}+b^{2}+2 a b$
$=10^{2}+2(40)=180$
96. (A) $3: 1 \frac{1}{4}: 3 \frac{1}{4}$
$\Rightarrow 3: \frac{5}{4}: \frac{13}{4}$
$\Rightarrow 12: 5: 13 \Rightarrow$ (Triplet of right Δ)
97. (C) $(\mathrm{a}+\mathrm{b}):(\mathrm{b}+\mathrm{c}):(\mathrm{c}+\mathrm{a})=7: 6: 5$
$\Rightarrow a+b+c=27$
$\Rightarrow \mathrm{b}+\mathrm{c}=6$ units
$\Rightarrow \mathrm{a}+\mathrm{b}=7$ units
$\Rightarrow \mathrm{c}+\mathrm{a}=5$ units
from eq ${ }^{\text {n }}$ (i)
$\Rightarrow \mathrm{a}+\mathrm{b}=21$
$\Rightarrow \mathrm{b}+\mathrm{c}=18$
$\Rightarrow \mathrm{c}+\mathrm{a}=15$
solving eq^{n} (ii), (iii) and (iv)
$a=9, c=6, b=12$
Now, $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}=\frac{1}{9}: \frac{1}{12}: \frac{1}{6}=8: 6: 12$
$=4: 3: 6$
98. (B) A.T.Q.,

$$
\begin{aligned}
& \Rightarrow \frac{3^{30}+3^{60}+3^{90}}{3} \\
& \Rightarrow 3^{29}+3^{59}+3^{89}
\end{aligned}
$$

99. (A) Income of A and $B=2 \times 14000=₹ 28000$ Income of B and $C=2 \times 15600=₹ 31200$ Income of A and $\mathrm{C}=2 \times 14400=₹ 28800$ Income of A, B and C
$=\frac{(28000+31200+28800)}{2}$
= ₹ 44000
C income $=44000-28000=₹ 16000$
100. (B) HCF of fractional numbers is
$\left(\frac{\text { HCF of numerator }}{\text { LCM of denominator }}\right)$
$\therefore \operatorname{HCF}\left(\frac{2}{3}, \frac{4}{5}, \frac{6}{7}\right)$
$\Rightarrow\left(\frac{\text { HCF } 2,4,6}{\text { LCM } 3,5,7}\right)=\frac{2}{3 \times 5 \times 7}=\frac{2}{105}$
101. (B) For least or minimum number of canes we should have maximum capacity canes for required quantity
\Rightarrow For this we take HCF of given quantities.
$\operatorname{HCF}(21,42,63)=21$
$\therefore \quad$ Maximum capacity of a cane $=21$ litres
$\therefore \quad$ Number of canes of cow milk $=\frac{21}{21}=1$
$\therefore \quad$ Number of canes of toned milk $=\frac{42}{21}=2$
\therefore number of canes of double toned milk

$$
=\frac{63}{21}=3
$$

\therefore Total number of canes $=1+2+3=6$
102. (D) HCF (GCD) of a, b number is 12 and a > b > 12 (given)
$\therefore \quad$ smallest value of $\mathrm{a} \& \mathrm{~b}$ are $(36,24)$
103. (A) A.T.Q.,

1 units $\rightarrow 10$
3 units $\rightarrow 10 \times 3=30$
\therefore Height of hill $=30 \mathrm{~m}$
104. (A)

Shortcut approach Ist Case:

$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\text { Perpendicular }}{\text { Base }}=\frac{1}{5}$

IInd Case:

$\operatorname{Sec} \alpha=\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\text { Hypo }}{\text { Base }}=\frac{\sqrt{193}}{12}$
In $\triangle \mathrm{ABD}$
Hypo. $=\sqrt{193}$, Base $=12$
Then perpendicular $=7$
(By Pythagoras theorem)
In Case I Perpendicular is 1.
So equal this
$\tan \theta=\frac{1 \times 7}{5 \times 7}=\frac{7}{35} \leftarrow$ Perpen.

