HSSC MOCK TEST - 185 (SOLUTION)

1. (C) $u=e^{a x} \cos b x$
$\Rightarrow \frac{d u}{d x}=e^{a x} \cdot(-b \sin b x)+a \cdot e^{a x} \cdot \cos b x$
$\Rightarrow \frac{d u}{d x}=-b e^{a x} \cdot \sin b x+a \cdot e^{a x} \cdot \cos b x$
and $v=e^{a x} \cdot \sin b x$
$\Rightarrow \frac{d v}{d x}=b \cdot e^{a x} \cdot \cos b x+a \cdot e^{a x} \cdot \sin b x$
Now, $u \frac{d u}{d x}+v \cdot \frac{d v}{d x}$
$\Rightarrow e^{a x} \cos b x\left[-b e^{a x} \sin b x+a \cdot e^{a x} \cdot \cos b x\right]$
$+e^{a x} \cdot \sin b x$
$\left[b e^{a x} \cdot \cos b x+a e^{a x} \cdot \sin b x\right]$
$\Rightarrow-b e^{2 a x} \cdot \sin b x \cdot \cos b x+a \cdot e^{2 a x} \cdot \cos ^{2} b x+$ $b \cdot e^{2 a x} \sin b x \cdot \cos b x+a e^{2 a x} \cdot \sin ^{2} b x$
$\Rightarrow a \cdot e^{2 a x}\left(\cos ^{2} b x+\sin ^{2} b x\right)=a \cdot e^{2 a x}$
2. (B) In the expansion of $(3+x)^{6}$

Total terms $=6+1=7$
Middle term $=\mathrm{T}_{4}={ }^{6} \mathrm{C}_{3}(3)^{3} \cdot(x)^{6}$

$$
=20 \times 27 x^{6}
$$

3. (B) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
4. (D) Point C divides the line joining the points A and B in ratio $=m: 1$
A.T.Q.
$\frac{m \times 1+1 \times(-2)}{m+1}=\frac{-1}{5}$
$\Rightarrow 5 m-10=-m-1$
$\Rightarrow 6 m=9 \Rightarrow m=\frac{3}{2}$
The required ratio $=3: 2$
5. (D)
6. (C) A.T.Q,
$\frac{4+3+y}{3}=2 \Rightarrow y=-1$
and $\frac{x-6-5}{3}=3 \Rightarrow x=20$
$\therefore x=20, y=-1$
7. (B) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 \quad[\because-1 \leq \sin \theta \leq 1]$
8. (A) We know that
$(1+x)^{n}=\mathrm{C}_{0}+\mathrm{C}_{1} x+\mathrm{C}_{2} x^{2}+\mathrm{C}_{3} x^{3}+\mathrm{C}_{n} x^{n}$
On differentiating both sides w.r.t. ' x '
$n(1+x)^{n-1}=0+\mathrm{C}_{1}+2 \mathrm{C}_{2} \cdot x+3 \cdot \mathrm{C}_{3} \cdot x^{2}+\ldots$.
$\ldots . .+n \mathrm{C}_{n} x^{n-1}$
On putting $x=-1$
$n(1-1)^{n-1}=\mathrm{C}_{1}-2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots . .+(-1)^{n-1} \cdot n \mathrm{C}_{n}$ $0=\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}-\ldots . .+(-1)^{n-1} n \cdot \mathrm{C}_{n}$
Hence $\mathrm{C}_{1}-2 \mathrm{C}_{2}+3 \mathrm{C}_{3}-\ldots . .+(-1)^{n-1} \cdot n \cdot \mathrm{C}_{n}=0$
9. (A) $\mathrm{A}^{2}-\mathrm{B}^{2}=(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B})$
$\Rightarrow A^{2}-B^{2}=A^{2}-B A+A B-B^{2}$
$\Rightarrow A B=B A$
10. (C) Order $=2$, Degree $=2$
11. (D) Given that $\vec{a}+3 \vec{b}+2 \vec{c}=0$

Now, $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\lambda(\vec{a} \times \vec{c})$
$\Rightarrow \vec{a} \times \frac{1}{3}(-\vec{a}-2 \vec{c})+\frac{1}{3}(-\vec{a}-2 \vec{c}) \times \vec{c}-\vec{a} \times \vec{c}$
$=\lambda(\vec{a} \times \vec{c})$
$\Rightarrow-\frac{1}{3}(\vec{a} \times \vec{a})-\frac{2}{3}(\vec{a} \times \vec{c})-\frac{1}{3}(\vec{a} \times \vec{c})-$
$\frac{2}{3}(\vec{c} \times \vec{c})-\vec{a} \times \vec{c}=\lambda(\vec{a} \times \vec{c})$
$\Rightarrow 0-\frac{2}{3}(\vec{a} \times \vec{c})-\frac{1}{3}(\vec{a} \times \vec{c})-0-(\vec{a} \times \vec{c})=1(\vec{a} \times \vec{c})$
$\Rightarrow-2(\vec{a} \times \vec{c})=\lambda(\vec{a} \times \vec{c}) \Rightarrow \lambda=-2$
12. (A) $5.3,9.3,0,-4.7,7.6,3.9,-3.2,6.1,-4.2$