$A B=42 m$
105. (B) $\left[\frac{m_{1} \times h_{1} \times T_{1}}{W_{1}}=\frac{m_{2} \times h_{2} \times T_{2}}{W_{2}}\right]$
$9_{\text {taps }} \times 20_{\text {mins }}=\mathrm{T}_{\text {taps }} \times 15_{\text {mins }}$
T = 12 Taps
106. (D) $\sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{7}$

$$
x+\frac{1}{x}=5
$$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

$$
x^{3}+\frac{1}{x^{3}}=125-3 \times 5=110
$$

107. (A) $\mathrm{R}_{x}=\frac{80}{20}$ pages $/ \mathrm{hr}=4 \mathrm{p} / \mathrm{h}$
$\mathrm{R}_{(x+y)}=\frac{135}{27} \mathrm{p} / \mathrm{h}=5 \mathrm{p} / \mathrm{h}$
$\mathrm{R}_{y}=\mathrm{R}_{(x+y)}-\mathrm{R}_{x}=(5-4)=1 \mathrm{p} / \mathrm{h}$
y can copy 20 pages $=\frac{20 p}{1 p / h}=20 h$
108. (B) $(0 . \overline{63}+0 . \overline{37})=\frac{63}{99}+\frac{37}{99}$
$=\frac{63+37}{99}=\frac{100}{99}$
109. (D) Let present average $=x$ years

Total age $=5 x$ year
According to question,
$5 x-y+z=5 x-15$
where $y=$ Replaced member
$z=$ New member
$-y+z=-15$
$y-z=15$
This is required difference.
110. (A) $1305,4665,6905$ are three numbers, greatest number which leaves same remainder in each case. To find this take difference of numbers
$\Rightarrow 1305 \quad 4665 \quad 6905$
$\frac{-3360}{>-1120} \boldsymbol{>}$
$\therefore \quad 1120$ is the no. which leaves the same remainder when divide 1305, 4665, 6905
\therefore sum of number digit $\Rightarrow 1+1+2+0=4$
111. (D) B's profit share in 1 year $=12 \times 100$
$=₹ 1200$
Interest of $\mathrm{A}=\frac{10,000 \times 5 \times 1}{100}=₹ 200$
Total profit of A and $B=1200+500+$ 200 = ₹ 1900
Remaining profit $=4000-1900=₹ 2100$
Note: Remaining profit will be divided in the ratio of their profit.
$\begin{array}{ccc}\text { A } & : & B \\ \text { Capital } 10,000 & : & 4000\end{array}$
5 : 2

Share of A in remaining profit
$=\frac{2100}{(5+2)} \times 5=₹ 600$
Total profit of $\mathrm{A}=500+1500=₹ 2000$
Total profit of $B=1200+600+200$

$$
=₹ 2000
$$

112. (B)
$\begin{array}{cccccc} & \text { A } & : & \text { B } & : & \text { C } \\ \text { Capital } & 24000 & : & 32000 & : & 18000 \\ & 5 & : & 16 & : & 9\end{array}$
Let the total profit $=100 x$
Extra share of $\mathrm{A}=100 x \times \frac{15}{100}=15 x$
Extra share of $B=100 x \times \frac{12}{100}=12 x$
Remaining profit $=[100 x-(15 x+12 x)]=73 x$
A.T.Q.,

Note: Remaining profit distributed in the ratio of their capitals
$\therefore \quad$ Share of $\mathrm{C}=\frac{73 x}{(12 \div 16 \div 9)} \times 9=\frac{657 x}{37}$
$\frac{657 x}{37}=₹ 65700$
$x=₹ \frac{65700 \times 37}{657}=₹ 3700$
\therefore Hence required profit $=100 x$
$=100 \times 3700=₹ 3,70,000$
113. (C) Side of hexagon
$=\frac{\text { Side of equilateral triangle }}{3}=2 \mathrm{~cm}$
Area of hexagon $=\frac{3 \sqrt{3}}{2} a^{2}=\frac{3 \sqrt{3}}{2} \times 4$
$=6 \sqrt{3} \mathrm{~cm}^{2}$
114. (C) A.T.Q.,

Let the length of side of the square be 'a' cm
(circumference) $C=4 \mathrm{a}$ (perimeter of square)
$2 \pi r=4 a \Rightarrow a=132 \mathrm{~cm}$
115. (D) Options are wrong in question paper and correct options are-
(A) $\frac{3}{9}$
(B) $\frac{1}{9}$
(C) $\frac{4}{9}$
(D) $\frac{2}{9}$

Solution-
Let part filled be ' x '
A.T.Q.,
$x \times(48 \mathrm{~m} \times 16.5 \mathrm{~m} \times 4 \mathrm{~m})=\mathrm{n}(2)^{2} \times 56$
$x=\frac{22 \times 4 \times 56}{7 \times 48 \times 16.5 \times 4}$
$x=\frac{2}{9}$ Ans.
116. (A) Options are wrong in question paper and correct options are-
(A) $720 \mathrm{~cm}^{2}$
(B) $800 \mathrm{~cm}^{2}$
(C) $700 \mathrm{~cm}^{2}$
(D) $750 \mathrm{~cm}^{2}$

Solution-

In $\triangle \mathrm{ABD}$,
$\mathrm{BD}=\sqrt{\mathrm{AB}^{2}+\mathrm{AD}^{2}}=\sqrt{9^{2}+12^{2}}=\sqrt{81+144}$
$=\sqrt{225}=15 \mathrm{~cm}$
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AD}$
$=\frac{1}{2} \times 9 \times 12=54 \mathrm{~cm}^{2}$
In $\triangle B C D$
semi perimeter $=\frac{13+14+15}{2}=\frac{42}{2}=21$

Area of $\Delta \mathrm{BCD}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-13)(21-14)(21-15)}$
$=\sqrt{21 \times 8 \times 7 \times 6}=21 \times 4=84 \mathrm{~cm}^{2}$
area $\mathrm{ABCD}=84+54=138 \mathrm{~cm}^{2}$
height of prism
$=\frac{\text { volume }}{\text { Area of base }}=\frac{2070}{138}=15 \mathrm{~cm}$
perimeter of base $=9+14+13+12$

$$
=48 \mathrm{~cm}
$$

Area of lateral surface $=$ perimeter \times height $=48 \times 15=720 \mathbf{~ c m}^{2}$
117. (B) $\because(81+63)^{\circ}=80000$
$360^{\circ}=\frac{80000}{144^{\circ}} \times 360^{\circ}=₹ 2,00,000$
118. (D) Required percentage
$=\frac{63-36}{36} \times 100=75 \%$
119. (C) Required percentage

$$
=\frac{81-54}{81} \times 100=\frac{27}{81} \times 100=33 \frac{1}{3} \%
$$

120. (C) $a^{2}+b^{2}+c^{2}+96=8(a+b-2 c)$

$$
=2(4 a+4 b-8 c)
$$

Now, $a=4, b=4, c=-8$

$$
\sqrt{a b-b c+c a}=\sqrt{16+32-32}=4
$$

121. (A) Book have pages. Ladder have steps.
122. (A) Pair of opposite letters.
123. (A) As, $11^{3}=1331$

Similarly, $12^{3}=\mathbf{1 7 2 8}$
124. (A) As, Shoes makes by Cobbler. Similarly, Furniture makes by Carpenter.
125. (B) All are civilians awards except options (B).
126. (D) Expect in the 345, in all other number the difference b / w the units and hundredth digit is 3 .
127. (B) Except option (B), all are civilians awards.
128. (B)

129. (B)

130. (A) ($n^{3}+3$) sequence followed where ' n ' is natural number.
131. (C) 132. (B)
133. (A) In 1 hour, minute hand gain 55 min hence at 9 O'clock they are 15 min . spaces apart.
Therefore, to be in opposite directions the minute hand will have gain 15 min . spaces.

Now, in $15 \mathrm{~min} . \frac{60}{55} \times 15=16 \frac{4}{11} \mathrm{~min}$.

Hence, $16 \frac{4}{11} \mathrm{~min}$. past 9
134. (C) efgh/eeffgghh/eeefffggghhh
135. (B) $(8+7) \times 6=90$
$(7+6) \times 5=65$
$(6+5) \times 4=44$
136. (A) 137. (C)
138. (C)

Either I or II and conclusion III follows.
139. (A)

$\therefore \quad$ He is 22 km in south direction from his starting position.
140. (A)

So, H is the nephew of F.
141. (C)

142. (A) 143. (B) 144. (C)
145. (D) Market \rightarrow Vegetables \rightarrow Buy \rightarrow Dinner \rightarrow Cook
146. (D) The adjacent face of 6 are $1,3,4,5$ only 2 is in opposite side.
147. (D) 14 C 3 A 12 E 4 D 2
$=14 \times 3-12+4 \div 2=32$
148. (B)

Similarly,

149. (C) 150. (C) 151. (D) 152. (B)
153. (D)

Distance from his house $=2 \mathrm{~km}$
154. (A)
155. (A) As, T E R M I N A L

similarly,

Directions (156-160):
peace \rightarrow sa
night \rightarrow la
property \rightarrow ta
senior \rightarrow ty
wing \rightarrow op
science $\rightarrow \mathrm{nm}$
156. (C) 157. (B) 158. (C) 159. (B)
160. (D)