On arranging in ascending order
$-4.7,-4.2,-3.2,0,3.9,5.3,6.1,7.6,9.3$
Median $=5^{\text {th }}$ term $=3.9$
13. (B) Let $x-i y=\sqrt{46-14 \sqrt{3} i}$

On squaring both sides
$\Rightarrow\left(x^{2}-y^{2}\right)-2 x y i=46-14 \sqrt{3} i$
On comparing
$x^{2}-y^{2}=46$ and $2 x y=14 \sqrt{3}$
Now, $\left(x^{2}+y^{2}\right)=\left(x^{2}-y^{2}\right)+(2 x y)^{2}$
$\Rightarrow\left(x^{2}+y^{2}\right)^{2}=(46)^{2}+(14 \sqrt{3})^{2}$
$\Rightarrow\left(x^{2}+y^{2}\right)^{2}=2116+588$
$\Rightarrow\left(x^{2}+y^{2}\right)^{2}=2704 \Rightarrow x^{2}+y^{2}=52$
from eq(i) and eq(ii)
$x= \pm 7, y= \pm \sqrt{3}$
$\therefore \sqrt{46-14 \sqrt{3}} i= \pm(7-\sqrt{3} i)$
14. (C) In the expansion of $\left(y^{2}+\frac{2}{y}\right)^{5}$
$\mathrm{T}_{r+1}={ }^{5} \mathrm{C}_{2}\left(y^{2}\right)^{5-r}\left(\frac{2}{y}\right)^{r}$
$={ }^{5} \mathrm{C}_{r} 2^{r} \cdot y^{10-3 r}$
Now, $10-3 r=1$
$\Rightarrow 3 r=9 \Rightarrow r=3$
Coefficient of $y={ }^{5} \mathrm{C}_{3} \times 2^{3}$
$=10 \times 8=80$
15. (A) "COCHIN"

Total words starting with $\mathrm{CC}=4!=24$
Total words starting with $\mathrm{CH}=4!=24$
Total words starting with $\mathrm{CI}=4!=24$
Total words starting with $\mathrm{CN}=4!=24$
Now, start word will be "COCHIN"
$=24 \times 4=96$
70. (C) As, Daggle is poor writing.

Similarly, Stammering is speech defect.
71. (B)

Similarly,

72. (D) Except Rangoon, all others are the cities of India.
73. (C)

74. (A) As, $3+6+1+8+3+7=28$
and, $4+2+2+1+6+5=20$
Similarly, $8+1+2+9+7+2=\mathbf{2 9}$
75. (A) As, $16 \times 3-4=44$
and, $41 \times 3-6=117$
Similarly, $37 \times 3-5=106$
76. (C)
77. (D)

HSSC MOCK TEST - 185 (ANSWER KEY)

1.	(C)	11.	(D)	21.	(C)	31.	(D)	41.	(D)	51	(D)	61	(D)	71.	(B)		(A)
2.	(B)	12.	(A)	22.	(A)		(B)	42.	(C)	52	(D)	62.	(C)	72	(D)	82	(C)
3.	(B)	13.		23.	(A)	33.	(D)	43.	(C)	53.	(D)	63.	(D)	73	(C)	83	(A)
4.	(D)	14.	(C)	24.	(D)	34.	(D)	44.	(C)	54.	(A)	64.	(A)	74	(A)	84	(B)
5.	(D)	15.	(A)	25.	(C)	35.	(B)	45.	(B)	55.	(C)	65	(D)	75	(A)	85	(A)
6.	(C)	16.		26.		36.		46.	(A)	56.	(B)	66.	(A)	76	(C)	86	
7.	(B)	17.	(A)	27.	(A)	37.	(D)	47.	(A)	57.	(B)	67.	(A)	77.	(D)	87	
8.	(A)	18.	(B)	28.	(C)	38.	(C)	48.	(A)	58.	(C)	68.	(D)	78.	(A)	88.	
9.		19.		29.						59.		69.		79.		89.	
10	(C)	20.	(D)	30.	(C)	40.	(A)	50.	(A)	60.	(A)	70.	(C)	80.	(A)	90.	

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

